Skip to main content
Log in

Free convection from a truncated cone subject to constant wall heat flux in a micropolar fluid

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The paper studies the problem of free convection about a vertical frustum of a cone in a micropolar fluid. It is assumed that the flow is laminar, steady and the wall is subjected to a constant heat flux and the angle of the frustum of the cone is large enough so that the transverse curvature effects are negligible. Under these assumptions, the governing boundary layer equations subject to appropriate boundary conditions are transformed into a set of equations of parabolic type, that are solved using the local non-similarity method. The space of parameters contains the Prandtl number Pr, the micropolar parameter Δ and the microrotation parameter n. Numerical solutions are obtained by varying Pr from 6.7 to 100, Δ from 0 (Newtonian fluid) to 2 and considering two values of n with physical significance (0 and 0.5). Flow and heat transfer characteristics are determined and are shown in graphs. The results are discussed and compared at some extent with those reported by the present author in a previous study (Postelnicu in Int. J. Eng. Sci. 44:672–682, 2006) on the isothermal case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Eringen AC (1964) Simple microfluids. Int J Eng Sci 2:205–217

    Article  MathSciNet  MATH  Google Scholar 

  2. Eringen AC (1966) Theory of micropolar fluids. J Math Mech 16:1–18

    MathSciNet  Google Scholar 

  3. Ariman T, Turk MA, Sylvester ND (1973) Microcontinuum fluid mechanics—a review. Int J Eng Sci 11:905–930

    Article  MATH  Google Scholar 

  4. Ariman T, Turk MA, Sylvester ND (1974) Application microcontinuum fluid mechanics. Int J Eng Sci 12:273–293

    Article  MATH  Google Scholar 

  5. Lukaszewicz G (1999) Micropolar fluids: theory and applications. Birkhauser, Basel

    MATH  Google Scholar 

  6. Eringen AC (2001) Microcontinuum field theories II. Fluent media. Springer, New-York

    MATH  Google Scholar 

  7. Peddieson J, McNitt RP (1970) Boundary layer theory for micropolar fluid. Recent Adv. Eng. Sci. 5:405–426

    Google Scholar 

  8. Wilson AJ (1970) Boundary layers in micropolar fluids. Proc Camb Philol Soc 67:460–476

    Article  ADS  Google Scholar 

  9. Na T-Y, Chiou JP (1979) Laminar natural convection over a frustum of a cone. Appl Sci Res 35:409–421

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Singh P, Radhakrishnan V, Narayan KA (1989) Natural convection flow over a vertical frustum of a cone for constant wall heat flux. Appl Sci Res 46:335–345

    Article  MATH  Google Scholar 

  11. Pop I, Na T-Y (1999) Natural convection over a vertical wavy frustum of a cone. Int J Non-Linear Mech 34:925–934

    Article  Google Scholar 

  12. Pop I, Na T-Y (1999) Laminar flow due to rotating frustum of a cone. Appl Mech Eng 4:113–120

    MATH  Google Scholar 

  13. Gorla RSR, Takhar HS (1987) Free convection boundary-layer flow of a micropolar fluid past slender bodies. Int J Eng Sci 25:949–962

    Article  MATH  Google Scholar 

  14. Gorla RSR, Nakamura S (1995) Mixed convection of a micropolar fluid from a rotating cone. Int J Heat Fluid Flow 16:69–73

    Article  Google Scholar 

  15. Abo-Eldahab E, El Aziz A (2004) Hall current and ohmic heating effects on mixed convection boundary layer flow of a micropolar fluid from a rotating cone with power-law variation in surface temperature. Int Commun Heat Mass Transf 31:751–762

    Article  Google Scholar 

  16. Postelnicu A (2006) Free convection about a vertical frustum of a cone in a micropolar fluid. Int J Eng Sci 44:672–682

    Article  MATH  Google Scholar 

  17. Cheng C-Y (2008) Natural convection of a micropolar fluid from a vertical truncated cone with power-law variation in temperature. Int Commun Heat Mass Transf 35:39–46

    Article  Google Scholar 

  18. Cheng C-Y (2010) Double diffusion from a vertical truncated cone in a non-Newtonian fluid saturated porous medium with variable heat and mass fluxes. Int Commun Heat Mass Transf 37:261–265

    Article  Google Scholar 

  19. Jena SK, Mathur MN (1991) Similarity solutions for laminar free convective flow of a thermomicropolar fluid past a nonisothermal vertical plate. Int J Eng Sci 19:1431–1439

    Article  Google Scholar 

  20. Ahmadi G (1976) Self-similar solution of incompressible micropolar boundary layer flow over a semi-infinite plate. Int J Eng Sci 14:639–646

    Article  MATH  Google Scholar 

  21. Peddieson J (1972) An application of the micropolar fluid model to the calculation of turbulent shear flow. Int J Eng Sci 10:23–32

    Article  Google Scholar 

  22. Sparrow EM, Quack H, Boerner CJ (1970) Local non-similarity boundary layer solutions. AIAA J 8:1936–1942

    Article  ADS  MATH  Google Scholar 

  23. Sparrow EM, Yu MS (1971) Local nonsimilarity thermal boundary-layer solutions. J Heat Transf 93:328–332

    Article  Google Scholar 

  24. Hossain MA, Vafai K, Khanafer K (1999) Non-Darcy natural convection heat and mass transfer along a vertical permeable cylinder embedded in a porous medium. Int J Therm Sci 38:854–862

    Article  Google Scholar 

  25. Maple 8.00 (2002) Waterloo Maple Inc

  26. Gorla RSR, Takhar HS, Slaouti A (1998) Magnetohydrodynamic free convection boundary layer flow of a thermomicropolar fluid over a vertical plate. Int J Eng Sci 36:315–327

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The anonymous reviewers are gratefully acknowledged for their constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Postelnicu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Postelnicu, A. Free convection from a truncated cone subject to constant wall heat flux in a micropolar fluid. Meccanica 47, 1349–1357 (2012). https://doi.org/10.1007/s11012-011-9518-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-011-9518-x

Keywords

Navigation