Skip to main content
Log in

The effects of local thermal nonequilibrium and MFD viscosity on the onset of Brinkman ferroconvection

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The simultaneous effect of local thermal nonequilibrium (LTNE) and magnetic field dependent (MFD) viscosity on thermal convective instability in a horizontal ferrofluid saturated Brinkman porous layer in the presence of a uniform vertical magnetic field is studied analytically. The results indicate that the onset of Brinkman ferroconvection is delayed with increasing MFD viscosity parameter but the critical wave number is found to be independent of this parameter. When compared to the simultaneous presence of buoyancy and magnetic forces, it is observed that the onset of Brinkman ferroconvection is delayed more when the magnetic forces alone are present. Asymptotic solutions for both small and large values of scaled inter-phase heat transfer coefficient H t are compared with those computed numerically and good agreement is found between them. Besides, the influence of magnetic and LTNE parameters on the stability characteristics of the system is also discussed. The available results in the literature are recovered as particular cases from the present study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ganguly R, Sen S, Puri IK (2004) Heat transfer augmentation using a magnetic fluid under the influence of a line dipole. J Magn Magn Mater 271:63–73

    Article  ADS  Google Scholar 

  2. Rosensweig RE, Kaiser R, Miskolczy G (1969) Viscosity of magnetic fluid in a magnetic field. J Colloid Interface Sci 29(4):680–686

    Article  Google Scholar 

  3. Shliomis MI (1972) Effect of viscosity of magnetic suspensions. Sov Phys JETP 34:1291–1294

    ADS  Google Scholar 

  4. Vaidyanathan G, Sekar R, Ramanathan A (2002) Effect of magnetic field dependent viscosity on ferroconvection in rotating medium. Indian J Pure Appl Phys 40:159–165

    Google Scholar 

  5. Nanjundappa CE, Shivakumara IS, Srikumar K (2009) Effect of MFD viscosity on the onset of ferromagnetic fluid layer heated from below and cooled from above with constant heat flux. Meas Sci Rev 9(3):75–80

    Article  Google Scholar 

  6. Rosensweig RE, Zahn M, Vogler T (1978) Stabilization of fluid penetration through a porous medium using magnetizable fluids. In: Berkovsky B (ed) Thermomechanics of magnetic fluids. Hemisphere, Washington, pp 195–211

    Google Scholar 

  7. Zhan M, Rosensweig RE (1980) Stability of magnetic fluid penetration through a porous medium with uniform magnetic field oblique to the interface. IEEE Trans Magn 16:275–282

    Article  ADS  Google Scholar 

  8. Vaidyanathan G, Sekar R, Balasubramanian R (1991) Ferroconvective instability of fluids saturating a porous medium. Int J Eng Sci 29:259–1267

    Article  Google Scholar 

  9. Qin Y, Chadam J (1995) A non-linear stability problem for ferromagnetic fluids in a porous medium. Appl Math Lett 8(2):25–29

    Article  MathSciNet  MATH  Google Scholar 

  10. Borglin SE, Mordis J, Oldenburg CM (2000) Experimental studies of the flow of ferrofluid in porous media. Transp Porous Media 41:61–80

    Article  Google Scholar 

  11. Sunil AM (2009) Nonlinear Stability analysis for thermoconvective magnetized ferrofluid saturating a porous medium. Transp Porous Media 76:327–343

    Article  MathSciNet  Google Scholar 

  12. Shivakumara IS, Nanjundappa CE, Ravisha M (2008) Thermomagnetic convection in a magnetic nanofluid saturated porous medium. Int J Appl Math Eng Sci 2(2):157–170

    Google Scholar 

  13. Shivakumara IS, Nanjundappa CE, Ravisha M (2009) Effect of boundary conditions on the onset of thermomagnetic convection in a ferrofluid saturated porous medium. J Heat Transf 131(2009):101003-1–101003-9

    Google Scholar 

  14. Vaidyanathan G, Sekar R, Vasanthakumari R, Ramanathan A (2002) The effect of magnetic field dependent viscosity on ferroconvection in a rotating sparsely distributed porous medium. J Magn Magn Mater 250:65–76

    Article  ADS  Google Scholar 

  15. Ramanathan A, Surendra P (2003) Effect of magnetic field viscosity on ferroconvection in an isotropic sparsely distributed porous medium. Indian J Pure Appl Phys 41:522–526

