Skip to main content

Advertisement

Log in

The role of excitatory amino acid transporter 2 (EAAT2) in epilepsy and other neurological disorders

  • Review Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Glutamate is the major excitatory neurotransmitter in the central nervous system (CNS). Excitatory amino acid transporters (EAATs) have important roles in the uptake of glutamate and termination of glutamatergic transmission. Up to now, five EAAT isoforms (EAAT1-5) have been identified in mammals. The main focus of this review is EAAT2. This protein has an important role in the pathoetiology of epilepsy. De novo dominant mutations, as well as inherited recessive mutation in this gene, have been associated with epilepsy. Moreover, dysregulation of this protein is implicated in a range of neurological diseases, namely amyotrophic lateral sclerosis, alzheimer’s disease, parkinson’s disease, schizophrenia, epilepsy, and autism. In this review, we summarize the role of EAAT2 in epilepsy and other neurological disorders, then provide an overview of the therapeutic modulation of this protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data are included within the article.

References

  • Abdul HM, Sama MA, Furman JL et al (2009) Cognitive decline in Alzheimer's disease is associated with selective changes in calcineurin/NFAT signaling. J Neurosci 29:12957–12969

    Article  Google Scholar 

  • Adams B, Moghaddam B (1998) Corticolimbic dopamine neurotransmission is temporally dissociated from the cognitive and locomotor effects of phencyclidine. J Neurosci 18:5545–5554

    Article  CAS  Google Scholar 

  • Adzhubei IA, Schmidt S, Peshkin L et al (2010) A method and server for predicting damaging missense mutations. Nat Methods 7:248–249

    Article  CAS  Google Scholar 

  • Aguirre G, Rosas S, López-Bayghen E, Ortega A (2008) Valproate-dependent transcriptional regulation of GLAST/EAAT1 expression: involvement of Ying-Yang 1. Neurochem Int 52:1322–1331

    Article  CAS  Google Scholar 

  • Aida T, Yoshida J, Nomura M et al (2015) Astroglial glutamate transporter deficiency increases synaptic excitability and leads to pathological repetitive behaviors in mice. Neuropsychopharmacology 40:1569–1579

    Article  CAS  Google Scholar 

  • Alam MA, Datta PK (2019) Epigenetic regulation of excitatory amino acid transporter 2 in neurological disorders. Front Pharmacol 10:1510

    Article  CAS  Google Scholar 

  • Albrecht J, Zielińska M (2017) Mechanisms of excessive extracellular glutamate accumulation in temporal lobe epilepsy. Neurochem Res 42:1724–1734

    Article  CAS  Google Scholar 

  • Allen NM, Conroy J, Shahwan A et al (2016) Unexplained early onset epileptic encephalopathy: exome screening and phenotype expansion. Epilepsia 57:e12–e17

    Article  CAS  Google Scholar 

  • Amalric M (2015) Targeting metabotropic glutamate receptors (mGluRs) in Parkinson's disease. Curr Opin Pharmacol 20:29–34

    Article  CAS  Google Scholar 

  • Amara SG, Fontana AC (2002) Excitatory amino acid transporters: keeping up with glutamate. Neurochem Int 41:313–318

    Article  CAS  Google Scholar 

  • Amato A, Barbour B, Szatkowski M, Attwell D (1994) Counter-transport of potassium by the glutamate uptake carrier in glial cells isolated from the tiger salamander retina. J Physiol 479:371–380

    Article  CAS  Google Scholar 

  • Appenzeller S, Balling R, Barisic N et al (2014) De novo mutations in synaptic transmission genes including DNM1 cause epileptic encephalopathies. Am J Hum Genet 95:360–370

    Article  Google Scholar 

  • Arriza JL, Fairman WA, Wadiche JI, Murdoch GH, Kavanaugh MP, Amara SG (1994) Functional comparisons of three glutamate transporter subtypes cloned from human motor cortex. J Neurosci 14:5559–5569

    Article  CAS  Google Scholar 

  • Barker-Haliski M, White HS (2015) Glutamatergic mechanisms associated with seizures and epilepsy. Cold Spring Harbor Perspect Med 5:a022863

    Article  Google Scholar 

  • Bar-Peled O, Ben-Hur H, Biegon A et al (1997) Distribution of glutamate transporter subtypes during human brain development. J Neurochem 69:2571–2580

    Article  CAS  Google Scholar 

  • Bauer D, Gupta D, Harotunian V, Meador-Woodruff JH, McCullumsmith RE (2008) Abnormal expression of glutamate transporter and transporter interacting molecules in prefrontal cortex in elderly patients with schizophrenia. Schizophr Res 104:108–120

