Skip to main content
Log in

Vibration of a membrane strip with a segment of higher density: analysis of trapped modes

  • Brief Notes and Discussions
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The Helmholtz equation governs the dynamics of membranes and waveguides. Using the mode matching method, trapped modes are found for an infinite strip with a segment of inhomogeneity. The exact frequencies and mode shapes are determined as a function of density ratio and length of the segment. Nonuniqueness and nonexistence are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Rayleigh JWS (1945) The Theory of Sound. Dover, New York

    MATH  Google Scholar 

  2. Wang CY, Wang CM (2014) Structural Vibration. CRC Press, Boca Raton

    Google Scholar 

  3. Leissa AW (1969) The Vibration of Plates. NASA SP160, Washington DC

    Google Scholar 

  4. Harrington RF (1961) Time Harmonic Electromagnetic Fields. McGraw Hill, New York

    Google Scholar 

  5. Londergan JT, Carini JP, Murdock DP (1999) Binding and Scattering in Two-Dimensional Systems. Springer, Berlin

    MATH  Google Scholar 

  6. Schult RL, Ravenhall DG, Wyld HW (1989) Quantum bound states in a classically unbound system of crossed wires. Phys Rev B 39:5476–5479

    Article  ADS  Google Scholar 

  7. Andrews M, Savage CM (1994) Bound states of two-dimensional nonuniform waveguides. Phys Rev A 50:4535–4537

    Article  ADS  Google Scholar 

  8. Bulla W, Gesztesy F, Renger W, Simon B (1997) Weakly coupled bound states in quantum waveguides Proc. Am Math Soc 125:1487–1495

    Article  MathSciNet  MATH  Google Scholar 

  9. Carini JP, Londergan JT, Murdock DP, Trinkle D, Yung CS (1997) Bound states in waveguides and bent quantum wires I. Applications to waveguide systems. Phys Rev B 55:9842–9851

    Article  ADS  Google Scholar 

  10. Granot E (2002) Emergence of a confined state in a weakly bent wire. Rev B 65(23):233101

    Article  Google Scholar 

  11. Nazarov SA (2010) Trapped modes in a T-shaped waveguide. Acoust Phys 56:1004–1015

    Article  ADS  Google Scholar 

  12. Amore P, Rodriguez M, Terrero-Escalante CA (2012) Bound states in open coupled asymmetrical waveguides and quantum wires. J Phys A Math Theor 45(10):105303

    Article  MathSciNet  ADS  Google Scholar 

  13. Bittner S, Dietz B, Miski-Oglu M, Richter A, Ripp C, Sadurni E, Schleich WP (2013) Bound states in sharply bent waveguides: analytical and experimental approach. Phys Rev. E 87(4):042912

    Article  ADS  Google Scholar 

  14. Wang CY (2014) Effect of local enlargement on the trapped modes of infinite or semi-infinite membrane strips. Mech Res Comm 57:6–9

    Article  Google Scholar 

  15. Porter R, Davis DV (2008) Examples of trapped modes in the presence of freely floating structures. J Fluid Mech 606:189–207

    Article  MathSciNet  MATH  ADS  Google Scholar 

  16. Kuznetsov N, Motygin O (2012) On the coupled time- harmonic motion of deep water and a freely floating body: trapped modes and uniqueness theorems. J Fluid Mech 703:142–162

    Article  MathSciNet  MATH  Google Scholar 

  17. Davies EB, Parnovski L (1998) Trapped modes in acoustic waveguides Q. J. Mech. Appl. Math. 51:477–492

    Article  MathSciNet  MATH  Google Scholar 

  18. Koch W (2009) Acoustic resonances and trapped modes in annular plate cascades. J Fluid Mech 628:155–180

    Article  MATH  ADS  Google Scholar 

  19. Abramyan AK, Indeitsev DA (1998) Trapping modes in a membrane with an inhomogeneity. Acous Phys 44:371–376

    ADS  Google Scholar 

  20. Oliveto G, Santini A (1996) Complex modal analysis of a continuous model with radiation damping. J Sound Vibr 192:15–33

    Article  ADS  Google Scholar 

  21. Duan Y, Koch W, Linton CM, McIver M (2007) Complex resonances and trapped modes in ducted domains. J Fluid Mech 571:119–147

    Article  MathSciNet  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Y. Wang.

Appendix

Appendix

That the eigenvalues of the present problem are real is briefly shown as follows. Combine the three regions and regard k complex, \( \lambda \) positive and piecewise continuous, and w complex and continuous. The Helmholtz equation is

$$ \nabla^{2} w + \lambda k^{2} w = 0 $$
(20)

Taking the complex conjugate (denoted by an asterisk) gives

$$ \nabla^{2} w^{*} + \lambda (k^{2} )^{*}w^{*} = 0 $$
(21)

Construct

$$ \iint {(w^{*}\nabla^{2} w - w\nabla^{2} w^{*})d\varOmega = [(k}^{2} )^{*} - k^{2} ]\iint {\lambda w^{*}wd\varOmega } $$
(22)

where the integrations are over the entire strip\( \varOmega \). Using Green’s identity the left hand side is

$$ \oint {\left( {w^{*}\frac{dw}{dn} - w\frac{dw^{*}}{dn}} \right)} dS = 0 $$
(23)

where n is the normal and S is the boundary. Eq.(23) is zero because both w and w* are zero on sides and at infinity due to the decay of a trapped mode. Since \( \lambda w^{*}w \) is positive, \( k^{2} \) must be real. Since k cannot be purely imaginary for decay, k must be real.

This argument does not apply to the Helmholtz equation with damping or radiation conditions where the eigenvalues may be complex [20, 21].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C.Y. Vibration of a membrane strip with a segment of higher density: analysis of trapped modes. Meccanica 49, 2991–2996 (2014). https://doi.org/10.1007/s11012-014-0034-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-014-0034-7

Keywords

Navigation