Skip to main content
Log in

Modeling and analysis of forced vibrations in transversely isotropic thermoelastic thin beams

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In this paper, the transverse vibrations in a homogenous, transversely isotropic, thermoelastic thin beams due to time varying patch loads have been investigated. The governing equations of motion for classical elasticity and heat conduction for non-Fourier (non-classical) process have been integrated to model the transverse vibrations in a homogenous, transversely isotropic thin beam in closed form by employing Euler–Bernoulli beam theory. The axial ends of the beam are assumed to be at either clamped–clamped or clamped-free/cantilever conditions. The model equation governing transverse vibrations in a thermoelastic thin beam has been solved analytically by employing Laplace transform technique with respect to space and time variables. In order to obtain deflection and other quantities in the physical domain, the inversion of Laplace transform in the time domain has been performed by using the calculus of residues. The variational iteration method along with Durbin technique has also been employed to solve the model equation for comparison and validation purpose. The expressions for deflection and response ratio in the physical domain have been computed numerically with the help of MATLAB software for a silicon carbide micro-beam. The computed results have been presented graphically. The obtained analytic results are envisioned to be easy to implement for engineering analysis and designs of resonators (sensors), modulators, actuators and radio frequency filters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Cleland AN, Roukes ML (1996) Fabrication of high frequency nanometer scale mechanical resonators from bulk Si crystals. Appl Phys Lett 69(18):2653–2655

    Article  ADS  Google Scholar 

  2. Senturia S (2002) Microsystem design. Kluwer Academic Publishers, New York

    Google Scholar 

  3. Rezazadeh G, Tahmasebi A, Zubtsov M (2006) Application of piezoelectric layers in electrostatic MEM actuators: controlling of pull-in voltage. J Microsyst Technol 12:1163–1170

    Article  Google Scholar 

  4. Pelsko JA, Bernstein DH (2002) Modeling MEMS and NEMS. Chapman and Hall, New York

    Book  Google Scholar 

  5. Abdel-Rahman EM, Younis MI, Nayfeh AH (2002) Characterisation of the mechanical behaviour of an electrically actuated microbeam. J Micro Microeng 12:759–766

    Article  Google Scholar 

  6. Nayfeh AH, Younis MI (2005) Dynamics of MEMS resonators under superharmonic and subharmonic excitations. J Micro Microeng 15:1840–1847

    Article  Google Scholar 

  7. Lifshitz R, Roukes ML (2000) Thermoelastic damping in micro- and nanomechanical systems. Phys Rev B 61:5600–5609

    Article  ADS  Google Scholar 

  8. Guo FL, Rogerson GA (2003) Thermoelastic coupling effect on a micro-machined beam resonator. Mech Res Commun 30:513–518

    Article  MATH  Google Scholar 

  9. Sun Y, Fang D, Soh AK (2006) Thermoelastic damping in micro-beam resonators. Int J Solids Struct 43:3213–3229

    Article  MATH  Google Scholar 

  10. Sharma JN (2011) Thermoelastic damping and frequency shift in micro/nanoscale anisotropic beams. J Therm Stresses 34:650–666

    Article  Google Scholar 

  11. Altus E (2001) Statistical modeling of heterogeneous micro-beams. Int J Solids Struct 38:5915–5934

    Article  MATH  Google Scholar 

  12. Abu-Hilal M (2003) Forced vibration of Euler-Bernoulli beams by means of dynamic Green functions. J Sound Vib 267:191–207

    Article  ADS  MATH  Google Scholar 

  13. Fang D, Sun Y, Soh AK (2006) Analysis of frequency spectrum of laser induced vibration of micro-beam resonators. Chin Phys Lett 23(6):1554–1557

    Article  ADS  Google Scholar 

  14. Sun Y, Fang D, Saka M, Soh AK (2008) Laser-induced vibrations of micro-beams under different boundary conditions. Int J Solids Struct 45:1993–2013

    Article  MATH  Google Scholar 

  15. Liu HK, Pan CH, Liu CC (2008) Dimension effect on mechanical behaviour of silicon micro-cantilever beams. Measurement 41:885–895