    Article  Google Scholar 

  • Beart P, O'Shea R (2007) Transporters for L-glutamate: an update on their molecular pharmacology and pathological involvement. Br J Pharmacol 150:5–17

    Article  CAS  Google Scholar 

  • Bechtholt-Gompf AJ, Walther HV, Adams MA, Carlezon WA, Öngür D, Cohen BM (2010) Blockade of astrocytic glutamate uptake in rats induces signs of anhedonia and impaired spatial memory. Neuropsychopharmacology 35:2049–2059

    Article  CAS  Google Scholar 

  • Bell KF, Bennett DA, Cuello AC (2007) Paradoxical upregulation of glutamatergic presynaptic boutons during mild cognitive impairment. J Neurosci 27:10810–10817

    Article  CAS  Google Scholar 

  • Bendotti C, Tortarolo M, Suchak SK et al (2001) Transgenic SOD1 G93A mice develop reduced GLT-1 in spinal cord without alterations in cerebrospinal fluid glutamate levels. J Neurochem 79:737–746

    Article  CAS  Google Scholar 

  • Boston-Howes W, Gibb SL, Williams EO, Pasinelli P, Brown RH, Trotti D (2006) Caspase-3 cleaves and inactivates the glutamate transporter EAAT2. J Biol Chem 281:14076–14084

    Article  CAS  Google Scholar 

  • Bruijn L, Becher M, Lee M et al (1997) ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron 18:327–338

    Article  CAS  Google Scholar 

  • Cavus I, Kasoff WS, Cassaday MP et al (2005) Extracellular metabolites in the cortex and hippocampus of epileptic patients. Ann Neurol 57:226–235

    Article  CAS  Google Scholar 

  • Celli R, Santolini I, Van Luijtelaar G, Ngomba RT, Bruno V, Nicoletti F (2019) Targeting metabotropic glutamate receptors in the treatment of epilepsy: rationale and current status. Expert Opin Ther Targets 23:341–351

    Article  CAS  Google Scholar 

  • Chen W, Aoki C, Mahadomrongkul V et al (2002) Expression of a variant form of the glutamate transporter GLT1 in neuronal cultures and in neurons and astrocytes in the rat brain. J Neurosci 22:2142–2152

    Article  CAS  Google Scholar 

  • Chi B, O’Connell JD, Iocolano AD et al (2018) The neurodegenerative diseases ALS and SMA are linked at the molecular level via the ASC-1 complex. Nucleic Acids Res 46:11939–11951

    Article  CAS  Google Scholar 

  • Chu K, Lee S-T, Sinn D-I et al (2007) Pharmacological induction of ischemic tolerance by glutamate transporter-1 (EAAT2) upregulation. Stroke 38:177–182

    Article  CAS  Google Scholar 

  • Chung E, Chen L, Chan Y, Yung K (2008) Downregulation of glial glutamate transporters after dopamine denervation in the striatum of 6-hydroxydopamine-lesioned rats. J Comp Neurol 511:421–437

    Article  CAS  Google Scholar 

  • Coulter DA, Eid T (2012) Astrocytic regulation of glutamate homeostasis in epilepsy. Glia 60:1215–1226

    Article  Google Scholar 

  • Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    Article  CAS  Google Scholar 

  • Deng H-X, Hentati A, Tainer JA et al (1993) Amyotrophic lateral Ssclerosis and structural defects in cu, Zn superoxide dismutase. Science 261:1047–1051

    Article  CAS  Google Scholar 

  • During MJ, Spencer DD (1993) Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain. Lancet 341:1607–1610

    Article  CAS  Google Scholar 

  • Eid T, Gruenbaum SE, Dhaher R, Lee T-SW, Zhou Y, Danbolt NC (2016) The glutamate–glutamine cycle in epilepsy. The glutamate/GABA-glutamine cycle: 351-400

  • Epi K, Phenome PE, Allen A et al (2013) De novo mutations in epileptic encephalopathies. Nature 501:217–221

    Article  Google Scholar 

  • Fachim HA, Guizzo R, Cunha AO et al (2020) Ceftriaxone pretreatment confers neuroprotection in rats with acute glaucoma and reduces the score of seizures induced by pentylenotetrazole in mice. J Biochem Mol Toxicol 34:e22578

    Article  CAS  Google Scholar 

  • Ferrarese C, Tremolizzo L, Rigoldi M et al (2001) Decreased platelet glutamate uptake and genetic risk factors in patients with Parkinson's disease. Neurol Sci 22:65–66

    Article  CAS  Google Scholar 

  • Foran E, Rosenblum L, Bogush A, Pasinelli P, Trotti D (2014) Sumoylation of the astroglial glutamate transporter EAAT2 governs its intracellular compartmentalization. Glia 62:1241–1253

