Skip to main content
Log in

Airway inflammation induces anxiety-like behavior through neuroinflammatory, neurochemical, and neurometabolic changes in an allergic asthma model

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Allergic asthma is characterized by chronic airway inflammation and is constantly associated with anxiety disorder. Recent studies showed bidirectional interaction between the brain and the lung tissue. However, where and how the brain is affected in allergic asthma remains unclear. We aimed to investigate the neuroinflammatory, neurochemical, and neurometabolic alterations that lead to anxiety-like behavior in an experimental model of allergic asthma. Mice were submitted to an allergic asthma model induced by ovalbumin (OVA) and the control group received only Dulbecco’s phosphate-buffered saline (DPBS). Our findings indicate that airway inflammation increases interleukin (IL) -9, IL-13, eotaxin, and IL-1β release and changes acetylcholinesterase (AChE) and Na+,K+-ATPase activities in the brain of mice. Furthermore, we demonstrate that a higher reactive oxygen species (ROS) formation and antioxidant defense alteration that leads to protein damage and mitochondrial dysfunction. Therefore, airway inflammation promotes a pro-inflammatory environment with an increase of BDNF expression in the brain of allergic asthma mice. These pro-inflammatory environments lead to an increase in glucose uptake in the limbic regions and to anxiety-like behavior that was observed through the elevated plus maze (EPM) test and downregulation of glucocorticoid receptor (GR). In conclusion, the present study revealed for the first time that airway inflammation induces neuroinflammatory, neurochemical, and neurometabolic changes within the brain that leads to anxiety-like behavior. Knowledge about mechanisms that lead to anxiety phenotype in asthma is a beneficial tool that can be used for the complete management and treatment of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All authors have complied to present all data and materials when requested.

References

  • Aebi (1984) [13] Catalase in vitro, Methods in enzymology. Vol. 105,Elsevier, 121–126

  • Aiello et al. (1995) The expensive-tissue hypothesis: the brain and the digestive system in human and primate evolution 36 (1995), 199–221

  • Aksenov et al (2001) Changes in thiol content and expression of glutathione redox system genes in the hippocampus and cerebellum in Alzheimer’s disease. Neurosci Lett 302(2001):141–145

    Article  CAS  PubMed  Google Scholar 

  • Alfonso et al. (2006) Regulation of hippocampal gene expression is conserved in two species subjected to different stressors and antidepressant treatments 59 (2006):244–251

  • Andiappan et al. (2011) Genetic variation in BDNF is associated with allergic asthma and allergic rhinitis in an ethnic Chinese population in Singapore Cytokine. 56 (2011):218–223

  • Antunes et al (2020) Cholinergic anti-inflammatory pathway confers airway protection against oxidative damage and attenuates inflammation in an allergic asthma model. J Cell Physiol 235(2020a):1838–1849

    Article  CAS  PubMed  Google Scholar 

  • Antunes et al (2020) Neostigmine treatment induces neuroprotection against oxidative stress in cerebral cortex of asthmatic mice. Metab Brain Dis. 35(2020b):765–774

    Article  CAS  PubMed  Google Scholar 

  • Bardach et al. (2019) Depression, Anxiety, and Emergency Department Use for Asthma Pediatrics. 144 (2019)

  • Berg et al (2011) Neuro-oxidative-nitrosative stress in sepsis. J Cereb Blood Flow Metab. 31(2011):1532–1544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergami et al. (2008) Deletion of TrkB in adult progenitors alters newborn neuron integration into hippocampal circuits and increases anxiety-like behavior 105 (2008), 15570–15575

  • Bhatnagar et al. (2004) Changes in anxiety-related behaviors and hypothalamic–pituitary–adrenal activity in mice lacking the 5-HT-3A receptor 81 (2004):545–555

  • Borovikova et al (2000) Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 405(2000):458–462

    Article  CAS  PubMed  Google Scholar 

  • Browne et al (1998) Reduced glutathione and glutathione disulfide. Springer, Free Radical and Antioxidant Protocols, pp 347–352

    Google Scholar 

  • Catarina, et al. (2018) Fructose-1, 6-bisphosphate preserves glucose metabolism integrity and reduces reactive oxygen species in the brain during experimental sepsis. Brain Research. (2018)

  • Caulfield, et al. (2018) Asthma Induction During Development and Adult Lung Function, Behavior and Brain Gene Expression. Front Behav Neurosci. 12 (2018b)

  • Chan et al (1986) A direct colorimetric assay for Ca2+-stimulated ATPase activity. Anal Biochem 157(1986):375–380

    Article  CAS  PubMed  Google Scholar 

  • Chan et al. (2006) Examination of behavioral deficits triggered by targeting Bdnf in fetal or postnatal brains of mice 142 (2006):49–58

  • Cheng et al (2002) Anti-interleukin-9 antibody treatment inhibits airway inflammation and hyperreactivity in mouse asthma model. Am J Respir Crit Care Med. 166(2002):409–416

