Skip to main content
Log in

Theoretical derivation of the conservation equations for single phase flow in porous media: a continuum approach

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

This paper deals with the theoretical derivation of the conservation equations for single phase flow in a porous medium. The derivation is obtained within the framework of the continuum mechanics and classical thermodynamics. The adopted procedure provides the conservation equations of mass, momentum, mechanical energy, total energy, internal energy, entropy, temperature, enthalpy, Gibbs free energy and Helmholtz free energy. The obtained results highlight the connection between the basic equations of fluid mechanics and of fluid flow in porous media, as well as the restrictions and the limitations of Darcy’s law and Richards’ equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Quintard M, Whitaker S (1988) Two-phase flow in heterogeneous porous media: the method of large-scale averaging. Trans Porous Media 3:357–413. doi:10.1007/BF00233177

    Article  Google Scholar 

  2. Quintard M, Whitaker S (1996) Transport in chemically and mechanically heterogeneous porous media. I: theoretical development of region averaged equations for slightly compressible single-phase flow. Adv Water Resour 19:29–47. doi:10.1016/0309-1708(95)00023-C

    Article  ADS  Google Scholar 

  3. Whitaker S (1986) Flow in porous media I: a theoretical derivation of Darcy’s law. Trans Porous Media 1:3–25. doi:10.1007/BF01036523

    Article  Google Scholar 

  4. Whitaker S (1986) Flow in porous media II: the governing equations for immiscible, two-phase flow. Trans Porous Media 1:105–125. doi:10.1007/BF00714688

    Article  Google Scholar 

  5. Hassanizadeh SM, Gray WG (1979) General conservation equations for multi-phase systems: 1. Averaging procedure. Adv Water Resour 2:131–144. doi:10.1016/0309-1708(79)90025-3

    Article  ADS  Google Scholar 

  6. Hassanizadeh SM, Gray WG (1979) General conservation equations for multi-phase systems: 2. Mass, momenta, energy, and entropy equations. Adv Water Resour 2:191–203. doi:10.1016/0309-1708(79)90035-6

    Article  ADS  Google Scholar 

  7. Hassanizadeh SM, Gray WG (1980) General conservation equations for multi-phase systems: 3. Constitutive theory for porous media flow. Adv Water Resour 3:25–40. doi:10.1016/0309-1708(80)90016-0

    Article  ADS  Google Scholar 

  8. Gray WG, Miller CT, Schrefler BA (2013) Averaging theory for description of environmental problems: what have we learned? Adv Water Resour 51:123–138. doi:10.1016/j.advwatres.2011.12.005

    Article  ADS  Google Scholar 

  9. Fulks WB, Guenther RB, Roetman EL (1971) Equations of motion and continuity for fluid flow in a porous medium. Acta Mech 12:121–129. doi:10.1007/BF01178393

    Article  MathSciNet  MATH  Google Scholar 

  10. Wang L (2000) Flows through porous media: a theoretical development at macroscale. Trans Porous Media 39:1–24. doi:10.1023/A:1006647505709

    Article  Google Scholar 

  11. Hassanizadeh SM, Gray WG (1990) Mechanics and thermodynamics of multiphase flow in porous media including interphase boundaries. Adv Water Resour 13:169–186. doi:10.1016/0309-1708(90)90040-B

    Article  ADS  Google Scholar 

  12. Kaviany M (1995) Principles of heat transfer in porous media. Springer, New York

    Book  MATH  Google Scholar 

  13. Spurk JH, Aksel N (2008) Fluid mechanics. Springer-Verlag, Berlin

    MATH  Google Scholar 

  14. Dziubek A (2012) Equations for two-phase flows: a primer. Meccanica 47:1819–1836. doi:10.1007/s11012-012-9555-0

    Article  MathSciNet  MATH  Google Scholar 

  15. Sciammarella CA, Lamberti L (2014) Basic models supporting experimental mechanics of deformations, geometrical representations, connections among different techniques. Meccanica. doi:10.1007/s11012-013-9867-8

    Google Scholar 

  16. Romano G, Barretta R, Diaco M (2014) Geometric continuum mechanics. Meccanica 49:111–133. doi:10.1007/s11012-013-9777-9