    Article  CAS  Google Scholar 

  • Fumagalli E, Funicello M, Rauen T, Gobbi M, Mennini T (2008) Riluzole enhances the activity of glutamate transporters GLAST, GLT1 and EAAC1. Eur J Pharmacol 578:171–176

    Article  CAS  Google Scholar 

  • Furuta A, Rothstein JD, Martin LJ (1997) Glutamate transporter protein subtypes are expressed differentially during rat CNS development. J Neurosci 17:8363–8375

    Article  CAS  Google Scholar 

  • Garcia-Esparcia P, Diaz-Lucena D, Ainciburu M et al (2018) Glutamate transporter GLT1 expression in Alzheimer disease and dementia with Lewy bodies. Front Aging Neurosci 10:122

    Article  Google Scholar 

  • Gardoni F, Di Luca M (2015) Targeting glutamatergic synapses in Parkinson's disease. Curr Opin Pharmacol 20:24–28

    Article  CAS  Google Scholar 

  • Gegelashvili G, Danbolt NC, Schousboe A (1997) Neuronal soluble factors differentially regulate the expression of the GLT1 and GLAST glutamate transporters in cultured astroglia. J Neurochem 69:2612–2615

    Article  CAS  Google Scholar 

  • Gibb SL, Boston-Howes W, Lavina ZS et al (2007) A caspase-3-cleaved fragment of the glial glutamate transporter EAAT2 is sumoylated and targeted to promyelocytic leukemia nuclear bodies in mutant SOD1-linked amyotrophic lateral sclerosis. J Biol Chem 282:32480–32490

    Article  CAS  Google Scholar 

  • Grewer C, Rauen T (2005) Electrogenic glutamate transporters in the CNS: molecular mechanism, pre-steady-state kinetics, and their impact on synaptic signaling. J Membr Biol 203:1–20

    Article  CAS  Google Scholar 

  • Grewer C, Gameiro A, Rauen T (2014) SLC1 glutamate transporters. Pflügers Archiv-Eur J Physiol 466:3–24

    Article  CAS  Google Scholar 

  • Guella I, McKenzie MB, Evans DM et al (2017) De novo mutations in YWHAG cause early-onset epilepsy. Am J Hum Genet 101:300–310

    Article  CAS  Google Scholar 

  • Guo H, Lai L, Butchbach ME et al (2003) Increased expression of the glial glutamate transporter EAAT2 modulates excitotoxicity and delays the onset but not the outcome of ALS in mice. Hum Mol Genet 12:2519–2532

    Article  CAS  Google Scholar 

  • Haglid K, Wang S, Qiner Y, Hamberger A (1994) Excitotoxicity. Mol Neurobiol 9:259–263

    Article  CAS  Google Scholar 

  • Hardies K, Weckhuysen S, De Jonghe P, Suls A (2016) Lessons learned from gene identification studies in Mendelian epilepsy disorders. Eur J Hum Genet 24:961–967

    Article  CAS  Google Scholar 

  • Harvey BK, Airavaara M, Hinzman J et al (2011) Targeted over-expression of glutamate transporter 1 (GLT-1) reduces ischemic brain injury in a rat model of stroke. PLoS One 6:e22135

    Article  CAS  Google Scholar 

  • He Y, Casaccia-Bonnefil P (2008) The yin and Yang of YY1 in the nervous system. J Neurochem 106:1493–1502

    Article  CAS  Google Scholar 

  • Helbig KL, Farwell Hagman KD, Shinde DN et al (2016) Diagnostic exome sequencing provides a molecular diagnosis for a significant proportion of patients with epilepsy. Genet Med 18:898–905

    Article  CAS  Google Scholar 

  • Heo S, Jung G, Beuk T, Höger H, Lubec G (2012) Hippocampal glutamate transporter 1 (GLT-1) complex levels are paralleling memory training in the multiple T-maze in C57BL/6J mice. Brain Struct Funct 217:363–378

    Article  CAS  Google Scholar 

  • Higashimori H, Schin CS, Chiang MSR et al (2016) Selective deletion of astroglial FMRP dysregulates glutamate transporter GLT1 and contributes to fragile X syndrome phenotypes in vivo. J Neurosci 36:7079–7094

    Article  CAS  Google Scholar 

  • Holmer H, Keyghobadi M, Moore C, Meshul C (2005) L-dopa-induced reversal in striatal glutamate following partial depletion of nigrostriatal dopamine with 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine. Neuroscience 136:333–341

    Article  CAS  Google Scholar 

  • Hotz AL, Jamali A, Rieser NN et al (2022) Loss of glutamate transporter eaat2a leads to aberrant neuronal excitability, recurrent epileptic seizures, and basal hypoactivity. Glia 70:196–214

