Skip to main content
Log in

An investigation into the effect of strain rate on forming limit diagram using ductile fracture criteria

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In this study, forming limit diagram (FLD) is experimentally acquired for aluminum alloy 3105 in usual velocities (Quasi-static condition). In addition, numerical simulation by commercially available finite element code ABAQUS/Explicit using ductile fracture criteria is performed. Simulation is done in quasi-static condition (\(\dot{\varepsilon} \le 0.01/s\)) and case of forming by low-impact (\(\dot{\varepsilon} \le 50/s\)).The results show that a substantial improvement in high-strain-rate formability of the aluminum sheet can be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Keeler SP, Backhofen WA (1964) Plastic instability and fracture in sheet stretched over rigid punches. ASM Trans Q 56:25–48

    Google Scholar 

  2. Goodwin GM (1968) Application of strain analysis to sheet metal forming in the press shop. SAE paper, No 680093

  3. Considere A (1885) Memoire sur lemploi du fer et de lacier dans les constructions. Ann Ponts Chaussees 9(6):574–775

    Google Scholar 

  4. Hollomon JH (1945) Tensile deformation. Trans Metall Soc AIME 162:268–290

    Google Scholar 

  5. Ghosh AK (1977) Tensile instability and necking in materials with strain hardening and strain-rate hardening. Acta Metall 25:1413–1424

    Article  Google Scholar 

  6. Chung K, Wagoner RH (1986) Invariance of necking formation to material strength and strain rate for power-law materials. Metall Trans A 17A:1632–1633

    ADS  Google Scholar 

  7. Marciniak Z, Kuczynski K (1967) Limit strains in process of stretch forming sheet steel. J Mech Phys Solids 9:609–620

    Google Scholar 

  8. Wood WW (1967) Experimental mechanics at velocity extremes—very high strain-rates. Exp Mech 7:441–446

    Article  Google Scholar 

  9. Dieter G (1976) Mechanical metallurgy, 2nd edn. McGraw-Hill, Toronto, pp 350–353

    Google Scholar 

  10. Shenoy VB, Freund LB (1999) Necking bifurcations during high strain rate extension. J Mech Phys Solids 47:2209–2233

    Article  ADS  MATH  Google Scholar 

  11. Hu X, Daehn GS (1996) Effect of velocity on localization in uniaxial tension. Acta Mater 44:1021–1033

    Article  Google Scholar 

  12. Altynova M, Hu X, Daehn GS (1996) Increased ductility in electromagnetic ring expansion. Metall Mater Trans 27(7):1837–1844

    Article  Google Scholar 

  13. Gerdooei M, Dariani BM (2007) Dynamic analysis instability of sheet metal under biaxial stretching. Amirkabir J Sci Technol 18(67-B):31–39

    Google Scholar 

  14. Gerdooei M, Dariani BM (2008) Strain-rate-dependent forming limit diagrams for sheet metals. Proc IMechE, Part B, J Eng Mf 222(B12):1651–1659

    Article  Google Scholar 

  15. Balanethiram VS, Daehn GS (1994) Hyperplasticity: increased forming limits at high work-piece velocity. Scr Mater 30:515–520

    Article  Google Scholar 

  16. Seth M, Vohnout VJ, Daehn GS (2005) Formability of steel sheet in high velocity impact. J Mech Phys Solids 168:390–400

    Google Scholar 

  17. Imbert JM, Winkler SL, Worswick MJ, Oliveira DA, Golovashchenko S (2004) Formability and damage in electromagnetically formed AA5754 and AA6111. In: First international conference on high speed forming, Dortmund, Germany, pp 201–211

    Google Scholar 

  18. Barata Da Rocha A et al. (1985) Prediction of the forming limit diagrams of anisotropic sheets in linear and non-linear loading. Mater Sci Eng 68:151–164

    Article  Google Scholar 

  19. Boscariol P, Gasparetto A, Zanotto V (2011) Simultaneous position and vibration control system for flexible link mechanisms. Meccanica 46:723–737

    Article  MathSciNet  Google Scholar 

  20. Yan X, Liu B (2011) A numerical analysis of cracks emanating from a surface elliptical hole in infinite body in tension. Meccanica 46:263–278