    Article  MathSciNet  MATH  Google Scholar 

  17. Serrin J (1996) The equations of continuum mechanics and the laws of thermodynamics. Meccanica 31:547–563

    Article  MathSciNet  MATH  Google Scholar 

  18. Di Nucci C, Russo Spena A (2013) On the propagation of one-dimensional acoustic waves in liquids. Meccanica 48:15–21. doi:10.1007/s11012-012-9578-6

    Article  MathSciNet  MATH  Google Scholar 

  19. Jiří MLS (1999) A continuum approach to two-phase porous media. Trans Porous Media 35:15–36. doi:10.1023/A:1006508810941

    Article  Google Scholar 

  20. Bear J (1972) The dynamics of fluids in porous media. Elsevier, New York

    Google Scholar 

  21. Neumann SP (1977) Theoretical derivation of Darcy’s law. Acta Mech 25:153–170. doi:10.1007/BF01376989

    Article  Google Scholar 

  22. Lorenzi A (1975) Laminar, turbulent, and transition flow in porous sintered media. Meccanica 10:75–77. doi:10.1007/BF02314743

    Article  Google Scholar 

  23. Sokolnikoff IS (1951) Tensor analysis theory and applications. Wiley, New York

    MATH  Google Scholar 

  24. Kumar R, Kumar R (2013) Wave propagation at the boundary surface of elastic and initially stressed viscothermoelastic diffusion with voids media. Meccanica 48:2173–2188. doi:10.1007/s11012-013-9732-9

    Article  MathSciNet  MATH  Google Scholar 

  25. Ai ZY, Cheng YC, Zeng WZ, Wu C (2013) 3-D consolidation of multilayered porous medium with anisotropic permeability and compressible pore fluid. Meccanica 48:491–499. doi:10.1007/s11012-012-9691-6

    Article  MathSciNet  MATH  Google Scholar 

  26. Baiocchi C, Comincioli V, Maione U (1975) Unconfined flow through porous media. Meccanica 10:151–155. doi:10.1007/BF02149026

    Article  MATH  Google Scholar 

  27. Di Nucci C, Russo Spena A, Todisco MT (2007) On the non-linear unsteady water flow in open channels. Nuovo Cimento B 122:237–255. doi:10.1393/ncb/i2006-10174-x

    ADS  Google Scholar 

  28. Di Nucci C, Russo Spena A (2011) Energy and momentum under critical flow conditions. J Hydraul Res 49:127–130. doi:10.1080/00221686.2010.538573

    Article  Google Scholar 

  29. Di Nucci C (2011) Steady free-surface flow in porous media: generalized Dupuit-Fawer equations. J Hydraul Res 49:821–823. doi:10.1080/00221686.2011.607309

    Article  Google Scholar 

  30. Di Nucci C (2013) A free boundary problem: steady axisymmetric potential flow. Meccanica 48:1805–1810. doi:10.1007/s11012-013-9703-1

    Article  MathSciNet  MATH  Google Scholar 

  31. Di Nucci C (2014) Erratum to: a free boundary problem: steady axisymmetric potential flow. Meccanica 49:253. doi:10.1007/s11012-013-9841-5

    Article  MathSciNet  MATH  Google Scholar 

  32. Prandtl L, Tietjens OG (1934) Fundamentals of Hydro-And Aeromechanics. McGraw-Hill, New York

    Google Scholar 

  33. Sivuchin DV (1975) A course of general physics, vol II. Thermodynamics and molecular physics. Nauka, Moskow

  34. Di Nucci C, Petrilli M, Russo Spena A (2011) Unsteady friction and visco-elasticity in pipe fluid transients. J Hydraul Res 49:398–401. doi:10.1080/00221686.2011.568203

    Article  Google Scholar 

  35. Schlichting H, Gersten K (2000) Boundary layer theory, 8th revised and, enlarged edn. Springer, Berlin

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Di Nucci.

Appendices

Appendix 1

Equation (8) can be obtained by using the following classical thermodynamic relations [33]:

$$ \frac{\delta \beta }{\alpha } = \frac{1}{p} $$
(89)
$$ T{\text{d}}s = {\text{d}}u_{i} - \frac{p}{{\rho^{2} }}{\text{d}}\rho = \left( {\frac{{\partial u_{i} }}{\partial T}} \right)_{\rho } {\text{d}}T + \left( {\frac{{\partial u_{i} }}{\partial \rho }} \right)_{T} {\text{d}}\rho - \frac{p}{{\rho^{2} }}{\text{d}}\rho = c_{w} {\text{d}}T + \left[ {\left( {\frac{{\partial u_{i} }}{\partial \rho }} \right)_{T} - \frac{p}{{\rho^{2} }}} \right]{\text{d}}\rho $$
(90)
$$ \left[ {\left( {\frac{{\partial u_{i} }}{\partial \rho }} \right)_{T} - \frac{p}{{\rho^{2} }}} \right] = - \frac{T}{{\rho^{2} }}\left( {\frac{\partial p}{\partial T}} \right)_{\rho } = - \frac{\delta Tp}{{\rho^{2} }} = - \frac{\alpha T}{{\beta \rho^{2} }} $$
(91)
$$ T{\text{d}}s = {\text{d}}h - \frac{1}{\rho }{\text{d}}p = \left( {\frac{\partial h}{\partial T}} \right)_{p} {\text{d}}T + \left( {\frac{\partial h}{\partial p}} \right)_{T} {\text{d}}p - \frac{1}{\rho }{\text{d}}p = c_{p} {\text{d}}T + \left[ {\left( {\frac{\partial h}{\partial \rho }} \right)_{T} - \frac{1}{\rho }} \right]{\text{d}}p $$
(92)
$$ \left[ {\left( {\frac{\partial h}{\partial p}} \right)_{T} - \frac{1}{\rho }} \right] = - \frac{T}{{\rho^{2} }}\left( {\frac{\partial \rho }{\partial T}} \right)_{p} = - \frac{\alpha T}{\rho } $$
(93)
$$ c_{p} - c_{w} = \frac{\alpha T\delta p}{\rho } = \frac{{T\alpha^{2} \varepsilon }}{\rho } $$
(94)

In the above equations, w = 1/ρ; α = − (∂w/∂T) p /w is the coefficient of thermal expansion; β = − (∂w/∂p) T /w the coefficient of compressibility; ε = 1/β the modulus of elasticity; δ = (∂p/∂T) w /p the thermal coefficient of pressure; c w  = (∂u i /∂T) w  = T(∂s/∂T) w the specific heat at constant volume; c p  = (∂h/∂T) p  = T(∂s/∂T) p the specific heat at constant pressure.

With Eq. (91), Eq. (90) may be rewritten as:

$$ \rho T\frac{{{\text{D}}s}}{{{\text{D}}t}} = \rho c_{w} \frac{{{\text{D}}T}}{{{\text{D}}t}} - \frac{\alpha T}{\beta \rho }\frac{{{\text{D}}\rho }}{{{\text{D}}t}} = \rho c_{w} \frac{{{\text{D}}T}}{{{\text{D}}t}} + \alpha T\varepsilon \nabla \cdot \varvec{v} $$
(95)

while, with Eq. (93), Eq. (92) becomes:

$$ \rho T\frac{{{\text{D}}s}}{{{\text{D}}t}} = \rho c_{p} \frac{{{\text{D}}T}}{{{\text{D}}t}} - \alpha T\frac{{{\text{D}}p}}{{{\text{D}}t}} $$
(96)

By comparing Eq. (95) with Eq. (96), it follows that:

$$ \rho \left( {c_{p} - c_{w} } \right)\frac{{{\text{D}}T}}{{{\text{D}}t}} = \alpha T\left( {\varepsilon \nabla \cdot \varvec{v} + \frac{{{\text{D}}p}}{{{\text{D}}t}}} \right) $$
(97)

Finally, by using Eq. (94), Eq. (97) reduces to Eq. (8).

Appendix 2

In accordance with the constitutive theory of continuum mechanics, the term ∇·T r can be expressed as:

$$ \nabla \cdot \varvec{T}_{r} = \left( {\nabla \cdot \varvec{T}_{r} } \right)_{s} + \left( {\nabla \cdot \varvec{T}_{r} } \right)_{b} $$
(98)

where the vectors (∇·T r ) s and (∇·T r ) b are the friction forces arising from the shear and the bulk viscosities, respectively [18, 34, 35]. Eq. (31) implicitly assumes that the bulk viscosity vanishes (∇·T r ) b  = 0 and, consequently, the fictitious fluid is elastic (no energy dissipation occurs during the compression or expansion).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Nucci, C. Theoretical derivation of the conservation equations for single phase flow in porous media: a continuum approach. Meccanica 49, 2829–2838 (2014). https://doi.org/10.1007/s11012-014-0022-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-014-0022-y

Keywords

Navigation