    Article  CAS  Google Scholar 

  • Howland DS, Liu J, She Y et al (2002) Focal loss of the glutamate transporter EAAT2 in a transgenic rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS). Proc Natl Acad Sci 99:1604–1609

    Article  CAS  Google Scholar 

  • Hubbard JA, Szu JI, Yonan JM, Binder DK (2016) Regulation of astrocyte glutamate transporter-1 (GLT1) and aquaporin-4 (AQP4) expression in a model of epilepsy. Exp Neurol 283:85–96

    Article  CAS  Google Scholar 

  • Jacob C, Koutsilieri E, Bartl J et al (2007) Alterations in expression of glutamatergic transporters and receptors in sporadic Alzheimer's disease. J Alzheimers Dis 11:97–116

    Article  CAS  Google Scholar 

  • Jia M, Njapo SAN, Rastogi V, Hedna VS (2015) Taming glutamate excitotoxicity: strategic pathway modulation for neuroprotection. Cns Drugs 29:153–162

    Article  CAS  Google Scholar 

  • Jiménez E, Núñez E, Ibáñez I, Draffin JE, Zafra F, Giménez C (2014) Differential regulation of the glutamate transporters GLT-1 and GLAST by GSK3β. Neurochem Int 79:33–43

    Article  Google Scholar 

  • Johnson J Jr, Pajarillo E, Karki P et al (2018) Valproic acid attenuates manganese-induced reduction in expression of GLT-1 and GLAST with concomitant changes in murine dopaminergic neurotoxicity. Neurotoxicology 67:112–120

    Article  CAS  Google Scholar 

  • Kalandadze A, Wu Y, Fournier K, Robinson MB (2004) Identification of motifs involved in endoplasmic reticulum retention–forward trafficking of the GLT-1 subtype of glutamate transporter. J Neurosci 24:5183–5192

    Article  CAS  Google Scholar 

  • Karki P, Lee E, Aschner M (2013) Manganese neurotoxicity: a focus on glutamate transporters. Ann Occup Environ Med 25:1–5

    Article  Google Scholar 

  • Karki P, Smith K, Johnson J Jr, Aschner M, Lee E (2015) Role of transcription factor yin yang 1 in manganese-induced reduction of astrocytic glutamate transporters: putative mechanism for manganese-induced neurotoxicity. Neurochem Int 88:53–59

    Article  CAS  Google Scholar 

  • Karki P, Hong P, Johnson J et al (2018) Arundic acid increases expression and function of astrocytic glutamate transporter EAAT1 via the ERK, Akt, and NF-κB pathways. Mol Neurobiol 55:5031–5046

    Article  CAS  Google Scholar 

  • Kaufmann WE, Cortell R, Kau AS et al (2004) Autism spectrum disorder in fragile X syndrome: communication, social interaction, and specific behaviors. Am J Med Genet A 129:225–234

    Article  Google Scholar 

  • Kim J-E, Kim D-S, Kwak S-E et al (2007) Anti-glutamatergic effect of riluzole: comparison with valproic acid. Neuroscience 147:136–145

    Article  CAS  Google Scholar 

  • Kim K, Lee SG, Kegelman TP et al (2011) Role of excitatory amino acid transporter-2 (EAAT2) and glutamate in neurodegeneration: opportunities for developing novel therapeutics. J Cell Physiol 226:2484–2493

    Article  CAS  Google Scholar 

  • Kong Q, Takahashi K, Schulte D, Stouffer N, Lin Y, Lin C-LG (2012) Increased glial glutamate transporter EAAT2 expression reduces epileptogenic processes following pilocarpine-induced status epilepticus. Neurobiol Dis 47:145–154

    Article  CAS  Google Scholar 

  • Kong Q, Chang L-C, Takahashi K et al (2014) Small-molecule activator of glutamate transporter EAAT2 translation provides neuroprotection. J Clin Invest 124:1255–1267

    Article  CAS  Google Scholar 

  • Kornbuber J, Wiltfang J (1998) The role of glutamate in dementia. Ageing Dement:277–287

  • Kovermann P, Kolobkova Y, Franzen A, Fahlke C (2022) Mutations associated with epileptic encephalopathy modify EAAT2 anion channel function. Epilepsia 63:388–401

    Article  CAS  Google Scholar 

  • Lauderback CM, Hackett JM, Huang FF et al (2001) The glial glutamate transporter, GLT-1, is oxidatively modified by 4-hydroxy-2-nonenal in the Alzheimer's disease brain: the role of Aβ1–42. J Neurochem 78:413–416

    Article  CAS  Google Scholar 

  • Lauriat T, McInnes L (2007) EAAT2 regulation and splicing: relevance to psychiatric and neurological disorders. Mol Psychiatry 12:1065–1078

