Skip to main content

Advertisement

Log in

KIAA0101 knockdown inhibits glioma progression and glycolysis by inactivating the PI3K/AKT/mTOR pathway

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

KIAA0101, a proliferating cell nuclear antigen (PCNA)-associated factor, is reported to be overexpressed and identified as an oncogene in several human malignancies. The purpose of this study is to determine the function and possible mechanism of KIAA0101 in glioma progression. KIAA0101 expression in glioma patients was analyzed by GSE50161 and GEPIA datasets. Kaplan-Meier survival analysis was used to evaluate the survival distributions. KIAA0101 expression in glioma cells were detected by qRT-PCR and western blot analyses. The function of KIAA0101 was investigated using MTT, flow cytometry, caspase-3 activity, and Transwell assays. Additionally, glycolytic flux was determined by measuring extracellular acidification rate (ECAR), glucose consumption, lactate production, and adenosine triphosphate (ATP) level. The changes of phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway were detected by western blot analysis. Results showed that KIAA0101 was upregulated in glioma tissues and cells. High KIAA0101 expression predicted a poor prognosis in glioma patients. KIAA0101 depletion impeded cell proliferation, migration, and invasion and triggered apoptosis in glioma cells. KIAA0101 silencing reduced the ECAR, glucose consumption, lactate production, and ATP level in glioma cells, suggesting that KIAA0101 knockdown inhibited glycolysis in glioma cells. Mechanistically, KIAA0101 knockdown inhibited the PI3K/AKT/mTOR pathway. In conclusion, KIAA0101 silencing inhibited glioma progression and glycolysis by inactivating the PI3K/AKT/mTOR pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  • Cappelli C, Pirola I, De Martino E, Gandossi E, Cimino E, Samoni F et al (2013) Thyroglobulin measurement in fine-needle aspiration biopsy of metastatic lymph nodes after rhTSH stimulation. Head Neck 35(1):E21–E23

    Article  Google Scholar 

  • Chang CN, Feng MJ, Chen YL, Yuan RH, Jeng YM (2013) p15(PAF) is an Rb/E2F-regulated S-phase protein essential for DNA synthesis and cell cycle progression. PLoS One 8(4):e61196

    Article  CAS  Google Scholar 

  • Chen H, Xia B, Liu T, Lin M, Lou G (2016) KIAA0101, a target gene of miR-429, enhances migration and chemoresistance of epithelial ovarian cancer cells. Cancer Cell Int 16:74

    Article  Google Scholar 

  • Elstrom RL, Bauer DE, Buzzai M, Karnauskas R, Harris MH, Plas DR et al (2004) Akt stimulates aerobic glycolysis in cancer cells. Cancer Res 64(11):3892–3899

    Article  CAS  Google Scholar 

  • Emanuele MJ, Ciccia A, Elia AE, Elledge SJ (2011) Proliferating cell nuclear antigen (PCNA)-associated KIAA0101/PAF15 protein is a cell cycle-regulated anaphase-promoting complex/cyclosome substrate. Proc Natl Acad Sci U S A 108(24):9845–9850

    Article  CAS  Google Scholar 

  • Ganapathy-Kanniappan S, Geschwind JF (2013) Tumor glycolysis as a target for cancer therapy: progress and prospects. Mol Cancer 12:152

    Article  Google Scholar 

  • Guo M, Li J, Wan D, Gu J (2006) KIAA0101 (OEACT-1), an expressionally down-regulated and growth-inhibitory gene in human hepatocellular carcinoma. BMC Cancer 6:109

    Article  Google Scholar 

  • Hadjipanayis CG, Van Meir EG (2009) Tumor initiating cells in malignant gliomas: biology and implications for therapy. J Mol Med (Berl) 87(4):363–374

    Article  Google Scholar 

  • Han K, Xu X, Chen G, Zeng Y, Zhu J, Du X et al (2014) Identification of a promising PI3K inhibitor for the treatment of multiple myeloma through the structural optimization. J Hematol Oncol 7:9

