Skip to main content
Log in

Dynamics of a linear system with time-dependent mass and a coupled light mass with non-smooth potential

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Multi-scale dynamics of two coupled oscillators, the linear one with varying mass and a non-smooth light system is studied. The light system, namely nonlinear energy sink (NES) is implemented for passively controlling the linear system against external impulses and/or forces. Obtained invariant manifold of the system at fast time scale let us explain the system behavior during its transient and steady-state regime while predicted dynamics of the system at slow time scale let us detect the positions of fixed and fold singularities by explanation of its behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Vakakis AF, Gendelman OV, Bergman LA, McFarland DM, Kerschen G, Lee YS (2008) Nonlinear targeted energy transfer in mechanical and structural systems I. Springer, Berlin

    Google Scholar 

  2. Vakakis AF, Gendelman OV, Bergman LA, McFarland DM, Kerschen G, Lee YS (2008) Nonlinear targeted energy transfer in mechanical and structural systems II. Springer, Berlin

    Google Scholar 

  3. Vakakis AF (2001) Inducing passive nonlinear energy sinks in vibrating systems. J Vib Acoust 123:324–332

    Article  Google Scholar 

  4. Gendelman OV, Manevitch LI, Vakakis AF, M’Closkey R (2001) Energy pumping in nonlinear mechanical oscillators, I: dynamics of the underlying Hamiltonian systems. J Appl Mech 68:34–41

    Article  MATH  MathSciNet  Google Scholar 

  5. Vakakis AF, Gendelman OV (2001) Energy pumping in nonlinear mechanical oscillators, II: resonance capture. J Appl Mech 68:42–48

    Article  MATH  MathSciNet  Google Scholar 

  6. Gendelman OV, Lamarque C-H (2005) Dynamics of linear oscillator coupled to strongly nonlinear attachment with multiple states of equilibrium. Chaos Solitons Fractals 24:501–509

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Manevitch LI, Musienko AI, Lamarque C-H (2007) New analytical approach to energy pumping problem in strongly nonhomogeneous 2dof systems. Meccanica 42:77–83

    Article  MATH  MathSciNet  Google Scholar 

  8. Avramov KV, Gendelman OV (2010) On interaction of vibrating beam with essentially nonlinear absorber. Meccanica 45:355–365

    Article  MATH  MathSciNet  Google Scholar 

  9. Shiroky IB, Gendelman OV (2008) Essentially nonlinear vibration absorber in a parametrically excited system. J Appl Math Mech 88:573–596

    MATH  MathSciNet  Google Scholar 

  10. Vaurigaud B, Manevitch LI, Lamarque C-H (2011) Passive control of aeroelastic instability in a long span bridge model prone to coupled flutter using targeted energy transfer. J Sound Vib 330:2580–2595

    Article  ADS  Google Scholar 

  11. Vaurigaud B, Ture Savadkoohi A, Lamarque C-H (2011) Targeted energy transfer with parallel nonlinear energy sinks, part I: design theory and numerical results, nonlinear dynamics. Nonlinear Dyn 66:763–780

    Article  MATH  MathSciNet  Google Scholar 

  12. McFarland DM, Kerschen G, Kowtko JJ, Lee YS, Bergman LA, Vakakis AF (2005) Experimental investigation of targeted energy transfers in strongly and nonlinearly coupled oscillators. J Acoust Soc Am 118:791–799

    Article  ADS  Google Scholar 

  13. Kerschen G, Kowtko JJ, McFarland DM, Bergman LA, Vakakis AF (2007) Theoretical and experimental study of multimodal targeted energy transfer in a system of coupled oscillators. Nonlinear Dyn 47:285–309

    Article  MATH  MathSciNet  Google Scholar 

  14. Kerschen G, Kowtko JJ, McFarland DM, Lee YS, Bergman LA, Vakakis AF (2007) Experimental demonstration of transient resonance capture in a system of two coupled oscillators with essential stiffness nonlinearity. J Sound Vib 299:822–838

    Article  ADS  Google Scholar 

  15. Gourdon E, Alexander NA, Taylor CA, Lamarque C-H, Pernot S (2007) Nonlinear energy pumping under transient forcing with strongly nonlinear coupling: theoretical and experimental results. J Sound Vib 300:522–551

    Article  ADS  Google Scholar 

  16. Lee YS, Kerschen G, McFarland DM, Hill WJ, Nichkawde C, Strganac TW, Bergman LA, Vakakis AF (2007) Suppressing aeroelastic instability using broadband passive targeted energy transfers, part 2: experiments. AIAA J 45:2391–2400

