Skip to main content
Log in

An approach for prediction of the elasto-plastic behavior of particulate reinforced composites

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

A numerical approach is presented in this paper for the calculation of the elasto-plastic deformation behavior of particulate reinforced composites. The effect of shape and arrangement of particulate on the elastic modulus and tensile deformation behavior were estimated. The approach presented can consider the shape and arrangement effect of reinforcement particulate via a simple parameter called the geometrical factor (Gf). Elastic moduli and tensile deformation estimations for the particulate reinforced composites were studied. The results of proposed approach were in very good agreement with the results of finite element analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

RVE::

Representative Volume Element

FEM::

Finite Elements Method

PAA::

Projection Area Approach

MTM::

Mori Tanka Method

H-S::

Hashin Shtrikman bounds

References

  1. Ibrahim IA et al. (1991) Particulate reinforced metal matrix composites—a review. J Mater Sci 26:1137–1149

    Article  ADS  Google Scholar 

  2. Ceniga L (2012) A novel analytical model and energy analysis of thermal stresses in two-phase composites. Meccanica 47:845–855

    Article  MathSciNet  Google Scholar 

  3. Yilmaz S, Aran A (1998) Finite element analysis of deformation behavior in ductile matrix containing hard particles. Mater Sci Technol 14:1154–1162

    Article  Google Scholar 

  4. Li S, Wongsto A (2004) Unit cells for micromechanical analyses of particle-reinforced composites. Mech Mater 36:543–572

    Article  Google Scholar 

  5. Mura T (1998) Micromechanics of defect in solids. Kluwer, The Netherlands

    Google Scholar 

  6. Hashin Z, Shtrikman S (1967) A variational approach to the theory of the elastic behavior of multiphase materials. J Mech Phys Solids 11:127–137

    Article  MathSciNet  ADS  Google Scholar 

  7. Voight W (1928) Lehrbuch der Kristallphysik. Teubner, Berlin-Leipzig

    Google Scholar 

  8. Reuss A (1929) Berechung der fliessgrenzen von mischkristallen aurf grund der plastiizitatsbedingug fur Eeinkristalle. Z Angew Math Mech 9:49–58

    Article  MATH  Google Scholar 

  9. Mori T, Tanaka K (1973) Average stress in the matrix and average elastic energy of materials with misfitting inclusions. Acta Metall Mater 21:571–574

    Article  Google Scholar 

  10. Eshelby CC (1957) The determination of the elastic field of an ellipsoidal inclusion, and related field. Proc R Soc Lond A 241:376–396

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Weng GJ (1984) Some elastic properties of reinforced solids with special reference to isotropic ones containing spherical inclusions. Int J Eng Sci 22:845–856

    Article  MATH  Google Scholar 

  12. Segurado J, Llorca J (2002) A numerical approximation to the elastic properties of sphere reinforced heterogeneous. J Mech Phys Solids 50:2107–2121

    Article  ADS  MATH  Google Scholar 

  13. Gambin W, Barlat F (1997) Modeling of deformation texture development based on rate independent crystal plasticity. Int J Plast 13(1/2):7–85

    Google Scholar 

  14. Yilmaz S (2009) An approach for predicting the elastic modulus of heterogeneous materials. Mater Des 30:2938–2945

    Article  Google Scholar 

  15. Kalidindi SR, Franco E (1997) Numerical evaluation of isostrain and weighted-average models for elastic moduli of three-dimensional composites. Compos Sci Technol 57:293–305

    Article  Google Scholar 

  16. Chinh PD (2002) Bounds on the elastic moduli of completely random two-dimensional polycrystals. Meccanica 37:503–514

    Article  MathSciNet  MATH  Google Scholar 

  17. Castaneda PP (2012) J Mech Phys Solids 60:1583–1604

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Ahuja N, Schachter BJ (1983) Pattern models. Wiley, New York

    Google Scholar 

  19. Balac I et al. (2004) Estimation of elastic properties of a particulate polymer composite using a face cantered cubic FE model. Mater Lett 58:2437–2441

    Article  Google Scholar 

  20. Castaneda PP, Suquet P (1998) Nonlinear composites. Adv Appl Mech 34:171–302

    Article  Google Scholar 

Download references

Acknowledgements

The author acknowledges financial support from the BAP Program of Technical University of Istanbul.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yilmaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yilmaz, S. An approach for prediction of the elasto-plastic behavior of particulate reinforced composites. Meccanica 48, 2271–2279 (2013). https://doi.org/10.1007/s11012-013-9744-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-013-9744-5

Keywords

Navigation