    Article  Google Scholar 

  • Hosokawa M, Takehara A, Matsuda K, Eguchi H, Ohigashi H, Ishikawa O et al (2007) Oncogenic role of KIAA0101 interacting with proliferating cell nuclear antigen in pancreatic cancer. Cancer Res 67(6):2568–2576

    Article  CAS  Google Scholar 

  • Jain M, Zhang L, Patterson EE, Kebebew E (2011) KIAA0101 is overexpressed, and promotes growth and invasion in adrenal cancer. PLoS One 6(11):e26866

    Article  CAS  Google Scholar 

  • Jansen M, Yip S, Louis DN (2010) Molecular pathology in adult gliomas: diagnostic, prognostic, and predictive markers. Lancet Neurol 9(7):717–726

    Article  CAS  Google Scholar 

  • Kato T, Daigo Y, Aragaki M, Ishikawa K, Sato M, Kaji M (2012) Overexpression of KIAA0101 predicts poor prognosis in primary lung cancer patients. Lung Cancer 75(1):110–118

    Article  Google Scholar 

  • Li X, Wu C, Chen N, Gu H, Yen A, Cao L et al (2016) PI3K/Akt/mTOR signaling pathway and targeted therapy for glioblastoma. Oncotarget 7(22):33440–33450

    Article  Google Scholar 

  • Liu Y, Hu H, Zhang C, Wang H, Zhang W, Wang Z et al (2015) Co-expression of mitosis-regulating genes contributes to malignant progression and prognosis in oligodendrogliomas. Oncotarget 6(35):38257–38269

    Article  Google Scholar 

  • Liu J, Gao L, Liao J, Yang J, Yuan F, Chen Q (2021) Kiaa0101 serves as a prognostic marker and promotes invasion by regulating p38/snail1 pathway in glioma. Ann Transl Med 9(3):260

    Article  CAS  Google Scholar 

  • Long N, Peng S, Chu L, Jia J, Dong M, Liu J (2020) Paclitaxel inhibits the migration of CD133+ U251 malignant glioma cells by reducing the expression of glycolytic enzymes. Exp Ther Med 20(5):72

    Article  CAS  Google Scholar 

  • Lv W, Su B, Li Y, Geng C, Chen N (2018) KIAA0101 inhibition suppresses cell proliferation and cell cycle progression by promoting the interaction between p53 and Sp1 in breast cancer. Biochem Biophys Res Commun 503(2):600–606

    Article  CAS  Google Scholar 

  • Ma J, He Z, Zhang H, Zhang W, Gao S, Ni X (2021) SEC61G promotes breast cancer development and metastasis via modulating glycolysis and is transcriptionally regulated by E2F1. Cell Death Dis 12(6):550

    Article  CAS  Google Scholar 

  • Manfredi GI, Dicitore A, Gaudenzi G, Caraglia M, Persani L, Vitale G (2015) PI3K/Akt/mTOR signaling in medullary thyroid cancer: a promising molecular target for cancer therapy. Endocrine 48(2):363–370

    Article  CAS  Google Scholar 

  • Manning BD, Toker A (2017) AKT/PKB signaling: navigating the network. Cell 169(3):381–405

    Article  CAS  Google Scholar 

  • Miska J, Lee-Chang C, Rashidi A, Muroski ME, Chang AL, Lopez-Rosas A et al (2019) HIF-1α is a metabolic switch between glycolytic-driven migration and oxidative phosphorylation-driven immunosuppression of tregs in glioblastoma. Cell Rep 27(1):226–237e224

    Article  CAS  Google Scholar 

  • Mizutani K, Onda M, Asaka S, Akaishi J, Miyamoto S, Yoshida A et al (2005) Overexpressed in anaplastic thyroid carcinoma-1 (OEATC-1) as a novel gene responsible for anaplastic thyroid carcinoma. Cancer 103(9):1785–1790

