Skip to main content
Log in

Cold rolling mill process: a numerical procedure for industrial applications

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The paper proposes a model for a cold rolling mill process in the full-film regime that uses lubricant emulsion sprayed on at the entrance of the strip. The aim of the model is to forecast the reduction of strip thickness versus the flow rate of lubricant given the other operation parameters. The model includes strip plastic deformation, lubricant flow and lubricant viscosity depending on pressure. The mathematical problem is a free boundary one and a numerical procedure, applied to an industrial plant, is presented with some results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

h(x):

Lubricant film thickness

h 0 :

Inlet lubricant film thickness

p(x):

Normal pressure of lubricant film acting on the strip surface

R :

Roll radius

S 1 :

Inlet strip thickness

S 2 :

Outlet strip thickness

u 1 :

Horizontal component of the strip speed

u 1,0 :

Horizontal component of the strip speed in the inlet zone

u 1,f :

Horizontal component of the strip speed in the outlet zone

u 2 :

Horizontal component of the roll speed

v 1 :

Vertical component of the strip speed

v 2 :

Vertical component of the roll speed

x :

Generic abscissa

x 1 :

Abscissa of the point in which the plastic deformation takes place

y :

Generic ordinate

y 1,0 :

Strip ordinate in the inlet zone

y 1,f :

Strip ordinate in the outlet zone

y 1(x):

Strip profile ordinate

y 2(x):

Roll profile ordinate

γ :

Viscosity coefficient in Barus law

μ :

Lubricant viscosity

μ 0 :

Lubricant viscosity corresponding to a pressure p=0

σ s :

Material yield stress

σ x :

Normal horizontal stress

σ Y :

Normal vertical stress

τ :

Tangential stress acting on the strip surface

ω :

Angular roll speed

Q :

Lubricant flow rate

P * :

Pressure relative to material yield stress

X * :

Dimensionless abscissa X *=x/x 1

References

  1. Orowan E (1943) The calculation of roll pressure in hot and cold flat rolling. Proc Inst Mech Eng 150:140–167

    Article  Google Scholar 

  2. Cheng HS (1966) Plasto-hydrodynamic lubrication. In: Friction and lubrication in metal processing. ASME, New York, pp 69–89

    Google Scholar 

  3. Wilson WRD, Walowit JA (1971) An isothermal hydrodynamic lubrication theory for slip rolling with front and back tension. In: Tribology convention. Institution of Mechanical Engineers, London, pp 164–172

    Google Scholar 

  4. Bedi DS, Hillier MJ (1968) Hydrodynamic model for strip cold rolling. Proc Inst Mech Eng 182(1):158–162

    Google Scholar 

  5. Avitzur B, Grossman G (1972) Hydrodynamic lubrication in the rolling of thin strips. ASME J Eng Ind Ser B 94(1):317–328

    Google Scholar 

  6. Wilson WRD, Murch LE (1976) A refined model for the hydrodynamic lubrication of strip rolling. ASME J Lubr Technol 98:426–432

    Google Scholar 

  7. Dow TA, Kannel JW, Bupara SS (1975) A hydrodynamic lubrication theory for strip rolling including thermal effects. ASME J Lubr Technol 97:4–12

    Google Scholar 

  8. Sa C-Y, Wilson WRD (1993) Full film lubrication of strip rolling. ASME J Tribol 13:1–8

    Google Scholar 

  9. Szeri AZ, Wang SH (2004) An elasto-pasto-hydrodynamic model of strip rolling with oil/water emulsion lubricant. Elsevier Tribol Int 37:169–176

    Article  Google Scholar 

  10. Hamrock BJ (1994) Fundamentals of fluid film lubrication. McGraw–Hill, New York

    Google Scholar 

  11. Dowson D (1998) Modelling of elastohydrodynamic lubrication of real solids by real lubricants. Meccanica 33:47–58

    Article  MATH  MathSciNet  Google Scholar 

  12. Szeri S, Snyder V (2006) Convective inertia effects in wall-bounded thin film flows. Meccanica 41:473–482

    Article  Google Scholar 

  13. Mulone G, Salemi F (1983) On the existence of hydrodynamic motion in a domain with free boundary type conditions. Meccanica 18:136–144

    Article  MATH  ADS  Google Scholar 

  14. Roberts WL (1980) Flat processing of steel. Dekker, New York

    Google Scholar 

  15. Shampine LF, Gordon MK (1975) Computer solution of ordinary differential equations: the initial value problem. Freeman, San Francisco

    MATH  Google Scholar 

  16. Booser ER (1997) Tribology data handbook. CRC Press, Boca Raton

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Cristina Valigi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valigi, M.C., Malvezzi, M. Cold rolling mill process: a numerical procedure for industrial applications. Meccanica 43, 1–9 (2008). https://doi.org/10.1007/s11012-007-9085-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-007-9085-3

Keywords

Navigation