    Article  CAS  Google Scholar 

  • Lee S-G, Su Z-Z, Emdad L et al (2008) Mechanism of ceftriaxone induction of excitatory amino acid transporter-2 expression and glutamate uptake in primary human astrocytes. J Biol Chem 283:13116–13123

    Article  CAS  Google Scholar 

  • Lehre KP, Danbolt NC (1998) The number of glutamate transporter subtype molecules at glutamatergic synapses: chemical and stereological quantification in young adult rat brain. J Neurosci 18:8751–8757

    Article  CAS  Google Scholar 

  • Li S, Mallory M, Alford M, Tanaka S, Masliah E (1997) Glutamate transporter alterations in Alzheimer disease are possibly associated with abnormal APP expression. J Neuropathol Exp Neurol 56:901–911

    Article  CAS  Google Scholar 

  • Li HH, Lin PJ, Wang WH et al (2021) Treatment effects of the combination of ceftriaxone and valproic acid on neuronal and behavioural functions in a rat model of epilepsy. Exp Physiol 106:1814–1828

    Article  CAS  Google Scholar 

  • Lin C-LG, Kong Q, Cuny GD, Glicksman MA (2012) Glutamate transporter EAAT2: a new target for the treatment of neurodegenerative diseases. Future Med Chem 4:1689–1700

    Article  CAS  Google Scholar 

  • Löschmann P-A, De Groote C, Smith L et al (2004) Antiparkinsonian activity of Ro 25-6981, a NR2B subunit specific NMDA receptor antagonist, in animal models of Parkinson's disease. Exp Neurol 187:86–93

    Article  Google Scholar 

  • Maragakis NJ, Dietrich J, Wong V et al (2004) Glutamate transporter expression and function in human glial progenitors. Glia 45:133–143

    Article  Google Scholar 

  • Masliah E, Hansen L, Alford M, Deteresa R, Mallory M (1996) Deficient glutamate tranport is associated with neurodegeneration in Alzheimer's disease. Ann Neurol 40:759–766

    Article  CAS  Google Scholar 

  • Mayor D, Tymianski M (2018) Neurotransmitters in the mediation of cerebral ischemic injury. Neuropharmacology 134:178–188

    Article  CAS  Google Scholar 

  • Mei D, Parrini E, Marini C, Guerrini R (2017) The impact of next-generation sequencing on the diagnosis and treatment of epilepsy in paediatric patients. Mol Diagn Ther 21:357–373

    Article  CAS  Google Scholar 

  • Meng S, Wang B, Li W (2020) Serum expression of EAAT2 and ADORA2A in patients with different degrees of Alzheimer’s disease. Eur Rev Med Pharmacol Sci 24:11783–11792

    Google Scholar 

  • Meyer T, Ludolph AC, Morkel M, Hagemeier C, Speer A (1997) Genomic organization of the human excitatory amino acid transporter gene GLT-1. Neuroreport 8:775–777

    Article  CAS  Google Scholar 

  • Milton ID, Banner SJ, Ince PG et al (1997) Expression of the glial glutamate transporter EAAT2 in the human CNS: an immunohistochemical study. Mol Brain Res 52:17–31

    Article  CAS  Google Scholar 

  • Mir A, Almudhry M, Alghamdi F et al (2022) SLC gene mutations and pediatric neurological disorders: diverse clinical phenotypes in a Saudi Arabian population. Hum Genet 141:81–99

    Article  CAS  Google Scholar 

  • Mironova YS, Zhukova I, Zhukova N, Alifirova V, Izhboldina O, Latypova A (2018) Parkinson's disease and glutamate excitotoxicity. Zhurnal nevrologii i psikhiatrii imeni SS Korsakova 118:50–54

    Article  Google Scholar 

  • Montanari M, Martella G, Bonsi P, Meringolo M (2022) Autism Spectrum disorder: focus on glutamatergic neurotransmission. Int J Mol Sci 23:3861

    Article  CAS  Google Scholar 

  • Mookherjee P, Green PS, Watson G et al (2011) GLT-1 loss accelerates cognitive deficit onset in an Alzheimer's disease animal model. J Alzheimers Dis 26:447–455

    Article  CAS  Google Scholar 

  • Myers CT, McMahon JM, Schneider AL et al (2016) De novo mutations in SLC1A2 and CACNA1A are important causes of epileptic encephalopathies. Am J Hum Genet 99:287–298

    Article  Google Scholar 

  • O’Donovan S, Hasselfeld K, Bauer D et al (2015) Glutamate transporter splice variant expression in an enriched pyramidal cell population in schizophrenia. Transl Psychiatry 5:e579–e579

