Skip to main content
Log in

A review of adhesion mechanisms of mushroom-shaped microstructured adhesives

  • Micro- or nano-mechanics
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Very recently, both experimental and theoretical investigations have shown that micro-structured surfaces covered with mushroom shaped micropillars present strongly enhanced adhesive properties if compared to standard flat surfaces made of the same material. However, different geometries lead to different adhesive performance, and finding the optimal solution has become of utmost importance. In this review we summarize the main detachment mechanisms of flat-topped and mushroom-topped soft micro pillars and show how the geometry of the pillars should be designed in order to obtain the best adhesive performances. We also discuss the effect of air entrapment at the interface between the pillar and the substrate and investigate the influence of the non uniform pillar height and thermal fluctuations on pull-off force.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. http://en.wikipedia.org/wiki/Bionics

  2. Geim AK et al. (2003) Nat Mater 2(7):461

    Article  ADS  Google Scholar 

  3. Kim T, Jeong HE, Suh KY, Lee HH (2009) Adv Mater 21:2276–2281

    Article  Google Scholar 

  4. Lee H, Lee BP, Messersmith PB (2007) Nature 448:338–342

    Article  ADS  Google Scholar 

  5. Majidi C, Groff RE, Maeno Y, Schubert B, Baek S, Bush B, Maboudian R, Gravish N, Wilkinson M, Autumn K, Fearing RS (2006) Phys Rev Lett 97:076103

