Skip to main content
Log in

Effect of magnetic field on the mixed convection \(\hbox {Fe}_{3}\hbox {O}_{{{4}}}/\hbox {water}\) ferrofluid flow in a horizontal porous channel

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The effect of an external magnetic field on the mixed convection \(\hbox {Fe}_{{3}}\hbox {O}_{{4}}/\)water ferrofluid flow in a horizontal porous channel was studied numerically. The governing equations using the Darcy–Brinkman–Forchheimer formulation were solved by employing the finite volume method. The computations were carried out for a range of volume fractions of nanoparticles \(0\le \varphi \le 0.05\), magnetic numbers \(0\le \hbox {Mn} \le 100\), Reynolds numbers \(100\le \hbox {Re}\le 500\), Darcy numbers \(\hbox {10}^{{-3}}\le \hbox {Da}\le 10^{{-1}}\) and porosity parameters \(0.7\le \varepsilon \le 0.9\) while fixing the Grashof number at \(10^{{4}}\). Results show the formation of recirculation zone in the vicinity of the magnetic source under the influence of Kelvin force. It grows as the magnetic number increases. The friction factor increases by increasing the magnetic number and diminishes with the increase in Darcy number. The flow accelerates as the magnetic field intensifies. The heat transfer rate increases by increasing the volume fraction of the nanoparticles and the magnetic number. The effect of magnetic field on the hydrodynamic and thermal behaviours of the ferrofluid flow considerably intensifies by increasing Reynolds number and Darcy number. The combined effect of ferromagnetic nanoparticles and magnetic field on the enhancement rate of heat transfer becomes more pronounced at high values of Reynolds number, permeability and/or porosity parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M Mokhtari, S Hariri, M B Gerdroodbary and R Yeganehd, Chem. Eng. Process. 117, 70 (2017)