    Google Scholar 

  16. Suresh Govindan A, Vasanthakumari B (2009) Comparison of theoretical and computational ferroconvection induced by magnetic field dependent viscosity in an anisotropic porous medium. Int J Recent Trends Eng 1(5):41–45

    Google Scholar 

  17. Nanjundappa CE, Shivakumara IS, Ravisha M (2010) The onset of ferroconvection in a horizontal saturated porous layer heated from below and cooled from above with constant heat flux subject to MFD viscosity. Int Commun Heat Mass Transf 37:1246–1250

    Article  Google Scholar 

  18. Vafai K, Amiri A (1998) Non-Darcian effects in combined forced convective flows. In: Ingham DB, Pop I (eds) Transport phenomena in porous media. Pergamon, Oxford, pp 313–329

    Chapter  Google Scholar 

  19. Kuznetsov AV (1998) Thermal non-equilibrium forced convection in porous media. In: Ingham DB, Pop I (eds) Transport phenomena in porous media. Pergamon, Oxford, pp 103–130

    Chapter  Google Scholar 

  20. Banu N, Rees DAS (2002) Onset of Darcy–Benard convection using a thermal non-equilibrium model. Int J Heat Mass Transf 45:2221–2228

    Article  MATH  Google Scholar 

  21. Malashetty MS, Shivakumara IS, Kulkarni S (2005) The onset of Lapwood–Brinkman convection using a thermal non-equilibrium model. Int J Heat Mass Transf 48:1155–1163

    Article  MATH  Google Scholar 

  22. Rees DAS, Pop I (2005) Local thermal non-equilibrium in porous media convection. In: Ingham DB, Pop I (eds) Transport phenomena in porous media III. Elsevier, Oxford, pp 147–173

    Chapter  Google Scholar 

  23. Straughan B (2006) Global nonlinear stability in porous convection with a thermal non-equilibrium model. Proc R Soc, Math Phys Eng Sci 462:409–418

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Nouri-Borujerdi A, Noghrehabadi AR, Rees DAS (2007) Onset of convection in a horizontal porous channel with uniform heat generation using a thermal non-equilibrium model. Transp Porous Media 69:343–357

    Article  MathSciNet  Google Scholar 

  25. Postelnicu A (2008) The onset of a Darcy-Brinkman convection using a thermal non-equilibrium model. Part II. Int J Therm Sci 47:1587–1594

    Article  Google Scholar 

  26. Shivakumara IS, Mamatha AL, Ravisha M (2010) Effects of variable viscosity and density maximum on the onset of Darcy-Benard convection using a thermal non-equilibrium model. J Porous Media 13:613–622

    Article  Google Scholar 

  27. Shivakumara IS, Mamatha AL, Ravisha M (2010) Boundary and thermal non-equilibrium effects on the onset of Darcy-Brinkman convection in a porous layer. J Eng Math 67:317–328

    Article  MathSciNet  MATH  Google Scholar 

  28. Lee J, Shivakumara IS, Mamatha AL (2011) Effect of non-uniform temperature gradients on thermogravitational convection in a porous layer using a thermal nonequilibrium model. J Porous Media 14:659–669

    Article  Google Scholar 

  29. Lee J, Shivakumara IS, Ravisha M (2011) Effect of thermal non-equilibrium on convective instability in a ferromagnetic fluid saturated porous medium. Transp Porous Media 86:103–124

    Article  MathSciNet  Google Scholar 

  30. Finlayson BA (1970) Convective instability of ferromagnetic fluids. J Fluid Mech 40:753–767

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

One of the authors (ISS) wishes to thank the Brain Korea 21 (BK 21) program of the School of Mechanical Engineering, Yonsei University, Seoul, Korea for inviting him as a visiting Professor and also the Bangalore University for sanctioning sabbatical leave. The authors M.R. and R.G.R. wish to thank the Principals of their respective colleges for encouragement. We wish to thank the reviewer for useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinho Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shivakumara, I.S., Lee, J., Ravisha, M. et al. The effects of local thermal nonequilibrium and MFD viscosity on the onset of Brinkman ferroconvection. Meccanica 47, 1359–1378 (2012). https://doi.org/10.1007/s11012-011-9519-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-011-9519-9

Keywords

Navigation