    Article  ADS  Google Scholar 

  6. Spolenak R, Gorb S, Artz E (2005) Acta Biomater 1:5–13

    Article  Google Scholar 

  7. del Campo A, Greiner C, Arzt E (2007) Langmuir 23:10235–10243

    Article  Google Scholar 

  8. Greiner C, Spolenak R, Arzt E (2009) Acta Biomater 5:597–606

    Article  Google Scholar 

  9. Greiner C, del Campo A, Arzt E (2007) Langmuir 23:3495–3502

    Article  Google Scholar 

  10. Persson BNJ, Volokitin AI, Tosatti E (2003) Eur Phys J E 11:409–413

    Article  Google Scholar 

  11. Persson BNJ (2003) Wear 254:832–834

    Article  Google Scholar 

  12. Persson BN, Gorb S (2003) J Chem Phys 119:11437–11444

    Article  ADS  Google Scholar 

  13. Carbone G, Persson BNJ (2004) J Chem Phys 121:2246–2252

    Article  ADS  Google Scholar 

  14. Autumn K, Liang YA, Hsleh ST, Zesch W, Chan WP, Kenny TW, Fearilng R, Full RJ (2000) Nature 405:681–686

    Article  ADS  Google Scholar 

  15. Carbone G, Mangialardi L, Persson BNJ (2004) Phys Rev B 70:125407

    Article  ADS  Google Scholar 

  16. Carbone G, Decuzzi P (2004) J Appl Phys 95:4476–4482

    Article  ADS  Google Scholar 

  17. Persson BNJ, Albohr O, Tartaglino U, Volokitin AI, Tosatti E (2005) J Phys Condens Matter 17:R1–R62

    Article  ADS  Google Scholar 

  18. Scherge M, Gorb S (2001) Biological micro- and nano-tribology. Springer, Berlin

    Google Scholar 

  19. Kim S, Sitti M (2006) Appl Phys Lett 89:261911

    Article  ADS  Google Scholar 

  20. Varenberg M, Pugno NM, Gorb S (2010) Soft Matter 6:3269–3272

    Article  ADS  Google Scholar 

  21. Varenberg M, Gorb S (2008) J R Soc Interface 5:785–789

    Article  Google Scholar 

  22. Kwak MK, Jeong H-E, Bae W-G, Jung H-S, Suh KY (2011) Small 7:2296–2300

    Article  Google Scholar 

  23. Noderer WL, Shen L, Vajpayee S, Glassmaker NJ, Jagota A, Hui C-Y (2007) Proc R Soc A 463:2631–2654

    Article  ADS  Google Scholar 

  24. Glassmaker NJ, Jagota A, Hui C-Y, Noderer WL, Chaudhury MK (2007) Proc Natl Acad Sci USA 104:10786–10791

    Article  ADS  Google Scholar 

  25. Afferrante L, Carbone G (2012) J R Soc Interface. doi:10.1098/rsif.2012.0452

    Google Scholar 

  26. Murphy MP, Kim S, Sitti M (2009) Appl Mater Interfaces 1(4):849–855

    Article  Google Scholar 

  27. Daltorio KA, Gorb S, Peressadko A, Horchler AD, Ritzmann RE, Quinn RD (2005) In: Proc int conf climbing and walking robots, pp 131–138

    Google Scholar 

  28. Gorb SN, Varenberg M (2007) J Adhes Sci Technol 21:1175–1183

    Article  Google Scholar 

  29. Varenberg M, Gorb S (2007) J R Soc Interface 4:721–725

    Article  Google Scholar 

  30. Carbone G, Pierro E, Gorb S (2011) Soft Matter 7:5545–5552

    Article  ADS  Google Scholar 

  31. Karp JM, Langer R (2011) Nature 477:42–43

    Article  ADS  Google Scholar 

  32. Kwak MK, Jeong H-E, Suh KY (2011) Adv Mater. doi:10.1002/adma.201101694

    Google Scholar 

  33. Gorb S, Varenberg M, Peressadko A, Tuma J (2007) J R Soc Interface 4:271–275

    Article  Google Scholar 

  34. Bogy DB (1971) Two edge-bonded elastic wedges of different materials and wedge angles under surface tractions. J Appl Mech 38(2):377

    Article  Google Scholar 

  35. Buckingham E (1914) Phys Rev 4:345–376

    Article  ADS  Google Scholar 

  36. Buckingham E (1915) Nature 96:396–397

    Article  ADS  MATH  Google Scholar 

  37. Tang T, Hui C-Y, Glassmaker NJ (2005) Can a fibrillar interface be stronger and tougher than a non-fibrillar one? J R Soc Interface 2(5):505–516

    Article  Google Scholar 

  38. Spuskanyuk AV, McMeeking RM, Deshpande VS, Arzt E (2008) Acta Biomater 4:1669–1676

    Article  Google Scholar 

  39. Gorb S. Private communication

  40. Timoshenko SP, Woinowsky-Kreiger S (1959) Theory of plates and shells, 2nd edn. Engineering mechanics series. McGraw-Hill, London. ISBN 0-07-085820-9

    Google Scholar 

  41. Landau LD, Lifshitz EM (1959) Theory of elasticity. Pergamon, London

    Google Scholar 

  42. Glassmaker NJ, Jagota A, Hui CY, Noderer WL, Chaudhury MK (2007) Proc Natl Acad Sci USA, 104(26):10786–10791

    Article  ADS  Google Scholar 

  43. Maugis D (1999) Contact, adhesion and rupture of elastic solids. Springer Series in Solid State Sciences. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  44. Carbone G, Pierro E (2012) Small 8(9):1449–1454

    Article  Google Scholar 

  45. ANSYS, User’s manual. Version 10.0

  46. Carbone G, Pierro E (2012) Soft Matter 8:7904–7908

    Article  Google Scholar 

  47. Carbone G, Mangialardi L (2008) J Mech Phys Solids 56(2):684–706

    Article  MathSciNet  MATH  ADS  Google Scholar 

  48. Callen HB (1985) Thermodynamics and an introduction to thermostatistics. Wiley, USA ISBN 0-471-86256-8

    MATH  Google Scholar 

  49. Johnson KL, Kendall K, Roberts AD (1971) Proc R Soc Lond A 324:301–313

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Carbone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carbone, G., Pierro, E. A review of adhesion mechanisms of mushroom-shaped microstructured adhesives. Meccanica 48, 1819–1833 (2013). https://doi.org/10.1007/s11012-013-9724-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-013-9724-9

Keywords

Navigation