    Article  Google Scholar 

  • O’Donovan SM, Sullivan CR, McCullumsmith RE (2017) The role of glutamate transporters in the pathophysiology of neuropsychiatric disorders. NPJ Schizophr 3:1–14

    Article  Google Scholar 

  • Ohashi N, Terashima T, Katagi M et al (2021) GLT1 gene delivery based on bone marrow-derived cells ameliorates motor function and survival in a mouse model of ALS. Sci Rep 11:1–17

    Article  Google Scholar 

  • Olney JW, Farber NB (1995) Glutamate receptor dysfunction and schizophrenia. Arch Gen Psychiatry 52:998–1007

    Article  CAS  Google Scholar 

  • Pajarillo E, Rizor A, Lee J, Aschner M, Lee E (2019) The role of astrocytic glutamate transporters GLT-1 and GLAST in neurological disorders: potential targets for neurotherapeutics. Neuropharmacology 161:107559

    Article  CAS  Google Scholar 

  • Parkin GM, Udawela M, Gibbons A, Dean B (2018) Glutamate transporters, EAAT1 and EAAT2, are potentially important in the pathophysiology and treatment of schizophrenia and affective disorders. World J Psychiatry 8:51–63

    Article  Google Scholar 

  • Perkins EM, Clarkson YL, Suminaite D et al (2018) Loss of cerebellar glutamate transporters EAAT4 and GLAST differentially affects the spontaneous firing pattern and survival of Purkinje cells. Hum Mol Genet 27:2614–2627

    Article  CAS  Google Scholar 

  • Peterson AR, Binder DK (2019) Regulation of synaptosomal GLT-1 and GLAST during epileptogenesis. Neuroscience 411:185–201

    Article  CAS  Google Scholar 

  • Petr GT, Bakradze E, Frederick NM et al (2013) Glutamate transporter expression and function in a striatal neuronal model of Huntington’s disease. Neurochem Int 62:973–981

    Article  CAS  Google Scholar 

  • Petr GT, Sun Y, Frederick NM et al (2015) Conditional deletion of the glutamate transporter GLT-1 reveals that astrocytic GLT-1 protects against fatal epilepsy while neuronal GLT-1 contributes significantly to glutamate uptake into synaptosomes. J Neurosci 35:5187–5201

    Article  CAS  Google Scholar 

  • Pita-Almenar JD, Zou S, Colbert CM, Eskin A (2012) Relationship between increase in astrocytic GLT-1 glutamate transport and late-LTP. Learn Mem 19:615–626

    Article  CAS  Google Scholar 

  • Poletti S, Radaelli D, Bosia M et al (2014) Effect of glutamate transporter EAAT2 gene variants and gray matter deficits on working memory in schizophrenia. Eur Psychiatry 29:219–225

    Article  CAS  Google Scholar 

  • Pregnolato S, Chakkarapani E, Isles AR, Luyt K (2019) Glutamate transport and preterm brain injury. Front Physiol 10:417

    Article  Google Scholar 

  • Rahman MM, Fatema K (2021) Genetic diagnosis in children with epilepsy and developmental disorders by targeted gene panel analysis in a developing country. J Epilepsy Res 11:22–31

    Article  Google Scholar 

  • Rao VLR, Dogan A, Bowen KK, Todd KG, Dempsey RJ (2001a) Antisense knockdown of the glial glutamate transporter GLT-1 exacerbates hippocampal neuronal damage following traumatic injury to rat brain. Eur J Neurosci 13:119–128

    CAS  Google Scholar 

  • Rao VLR, Dogan A, Todd KG et al (2001b) Antisense knockdown of the glial glutamate transporter GLT-1, but not the neuronal glutamate transporter EAAC1, exacerbates transient focal cerebral ischemia-induced neuronal damage in rat brain. J Neurosci 21:1876–1883

    Article  CAS  Google Scholar 

  • Ren C, He KJ, Hu H et al (2022) Induction of parkinsonian-like changes via targeted downregulation of astrocytic glutamate transporter GLT-1 in the striatum. J Parkinsons Dis 12:295–314

    Article  CAS  Google Scholar 

  • Richards S, Aziz N, Bale S et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17:405–423

    Article  Google Scholar 

  • Rosen DR, Siddique T, Patterson D et al (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362:59–62

    Article  CAS  Google Scholar 

  • Rothstein JD, Martin L, Levey AI et al (1994) Localization of neuronal and glial glutamate transporters. Neuron 13:713–725

    Article  CAS  Google Scholar 

  • Rothstein JD, Van Kammen M, Levey AI, Martin LJ, Kuncl RW (1995) Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann Neurol 38:73–84

    Article  CAS  Google Scholar 

  • Rothstein JD, Dykes-Hoberg M, Pardo CA et al (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16:675–686