    Article  Google Scholar 

  16. Jia XL, Yang J, Kitipornchai S, Lim CW (2011) Forced vibration of electrically actuated FGM microswitches. Procedia Eng 14:280–287

    Article  Google Scholar 

  17. Zang J, Fu Y (2012) Pull-in analysis of electrically actuated viscoelastic microbeams based on a modified couple stress theory. Meccanica 47:1649–1658

    Article  MathSciNet  Google Scholar 

  18. Tryland BT, Clausen AH, Remseth S (2001) Effect of material and geometric variations on beam under patch loading. J Struct Eng 127(8):930–939

    Article  Google Scholar 

  19. Akgöz B, Civalek Ö (2012) Analysis of micro-sized beams for various boundary conditions based on the strain gradient elasticity theory. Arch Appl Mech 82:423–443

    Article  MATH  Google Scholar 

  20. Civalek Ö (2004) Application of differential quadrature (DQ) and harmonic differential quadrature (HDQ) for buckling analysis of thin isotropic plates and elastic columns. Eng Struct 26:171–186

    Article  Google Scholar 

  21. Akgöz B, Civalek Ö (2013) Longitudinal vibration analysis of strain gradient bars made of functionally graded materials (FGM). Compos Part B 55:263–268

    Article  Google Scholar 

  22. Belardinelli P, Lenci S, Demeio L (2014) A comparison of different semi-analytical techniques to determine the nonlinear oscillations of a slender microbeam. Meccanica 49:1821–1831

  23. He JH (1999) Variational iteration method- a kind of non-linear analytic technique: some examples. Int J Nonlinear Mech 34:699–708

    Article  MATH  Google Scholar 

  24. Inokuti M, Sekini H, Mura T (1978) General use of the Lagrange multiplier in non-linear mathematical physics. In: Nemat-Nasser S (ed) Variational method in the mechanics of solids. Pergamon Press, Oxford, pp 156–162

    Google Scholar 

  25. Liu Y, Gurram CS (2009) The use of He’s variational iteration method for obtaining the free vibration of an Euler-Bernoulli beam. Math Comput Model 50:1545–1552

    Article  MATH  MathSciNet  Google Scholar 

  26. Rezazadeh G, Madinei H, Shabani R (2012) Study of parametric oscillation of an electrostatically actuated microbeam using variational iteration method. Appl Math Model 36:430–443

    Article  MATH  MathSciNet  Google Scholar 

  27. Shiekhlou M, Rezazadeh G, Shabani R (2013) Stability and torsional vibration analysis of a micro-shaft subjected to an electrostatic parametric excitation using variational iteration method. Meccanica 48:259–274

    Article  MathSciNet  Google Scholar 

  28. Achenbach JD (2005) The thermoelasticity of laser-based ultrasonic. J Therm Stress 28:713–727

    Article  Google Scholar 

  29. Sharma JN, Kaur R (2014) Analysis of forced vibrations in micro-scale anisotropic thermoelastic beams due to concentrated loads. J Therm Stress 37:93–116

    Article  Google Scholar 

  30. Sherief HH, Dhaliwal RS (1981) Generalized one- dimensional thermal-shock problem for small times. J Therm Stress 4:407–420

    Article  Google Scholar 

  31. Rezazadeh G, Vahdat AS, Tayefeh-rezaei S, Cetinkaya C (2012) Thermoelastic damping in a micro-beam resonator using modified couple stress theory. Acta Mech 223:1137–1152

    Article  MATH  MathSciNet  Google Scholar 

  32. Khanchehgardam A, Rezazadeh G, Shabani R (2013) Effect of mass diffusion on the damping ratio in a functionally graded micro-beam. Compos Struct 106:15–29

    Article  Google Scholar 

  33. Churchill RV (1972) Operational mathematics. McGraw- Hill, New York

    MATH  Google Scholar 

  34. Bao MH (2005) Analysis and design principles of MEMS devices. Elsevier, New York

    Google Scholar 

  35. Clough RW, Penzien J (1986) Dynamics of structures. McGraw- Hill, Singapore

    Google Scholar 

  36. Odibat ZM (2010) A study on the convergence of variational iteration method. Math Comput Model 51:1181–1192

    Article  MATH  MathSciNet  Google Scholar 

  37. Tatari M, Dehghan M (2007) On the convergence of he’s variational iteration method. J Comput Appl Math 207(1):121–128