    Article  CAS  Google Scholar 

  • Moreno-Sánchez R, Rodríguez-Enríquez S, Marín-Hernández A, Saavedra E (2007) Energy metabolism in tumor cells. FEBS J 274(6):1393–1418

    Article  Google Scholar 

  • Ostrom QT, Cote DJ, Ascha M, Kruchko C, Barnholtz-Sloan JS (2018) Adult glioma incidence and survival by race or ethnicity in the United States from 2000 to 2014. JAMA Oncol 4(9):1254–1262

    Article  Google Scholar 

  • Porporato PE, Payen VL, Pérez-Escuredo J, De Saedeleer CJ, Danhier P, Copetti T et al (2014) A mitochondrial switch promotes tumor metastasis. Cell Rep 8(3):754–766

    Article  CAS  Google Scholar 

  • Ran F, Zhang Y, Shi Y, Liu J, Li H, Ding L et al (2021) miR-1224-3p promotes breast cancer cell proliferation and migration through PGM5-mediated aerobic glycolysis. J Oncol 2021:5529770

  • Samaras V, Piperi C, Korkolopoulou P, Zisakis A, Levidou G, Themistocleous MS et al (2007) Application of the ELISPOT method for comparative analysis of interleukin (IL)-6 and IL-10 secretion in peripheral blood of patients with astroglial tumors. Mol Cell Biochem 304(1–2):343–351

    Article  CAS  Google Scholar 

  • Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324(5930):1029–1033

    Article  CAS  Google Scholar 

  • Wallace DC (2005) Mitochondria and cancer: Warburg addressed. Cold Spring Harb Symp Quant Biol 70:363–374

    Article  CAS  Google Scholar 

  • Wesseling P, Capper D (2018) WHO 2016 Classification of gliomas. Neuropathol Appl Neurobiol 44(2):139–150

    Article  CAS  Google Scholar 

  • Xie C, Yao M, Dong Q (2014) Proliferating cell unclear antigen-associated factor (PAF15): a novel oncogene. Int J Biochem Cell Biol 50:127–131

    Article  CAS  Google Scholar 

  • Yu P, Huang B, Shen M, Lau C, Chan E, Michel J et al (2001) p15(PAF), a novel PCNA associated factor with increased expression in tumor tissues. Oncogene 20(4):484–489

    Article  CAS  Google Scholar 

  • Yuan RH, Jeng YM, Pan HW, Hu FC, Lai PL, Lee PH et al (2007) Overexpression of KIAA0101 predicts high stage, early tumor recurrence, and poor prognosis of hepatocellular carcinoma. Clin Cancer Res 13(18 Pt 1):5368–5376

    Article  CAS  Google Scholar 

  • Zhu K, Diao D, Dang C, Shi L, Wang J, Yan R et al (2013) Elevated KIAA0101 expression is a marker of recurrence in human gastric cancer. Cancer Sci 104(3):353–359

    Article  CAS  Google Scholar 

  • Zhu J, Jin L, Zhang A, Gao P, Dai G, Xu M et al (2020) Coexpression analysis of the EZH2 gene using The Cancer Genome Atlas and Oncomine databases identifies coexpressed genes involved in biological networks in breast cancer, glioblastoma, and prostate cancer. Med Sci Monit 26:e922346

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Kai Wang and Jinxiao Li performed the experiments, analyzed the data, and wrote the paper. Botao Zhou designed and monitored this study.

Ethics declarations.

Corresponding author

Correspondence to Botao Zhou.

Ethics declarations

Conflict of interest

None.

Ethical approval

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Kai Wang and Jinxiao Li are co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Li, J. & Zhou, B. KIAA0101 knockdown inhibits glioma progression and glycolysis by inactivating the PI3K/AKT/mTOR pathway. Metab Brain Dis 37, 489–499 (2022). https://doi.org/10.1007/s11011-021-00863-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-021-00863-9

Keywords

Navigation