    Article  PubMed  Google Scholar 

  • Christensen, et al. (2015) Increased activity of frontal and limbic regions to emotional stimuli in children at-risk for anxiety disorders 233 (2015):9–17

  • da Cunha, et al (2015) Experimental Lung Injury Promotes Changes in Oxidative/Nitrative Status and Inflammatory Markers in Cerebral Cortex of Rats. Mol Neurobiol. 52(2015):1590–1600

    Article  CAS  Google Scholar 

  • da Cunha et al (2016) Recombinant human deoxyribonuclease attenuates oxidative stress in a model of eosinophilic pulmonary response in mice. Mol Cell Biochem 413(2016):47–55

    Article  CAS  PubMed  Google Scholar 

  • Dagnell et al (2010) Neurotrophins and neurotrophin receptors in pulmonary sarcoidosis - granulomas as a source of expression. Respir Res 11(2010):1465–9921

    Google Scholar 

  • Danielski et al (2018) Brain Barrier Breakdown as a Cause and Consequence of Neuroinflammation in Sepsis. Mol Neurobiol. 55(2018):1045–1053

    Article  CAS  PubMed  Google Scholar 

  • Dantzer et al (2007) Twenty years of research on cytokine-induced sickness behavior. Brain Behav Immun. 21(2007):153–160

    Article  CAS  PubMed  Google Scholar 

  • de Souza Wyse et al (2000) Preconditioning prevents the inhibition of Na+, K+-ATPase activity after brain ischemia. Neurochem Res. 25(2000b):971–975

    Article  CAS  PubMed  Google Scholar 

  • Dharmage et al (2019) Epidemiology of Asthma in Children and Adults. Front Pediatr. 7(2019):246

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding et al (2020) BDNF promotes activation of astrocytes and microglia contributing to neuroinflammation and mechanical allodynia in cyclophosphamide-induced cystitis. J Neuroinflammation. 17(2020):19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellman et al (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7(1961):88–95

    Article  CAS  PubMed  Google Scholar 

  • Faiz et al (2018) Profiling of healthy and asthmatic airway smooth muscle cells following interleukin-1β treatment: a novel role for CCL20 in chronic mucus hypersecretion. Eur Respir J. 52(2018):00310–02018

    Google Scholar 

  • Fischer et al (1985) Differential investigation of the capacity of succinate oxidation in human skeletal muscle. Clinica chimica acta. 153(1985):23–36

    Article  CAS  Google Scholar 

  • Florentino et al (2020) Early life neuroimmune challenge protects the brain after sepsis in adult rats. Neurochem Int. 135(2020):104712

    Article  CAS  PubMed  Google Scholar 

  • Green, et al (1982) Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal Biochem. 126(1982):131–138

    Article  CAS  Google Scholar 

  • Greenwald, 2018. Handbook Methods For Oxygen Radical Research: 0. CRC press.

  • Grisar (1984) Glial and neuronal Na+-K+ pump in epilepsy. Ann Neurol. 16(1984):410160719

    Google Scholar 

  • Gutteridge et al (2018) Mini-Review: Oxidative stress, redox stress or redox success? Biochem Biophys Res Commun 502(2018):183–186

    Article  CAS  PubMed  Google Scholar 

  • Hahn et al (2006) Airway epithelial cells produce neurotrophins and promote the survival of eosinophils during allergic airway inflammation. J Allergy Clin Immunol. 117(2006):787–794

    Article  CAS  PubMed  Google Scholar 

  • Haspeslagh et al (2018) Role of NKp46(+) natural killer cells in house dust mite-driven asthma. EMBO Mol Med. 10(2018a):201708657

    Google Scholar 

  • Jin et al (2019) The Role of BDNF in the Neuroimmune Axis Regulation of Mood Disorders. Front Neurol. 10(2019):515

    Article  PubMed  PubMed Central  Google Scholar 

  • Katon et al (2004) The relationship of asthma and anxiety disorders. Psychosom Med. 66(2004):349–355

    PubMed  Google Scholar 

  • Kiecolt-Glaser et al (2009) How stress and anxiety can alter immediate and late phase skin test responses in allergic rhinitis. Psychoneuroendocrinology. 34(2009):670–680

    Article  PubMed  PubMed Central  Google Scholar 

  • Lambrecht et al (2015) The immunology of asthma. Nat Immunol 16(2015):45–56

    Article  CAS  PubMed  Google Scholar 

  • Lambrecht, et al. (2019) The Cytokines of Asthma Immunity. 50 (2019):975–991

  • LeBel et al (1992) Evaluation of the probe 2’, 7’-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol. 5(1992):227–231

    Article  CAS  PubMed  Google Scholar 

  • Li, et al. (2016) Effects of formaldehyde exposure on anxiety-like and depression-like behavior, cognition, central levels of glucocorticoid receptor and tyrosine hydroxylase in mice 144 (2016)2004–2012

  • Lowry et al (1951) Protein measurement with the Folin phenol reagent. J Biol Chem. 193(1951):265–275