    Article  ADS  Google Scholar 

  17. Lee YS, Vakakis AF, Bergman LA, McFarland DM, Kerschen G, Nucera F, Tsakirtzis S, Panagopoulos PN (2008) Passive non-linear targeted energy transfer and its applications to vibration absorption: a review. Multibody Syst Dyn 222:77–134

    Google Scholar 

  18. Lee YS, Tsakirtzis S, Vakakis AF, Bergman LA, McFarland DM (2011) A time-domain nonlinear system identification method based on multiscale dynamic partitions. Meccanica 46:625–649

    Article  MATH  MathSciNet  Google Scholar 

  19. Ture Savadkoohi A, Vaurigaud B, Lamarque C-H, Pernot S (2012) Targeted energy transfer with parallel nonlinear energy sinks, part II: theory and experiments. Nonlinear Dyn 67:37–46

    Article  MATH  MathSciNet  Google Scholar 

  20. Nucera F, Vakakis AF, McFarland DM, Bergman LA, Kerschen G (2007) Targeted energy transfers in vibro-impact oscillators for seismic mitigation. Nonlinear Dyn 50:651–677

    Article  MATH  Google Scholar 

  21. Lee YS, Nucera F, Vakakis AF, McFarland DM, Bergman LA (2009) Periodic orbits, damped transitions and targeted energy transfers in oscillators with vibro-impact attachments. Physica D 238:1868–1896

    Article  ADS  MATH  Google Scholar 

  22. Gendelman OV (2008) Targeted energy transfer in systems with non-polynomial nonlinearity. J Sound Vib 315:732–745

    Article  ADS  Google Scholar 

  23. Schmidt F, Lamarque C-H (2010) Energy pumping for mechanical systems involving non-smooth Saint-Venant terms. Int J Non-Linear Mech 45:866–875

    Article  Google Scholar 

  24. Lamarque C-H, Gendelman OV, Ture Savadkoohi A, Etcheverria E (2011) Targeted energy transfer in mechanical systems by means of non-smooth nonlinear energy sink. Acta Mech 221:175–200

    Article  MATH  Google Scholar 

  25. Lamarque C-H, Ture Savadkoohi A, Etcheverria E, Dimitrijevic Z (2012) Multi-scales dynamics of two coupled non-smooth systems. Int J Bifurc Chaos 22:1250295

    Article  MathSciNet  Google Scholar 

  26. Ture Savadkoohi A, Lamarque C-H, Dimitrijevic Z (2012) Vibratory energy exchange between a linear and a non-smooth system in the presence of the gravity. Nonlinear Dyn 70:1473–1483

    Article  MathSciNet  Google Scholar 

  27. Van Horssen WT, Pischanskyy OV (2011) On the stability properties of a damped oscillator with a periodically time-varying mass. J Sound Vib 330:3257–3269

    Article  ADS  Google Scholar 

  28. McComber P, Paradis A (1998) A cable galloping model for thin ice accretions. Atmos Res 46:13–25

    Article  Google Scholar 

  29. Manevitch LI (1970) General motion of a variable mass flexible rocket with internal flow. J Spacecr Rockets 7:186–195

    Article  ADS  Google Scholar 

  30. Pischanskyy OV, Van Horssen WT (2012) On the nonlinear dynamics of a single degree of freedom oscillator with a time-varying mass. J Sound Vib 331:1887–1897

    Article  ADS  Google Scholar 

  31. Manevitch LI (2001) The description of localized normal modes in a chain of nonlinear coupled oscillators using complex variables. Nonlinear Dyn 25:95–109

    Article  MATH  MathSciNet  Google Scholar 

  32. Nayfeh AH, Mook DT (1979) Nonlinear oscillations. Wiley, New York

    MATH  Google Scholar 

  33. Starosvetsky Y, Gendelman OV (2008) Strongly modulated response in forced 2DOF oscillatory system with essential mass and potential asymmetry. Physica D 237:1719–1733

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank following organizations for supporting this research work: (i) Peugeot Citroën Automobiles OpenLab, Vibro-Acoustic-Tribology@Lyon (VAT@Lyon); (ii) LABEX CELYA (ANR-10-LABX-0060) of the “Université de Lyon” within the program “Investissement d’Avenir” (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ture Savadkoohi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lamarque, CH., Ture Savadkoohi, A. & Dimitrijevic, Z. Dynamics of a linear system with time-dependent mass and a coupled light mass with non-smooth potential. Meccanica 49, 135–145 (2014). https://doi.org/10.1007/s11012-013-9778-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-013-9778-8

Keywords

Navigation