    Article  CAS  Google Scholar 

  • Rothstein JD, Patel S, Regan MR et al (2005) β-Lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 433:73–77

    Article  CAS  Google Scholar 

  • Scheffer IE, Berkovic S, Capovilla G et al (2017) ILAE classification of the epilepsies: position paper of the ILAE Commission for Classification and Terminology. Epilepsia 58:512–521

    Article  Google Scholar 

  • Scott HA, Gebhardt FM, Mitrovic AD, Vandenberg RJ, Dodd PR (2011) Glutamate transporter variants reduce glutamate uptake in Alzheimer's disease. Neurobiol Aging 32:553.e551–553.e511

    Article  Google Scholar 

  • Sha L, Wang X, Li J et al (2017) Pharmacologic inhibition of Hsp90 to prevent GLT-1 degradation as an effective therapy for epilepsy. J Exp Med 214:547–563

    Article  CAS  Google Scholar 

  • Sha L, Chen T, Deng Y et al (2020) Hsp90 inhibitor HSP990 in very low dose upregulates EAAT2 and exerts potent antiepileptic activity. Theranostics 10:8415–8429

    Article  CAS  Google Scholar 

  • Sheldon AL, Robinson MB (2007) The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention. Neurochem Int 51:333–355

    Article  CAS  Google Scholar 

  • Sheng L, Stewart T, Yang D et al (2020) Erythrocytic α-synuclein contained in microvesicles regulates astrocytic glutamate homeostasis: a new perspective on Parkinson’s disease pathogenesis. Acta Neuropathol Commun 8:1–22

    Article  Google Scholar 

  • Shigeri Y, Seal RP, Shimamoto K (2004) Molecular pharmacology of glutamate transporters, EAATs and VGLUTs. Brain Res Rev 45:250–265

    Article  CAS  Google Scholar 

  • Silvestrin RB, Bambini-Junior V, Galland F et al (2013) Animal model of autism induced by prenatal exposure to valproate: altered glutamate metabolism in the hippocampus. Brain Res 1495:52–60

    Article  Google Scholar 

  • Spangaro M, Bosia M, Zanoletti A et al (2012) Cognitive dysfunction and glutamate reuptake: effect of EAAT2 polymorphism in schizophrenia. Neurosci Lett 522:151–155

    Article  CAS  Google Scholar 

  • Spangaro M, Bosia M, Zanoletti A et al (2014) Exploring effects of EAAT polymorphisms on cognitive functions in schizophrenia. Pharmacogenomics 15:925–932

    Article  CAS  Google Scholar 

  • Stergachis AB, Pujol-Giménez J, Gyimesi G et al (2019) Recurrent SLC1A2 variants cause epilepsy via a dominant negative mechanism. Ann Neurol 85:921–926

    Article  CAS  Google Scholar 

  • Sugiyama K, Tanaka K (2018) Spinal cord-specific deletion of the glutamate transporter GLT1 causes motor neuron death in mice. Biochem Biophys Res Commun 497:689–693

    Article  CAS  Google Scholar 

  • Sulkowski G, Dąbrowska-Bouta B, Salińska E, Strużyńska L (2014) Modulation of glutamate transport and receptor binding by glutamate receptor antagonists in EAE rat brain. PLoS One 9:e113954

    Article  Google Scholar 

  • Szatmari P, Paterson A, Zwaigenbaum L et al (2007) Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nat Genet 39:319–328

    Article  CAS  Google Scholar 

  • Szklarczyk D, Gable AL, Lyon D et al (2019) STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47:D607–D613

    Article  CAS  Google Scholar 

  • Takahashi K, Foster JB, Lin C-LG (2015a) Glutamate transporter EAAT2: regulation, function, and potential as a therapeutic target for neurological and psychiatric disease. Cell Mol Life Sci 72:3489–3506

    Article  CAS  Google Scholar 

  • Takahashi K, Kong Q, Lin Y et al (2015b) Restored glial glutamate transporter EAAT2 function as a potential therapeutic approach for Alzheimer’s disease. J Exp Med 212:319–332

    Article  CAS  Google Scholar 

  • Tanaka K, Watase K, Manabe T et al (1997) Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276:1699–1702

    Article  CAS  Google Scholar 

  • Tortarolo M, Crossthwaite AJ, Conforti L et al (2004) Expression of SOD1 G93A or wild-type SOD1 in primary cultures of astrocytes down-regulates the glutamate transporter GLT-1: lack of involvement of oxidative stress. J Neurochem 88:481–493

    Article  CAS  Google Scholar 

  • Traynelis SF, Wollmuth LP, McBain CJ et al (2010) Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 62:405–496

    Article  CAS  Google Scholar 

  • Trotti D, Aoki M, Pasinelli P et al (2001) Amyotrophic lateral sclerosis-linked glutamate transporter mutant has impaired glutamate clearance capacity. J Biol Chem 276:576–582