    Article  CAS  PubMed  Google Scholar 

  • Maurer et al (2000) A selective defect of cytochrome c oxidase is present in brain of Alzheimer disease patients. Neurobiol Aging. 21(2000):455–462

    Article  CAS  PubMed  Google Scholar 

  • Netto et al (2018) Oxidative stress and mitochondrial dysfunction contributes to postoperative cognitive dysfunction in elderly rats. Brain Behav Immun. 73(2018):661–669

    Article  CAS  PubMed  Google Scholar 

  • Obermeier et al (2013) Development, maintenance and disruption of the blood-brain barrier. Nat Med. 19(2013):1584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohkawa et al (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(1979):351–358

    Article  CAS  PubMed  Google Scholar 

  • Pang et al (2014) Roles of glutathione in antioxidant defense, inflammation, and neuron differentiation in the thalamus of HIV-1 transgenic rats. J Neuroimmune Pharmacol 9(2014):413–423

    Article  PubMed  PubMed Central  Google Scholar 

  • Prakash et al (2010) Neurotrophins in lung health and disease. Expert Rev Respir Med. 4(2010):395–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reznick, et al. (1994) Oxidative damage to proteins: spectrophotometric method for carbonyl. Method Enzymol (1994)

  • Rustin et al (1994) Biochemical and molecular investigations in respiratory chain deficiencies. Clinica chimica acta. 228(1994):35–51

    Article  CAS  Google Scholar 

  • Silva et al (2007) Comparative effects of aluminum and ouabain on synaptosomal choline uptake, acetylcholine release and (Na+/K+)ATPase. Toxicology. 236(2007):158–177

    Article  CAS  PubMed  Google Scholar 

  • Silveira, et al (2019) Reactive oxygen species are involved in eosinophil extracellular traps release and in airway inflammation in asthma. J Cell Physiol 234(2019):23633–23646

    Article  CAS  Google Scholar 

  • Sjöström et al (2007) SIK1 is part of a cell sodium-sensing network that regulates active sodium transport through a calcium-dependent process. Proc Natl Acad Sci U S A. 104(2007):16922–16927

    Article  PubMed  PubMed Central  Google Scholar 

  • Thibault et al (2014) BDNF-dependent plasticity induced by peripheral inflammation in the primary sensory and the cingulate cortex triggers cold allodynia and reveals a major role for endogenous BDNF as a tuner of the affective aspect of pain. J Neurosci. 34(2014):14739–14751

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tortorolo et al (2005) Neurotrophin overexpression in lower airways of infants with respiratory syncytial virus infection. Am J Respir Crit Care Med. 172(2005):233–237

    Article  PubMed  Google Scholar 

  • Wang, et al (2019) Glucose transporter 1 critically controls microglial activation through facilitating glycolysis. Mol Neurodegener. 14(2019):2

    Article  Google Scholar 

  • Wendel (1981) [44] Glutathione peroxidase, Methods in enzymology. Vol. 77,Elsevier, pp. 325–333

  • Xia et al (2014) Inhaled budesonide protects against chronic asthma-induced neuroinflammation in mouse brain. J Neuroimmunol. 273(2014):53–57

    Article  CAS  PubMed  Google Scholar 

  • Zimmer et al (2017) [(18)F]FDG PET signal is driven by astroglial glutamate transport. Nat Neurosci. 20(2017):393–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, 23038.008562/2010–50) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, 460037/2014–5), Brazil.

Author information

Authors and Affiliations

Authors

Contributions

Géssica Luana Antunes: Conceptualization, Methodology, Formal analysis, Investigation, Writing—original draft, Writing—review & editing, Visualization. Josiane Silva Silveira: Conceptualization, Methodology, Investigation, Visualization. Carolina Luft: Conceptualization, Methodology, Investigation, Visualization. Samuel Greggio: Methodology, Investigation. Gianina Teribele Venturin: Methodology, Investigation. Felipe Schmitz: Investigation, Formal analysis. Helena Biasibetti-Brendler: Investigation, Formal analysis. Francieli Vuolo: Investigation. Felipe Dal-Pizzol: Investigation. Jaderson Costa da Costa: Investigation, Resources. Angela T. S. Wyse: Investigation, Resources, Supervision. Paulo Márcio Pitrez: Conceptualization, Formal analysis, Investigation, Writing—review & editing, Resources. Aline Andrea da Cunha: Conceptualization, Methodology, Formal analysis, Investigation, Writing—original draft, Writing—review & editing, Resources, Supervision, Project administration, Funding acquisition.

Corresponding author

Correspondence to Géssica Luana Antunes.

Ethics declarations

Conflicts of Interest

The authors of this study declare that they have no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antunes, G.L., Silveira, J.S., Luft, C. et al. Airway inflammation induces anxiety-like behavior through neuroinflammatory, neurochemical, and neurometabolic changes in an allergic asthma model. Metab Brain Dis 37, 911–926 (2022). https://doi.org/10.1007/s11011-022-00907-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-022-00907-8

Keywords

Navigation