    Article  MathSciNet  Google Scholar 

  21. Momoniat E (2011) Numerical investigation of a third-order ODE from thin film flow. Meccanica 46:313–323

    Article  MathSciNet  Google Scholar 

  22. Basak A, Nandakumar A, Chatterjee A (2011) Decoupled three-dimensional finite element computation of thermoelastic damping using Zener’s approximation. Meccanica 46:371–381

    Article  MathSciNet  Google Scholar 

  23. Othman MIA, Abbas IA (2011) Effect of rotation on plane waves at the free surface of a fibre-reinforced thermoelastic half-space using the finite element method. Meccanica 46:413–421

    Article  MathSciNet  Google Scholar 

  24. Orakdögen E, Küçükarslan S, Sofiyev A Omurtag MH (2010) Finite element analysis of functionally graded plates for coupling effect of extension and bending. Meccanica 45:63–72

    Article  MATH  Google Scholar 

  25. Brnic J, Turkalj G, Canadija M (2010) Shear stress analysis in engineering beams using deplanation field of special 2-D finite elements. Meccanica 45:227–235

    Article  MathSciNet  Google Scholar 

  26. Chazal C, Pitti RM (2010) Modelling of ageing viscoelastic materials in three dimensional finite element approach. Meccanica 45:439–441

    Article  MathSciNet  Google Scholar 

  27. Ellakany AM, Tablia HA (2010) A numerical model for static and free vibration analysis of elastic composite beams with end shear restraint. Meccanica 45:463–474

    Article  MathSciNet  Google Scholar 

  28. Jiang HY, Lee D (1992) Numerical simulation of sheet metal forming process based on large deformation sheet elements. In: Proceedings of the NUMIFORM’92, p 485

    Google Scholar 

  29. Clift SE, Hartley P, Sturgess CEN, Rowe GW (1990) Fracture prediction in plastic deformation processes. Int J Mech Sci 32:1–17

    Article  Google Scholar 

  30. Takuda H, Mori K, Fujimoto H, Hatta N (1996) Prediction of forming limit in deep drawing of Fe/Al laminated composite sheets using ductile fracture criterion. J Mater Process Technol 60:291–296

    Article  Google Scholar 

  31. Takuda H, Mori K, Hatta N (1999) The application of some criteria for ductile fracture to the prediction of the forming limit of sheet metals. J Mater Process Technol 95:116–121

    Article  Google Scholar 

  32. Takuda H, Mori K, Takakura N, Yamaguchi K (2000) Finite element analysis of limit strains in biaxial stretching of sheet metals allowing for ductile fracture. Int J Mech Sci 42:785–798

    Article  MATH  Google Scholar 

  33. Lee YS, Kwon YN, Kang SH, Kim SW, Lee JH (2008) Forming limit of AZ31 alloy sheet and strain rate on warm sheet metal forming. J Mater Process Technol 201:431–435

    Article  Google Scholar 

  34. Wifi AS, Adbel-Hamed A, El-Abbasi N, Harmoush H (1996). In: Abe T, Tsuta T (eds) Advances in engineering plasticity and its applications. Pergamon, New York, pp 197–202

    Google Scholar 

  35. Freudenthal AM (1950) The inelastic behavior of engineering materials and structures. Wiley, New York

    Google Scholar 

  36. Cockcroft MG, Latham DJ (1968) Ductility and the workability of metals. J Inst Met 96:33–39

    Google Scholar 

  37. Bridgman PW (1952) Studies in large plastic flow and fracture. McGraw-Hill, New York

    MATH  Google Scholar 

  38. Oh SL, Chen CC, Kobayashi S (1979) Ductile fracture in axisymmetric extrusion and drawing. J Eng Ind Trans ASME 101:36–44

    Article  Google Scholar 

  39. Sadough A, Shakeri M, Dariani BM (2000) Theoretical and experimental analysis of sheet metal formability limits. Rev Metall CIT Sci Genie Mater 663–670

  40. Hosford WF (1979) On yield loci of anisotropic cubic metals. In: Proceedings of the seventh North American metalworking research conference. SME, Dearborn, pp 191–197

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Safari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Safari, M., Hosseinipour, S.J. & Azodi, H.D. An investigation into the effect of strain rate on forming limit diagram using ductile fracture criteria. Meccanica 47, 1391–1399 (2012). https://doi.org/10.1007/s11012-011-9521-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-011-9521-2

Keywords

Navigation