    Article  CAS  Google Scholar 

  • Tsolaki AC, Gatzima O, Daniilidou M et al (2018) Prevalence of apolipoprotein E polymorphisms in Alzheimer’s disease, mild cognitive impairment, and healthy elderly: a northern Greece study. Neurodegener Dis 18:216–224

    Article  CAS  Google Scholar 

  • Vandenberg RJ, Ryan RM (2013) Mechanisms of glutamate transport. Physiol Rev 93:1621–1657

    Article  CAS  Google Scholar 

  • Wagner M, Gusic M, Günthner R et al (2018) Biallelic mutations in SLC1A2; an additional mode of inheritance for SLC1A2-related epilepsy. Neuropediatrics 49:059–062

    Article  CAS  Google Scholar 

  • Wang S-J, Wang K-Y, Wang W-C (2004) Mechanisms underlying the riluzole inhibition of glutamate release from rat cerebral cortex nerve terminals (synaptosomes). Neuroscience 125:191–201

    Article  CAS  Google Scholar 

  • Wang L, Ma T, Qiao D et al (2022) Polymorphism of rs12294045 in EAAT2 gene is potentially associated with schizophrenia in Chinese Han population. BMC Psychiatry 22:1–9

    Article  Google Scholar 

  • Weller ML, Stone IM, Goss A, Rau T, Rova C, Poulsen DJ (2008) Selective overexpression of excitatory amino acid transporter 2 (EAAT2) in astrocytes enhances neuroprotection from moderate but not severe hypoxia–ischemia. Neuroscience 155:1204–1211

    Article  CAS  Google Scholar 

  • Willard SS, Koochekpour S (2013) Glutamate, glutamate receptors, and downstream signaling pathways. Int J Biol Sci 9:948–959

    Article  CAS  Google Scholar 

  • Woltjer RL, Duerson K, Fullmer JM et al (2010) Aberrant detergent-insoluble excitatory amino acid transporter 2 accumulates in Alzheimer disease. J Neuropathol Exp Neurol 69:667–676

    Article  CAS  Google Scholar 

  • Xu S, Han J, Morales A, Menzie C, Williams K, Fan Y-S (2008) Characterization of 11p14-p12 deletion in WAGR syndrome by array CGH for identifying genes contributing to mental retardation and autism. Cytogenet Genome Res 122:181–187

    Article  CAS  Google Scholar 

  • Yamashita A, Makita K, Kuroiwa T, Tanaka K (2006) Glutamate transporters GLAST and EAAT4 regulate postischemic Purkinje cell death: an in vivo study using a cardiac arrest model in mice lacking GLAST or EAAT4. Neurosci Res 55:264–270

    Article  CAS  Google Scholar 

  • Yang Z, Wang J, Yu C et al (2018) Inhibition of p38 MAPK signaling regulates the expression of EAAT2 in the brains of epileptic rats. Front Neurol 9:925

    Article  Google Scholar 

  • Young D, Fong DM, Lawlor PA et al (2014) Adenosine kinase, glutamine synthetase and EAAT2 as gene therapy targets for temporal lobe epilepsy. Gene Ther 21:1029–1040

    Article  CAS  Google Scholar 

  • Zerangue N, Kavanaugh MP (1996) Flux coupling in a neuronal glutamate transporter. Nature 383:634–637

    Article  CAS  Google Scholar 

  • Zhang Y, He X, Meng X et al (2017) Regulation of glutamate transporter trafficking by Nedd4-2 in a Parkinson’s disease model. Cell Death Dis 8:e2574–e2574

    Article  CAS  Google Scholar 

  • Zhang Y, Meng X, Jiao Z, Liu Y, Zhang X, Qu S (2020) Generation of a novel mouse model of Parkinson’s disease via targeted knockdown of glutamate transporter GLT-1 in the substantia nigra. ACS Chem Neurosci 11:406–417

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to selecting the idea of the article, Sahar Alijanpour performed the literature search, data analysis and drafted the work, Soudeh Ghafouri-Fard performed data analysis, drafted and critically revised the work, Mohammad Miryounesi critically revised the work. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Soudeh Ghafouri-Fard.

Ethics declarations

Ethics approval

Not applicable.

Patient consent

Not applicable.

Competing interests

Neither of the authors has any conflict of interest to disclose.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alijanpour, S., Miryounesi, M. & Ghafouri-Fard, S. The role of excitatory amino acid transporter 2 (EAAT2) in epilepsy and other neurological disorders. Metab Brain Dis 38, 1–16 (2023). https://doi.org/10.1007/s11011-022-01091-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-022-01091-5

Keywords

Navigation