    Article  ADS  MATH  MathSciNet  Google Scholar 

  38. Durbin F (1974) Numerical inversion of Laplace transforms: an efficient improvement to Dubner and Abate’s method. Comput J 17(4):371–376

    Article  MATH  MathSciNet  Google Scholar 

  39. Harris GL (1995) Properties of silicon carbide. INSPEC, The Institution of Electrical Engineers, London

    Google Scholar 

  40. Kern EL, Hamill DW, Deem HW, Sheets HD (1969) Thermal properties of beta silicon carbide from 20 to 2,000 °C. Mater Res Bull 4:S25

    Google Scholar 

Download references

Acknowledgments

The author (R. Kaur) thankfully acknowledges the financial support from the Council of Scientific and Industrial Research (CSIR), New Delhi via Grant No. 09/918(0002)2010-EMR-I to complete this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramandeep Kaur.

Appendix

Appendix

The values of the coefficients A i and B i, i = 1,2 of expressions (32) and (33) are given by

$$ A_{1} = A_{1}^{1} (\cosh \,\eta - \cos \,\eta )\, - A_{1}^{2} (\sinh \,\eta - \sin \,\eta ) $$
$$ A_{1}^{1} = \sinh \,\eta \left( {1 - \frac{{\hat{a} + \hat{b}}}{2}} \right)\,\sinh \,\eta \left( {\frac{{\hat{a} - \hat{b}}}{2}} \right) - \sin \,\eta \left( {1 - \frac{{\hat{a} + \hat{b}}}{2}} \right)\,\sin \,\eta \left( {\frac{{\hat{a} - \hat{b}}}{2}} \right) $$
$$ A_{1}^{2} = \cosh \,\eta \left( {1 - \frac{{\hat{a} + \hat{b}}}{2}} \right)\,\sinh \,\eta \left( {\frac{{\hat{a} - \hat{b}}}{2}} \right) + \cos \,\eta \left( {1 - \frac{{\hat{a} + \hat{b}}}{2}} \right)\,\sin \,\eta \left( {\frac{{\hat{b} - \hat{a}}}{2}} \right) $$
(76)
$$ A_{2} = A_{2}^{1} (\cosh \,\eta + \cos \,\eta )\, - A_{2}^{2} (\sinh \,\eta + \sin \,\eta ) $$
$$ A_{2}^{1} = \sinh \,\eta \left( {1 - \frac{{\hat{a} + \hat{b}}}{2}} \right)\,\sinh \,\eta \left( {\frac{{\hat{a} - \hat{b}}}{2}} \right) - \sin \,\eta \left( {1 - \frac{{\hat{a} + \hat{b}}}{2}} \right)\,\sin \,\eta \left( {\frac{{\hat{b} - \hat{a}}}{2}} \right) $$
$$ A_{2}^{2} = \cosh \,\eta \left( {1 - \frac{{\hat{a} + \hat{b}}}{2}} \right)\,\sinh \,\eta \left( {\frac{{\hat{a} - \hat{b}}}{2}} \right) + \cos \,\eta \left( {1 - \frac{{\hat{a} + \hat{b}}}{2}} \right)\,\sin \,\eta \left( {\frac{{\hat{a} - \hat{b}}}{2}} \right) $$
(77)
$$ B_{1} = A_{1}^{1} (\sinh \,\eta + \sin \,\eta )\, - A_{1}^{2} (\cosh \,\eta - \cos \,\eta ) $$
(78)
$$ B_{2} = A_{2}^{1} (\sinh \,\eta - \sin \,\eta )\, - A_{2}^{2} (\cosh \,\eta + \cos \,\eta ) $$
(79)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, J.N., Kaur, R. Modeling and analysis of forced vibrations in transversely isotropic thermoelastic thin beams. Meccanica 50, 189–205 (2015). https://doi.org/10.1007/s11012-014-0063-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-014-0063-2

Keywords

Navigation