    Article  Google Scholar 

  2. M Hassan, C Fetecau, A Majeed and A Zeeshan, J. Magn. Magn. Mater. 465, 531 (2018)

    Article  ADS  Google Scholar 

  3. M Ashouri and M B Shafii, J. Magn. Magn. Mater. 442, 270 (2017)

    Article  ADS  Google Scholar 

  4. Y E Kamış and K Atalık, J. Magn. Magn. Mater. 454, 196 (2018)

    Article  Google Scholar 

  5. M Bezaatpour and H Rostamzadeh, Appl. Therm. Eng. 164, 114462 (2020)

    Article  Google Scholar 

  6. N S Gibanov, M A Sheremet and H F Oztop, Heat Transf. 72(1), 64 (2017)

    Google Scholar 

  7. M Sheikholeslami, S A M Mehryan, A Shafe and M A Sheremet, J. Mol. Liq. 277, 388 (2019)

    Article  Google Scholar 

  8. F Selimefendigil, H F Oztop, M A Sheremet and N Abu-Hamdeh Energy 12(4), 666 (2019)

  9. H S Seo, J C Lee, I J Hwang and Y J Kim, Mater. Res. Bull. 58, 10 (2014)

    Article  Google Scholar 

  10. V M Job and S R Gunakala, Int. J. Mech. Sci. 144, 357 (2018)

    Article  Google Scholar 

  11. B Ghorbani, S Ebrahimi and K Vijayaraghavan, Int. J. Heat Mass Transf. 127, 544 (2018)

    Article  Google Scholar 

  12. M M Bhatti, M A Yousif, S R Mishra and A Shahid, Pramana – J. Phys. 93(6), 88 (2019)

    Google Scholar 

  13. W Nessab, H Kahalerras, B Fersadou and D Hammoudi, Appl. Therm. Eng. 150, 271 (2019)

    Article  Google Scholar 

  14. A Salehpour and M Ashjaee, J. Magn. Magn. Mater. 480, 112 (2019)

    Article  ADS  Google Scholar 

  15. M Bahiraei, M Hangi and A Rahbari, Appl. Therm. Eng. 147, 991 (2019)

    Article  Google Scholar 

  16. Y Cheng and D Li, Appl. Therm. Eng. 163, 114306 (2019)

    Article  Google Scholar 

  17. S Nadeem, S Ahmad and N Muhammad, Pramana – J. Phys. 94(1): 1 (2020)

    Google Scholar 

  18. R Djeghiour, B Meziani and O Ourrad, Pramana – J. Phys. 94(1): 50 (2020)

    Google Scholar 

  19. M Amani, M Ameri and A Kasaeian, Int. J. Therm. Sci. 127, 242 (2018)

    Article  Google Scholar 

  20. M Izadi, H F Oztop, M A Sheremet, S A M Mehryan and N A Hamdeh, Heat Transf. 76(6), 479 (2019)

    Article  Google Scholar 

  21. F Fadaei, M Shahrokhi, A M Dehkordi and Z Abbasi, J. Magn. Magn. Mater. 475, 304 (2019)

    Article  ADS  Google Scholar 

  22. M Bezaatpour and M Goharkhah, J. Magn. Magn. Mater. 476, 506 (2019)

    Article  ADS  Google Scholar 

  23. M Izadi, R Mohebbi, A A Delouei and H Sajjadi, Int. J. Mech. Sci. 151, 154 (2019)

    Article  Google Scholar 

  24. M Ghalambaz, M Sabour, S Sazgara, I Pop and R Trâmbiţaş, J. Magn. Magn. Mater. 497, 166024 (2020)

    Article  Google Scholar 

  25. M Sheikholeslami and M M Rashidi, Eur. Phys. J. Plus 130(6), 115 (2015)

    Article  Google Scholar 

  26. Z Mehrez and A El Cafsi, J. Therm. Anal. Calorim. 135(2), 1417 (2019)

    Article  Google Scholar 

  27. A Jarray, Z Mehrez and A El Cafsi, Eur. Phys. J. Spec. Top. 228(12), 2677 (2019)

    Article  Google Scholar 

  28. H C Brinkman, J. Chem. Phys. 20, 571 (1952)

    Article  ADS  Google Scholar 

  29. J C Maxwell, A treatise on electricity and magnetism (Oxford University Press, Cambridge 1904) pp. 435–441

    Google Scholar 

  30. A Chorin, J. Math. Comput. 22, 745 (1968)

    Article  Google Scholar 

  31. R Temam, Bull. Soc. Math. France 98, 115 (1968)

    Article  Google Scholar 

  32. B P Leonard, Int. J. Numer. Methods Fluids 8, 1291 (1988)

    Article  ADS  Google Scholar 

  33. Z Mehrez, A El Cafsi, A Belghith and P Le Quéré, Can. J. Phys. 93(12), 1615 (2015)

    Article  ADS  Google Scholar 

  34. Z Mehrez and A El Cafsi, Int. J. Appl. Comput. Math. 3(1), 489 (2017)

    Article  MathSciNet  Google Scholar 

  35. F Zamzari, Z Mehrez, A El Cafsi, A Belghith and P Le Quéré, J. Hydrodyn. 29(4), 632 (2017)

    Article  Google Scholar 

  36. G Evans and S Paolucci, Int. J. Numer. Methods Fluids 11(7), 1001 (1990)

    Article  ADS  Google Scholar 

  37. G Comini, M Manzan and G Cortella, Numer. Heat Transf. 31(2), 217 (1997)

    Article  ADS  Google Scholar 

  38. M Nourollahi, M Farhadi and K Sedighi, Therm. Sci. 14(2), 329 (2010)

    Article  Google Scholar 

  39. N M Sahraoui, S Houat and N Saidi, Eur. Phys. J. Appl. Phys. 78(3), 34806 (2017)

    Article  ADS  Google Scholar 

  40. Z Mehrez, M Bouterra, A El Cafsi, A Belghith and P Le Quéré, Appl. Fluid Mech. 3(2), 1 (2010)

    Google Scholar 

  41. F Zamzari, Z Mehrez, A E Cafsi and A Belghith, Int. J. Exergy 17(2), 219 (2015)

    Article  Google Scholar 

  42. Z Mehrez, M Bouterra, A El Cafsi, A Belghith and A Quéré, Eng. Appl. Sci. 5(2), 7366 (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zouhaier Mehrez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jarray, A., Mehrez, Z. & El Cafsi, A. Effect of magnetic field on the mixed convection \(\hbox {Fe}_{3}\hbox {O}_{{{4}}}/\hbox {water}\) ferrofluid flow in a horizontal porous channel. Pramana - J Phys 94, 156 (2020). https://doi.org/10.1007/s12043-020-02015-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-020-02015-7

Keywords

PACS Nos

Navigation