Skip to main content

Advertisement

Log in

MicroRNA-216a inhibits neuronal apoptosis in a cellular Parkinson’s disease model by targeting Bax

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

The study found that microRNAs play an important role in Parkinson’s disease (PD). However, the function of MicroRNA-216a (miR-216a) in PD is unclear. Therefore, this experiment aimed to investigate the pathogenesis of miR-216a in PD. Using the toxicity of MPP+ to polyhexamine neurons, apoptosis of SH-SY5Y neuroblastoma cells was induced at different time by MPP+ to construct a stable acute PD cell model. The effects of DNA breakage, mitochondrial membrane potential (A ^ m), caspase-3 activity and nucleosome enrichment on cell apoptosis were detected by flow cytometry, TUNEL. MPP+ increased the toxic effects of dopaminergic neurons in a PD model. The introduction of miR-216a inhibited MPP + -induced neuronal apoptosis. The main manifestations were the decreased levels of positive rate of Tunel cells, caspase 3 activity and nucleosome enrichment factor. Bax was a direct target of miR-216a. In addition, Bax overexpression reversed the effects of miR-216a on neural cells. Bax downstream factors were also involved in miR-216a regulation of MPP + -triggered neuronal apoptosis. miR-216a regulated the progression of PD by regulating Bax, and miR-216a may be a potential target for PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akh A, Filatova EV, Karabanov AV et al (2015) miRNA expression is highly sensitive to a drug therapy in Parkinson's disease. Parkinsonism Relat Disord 21(1):72–74

    Article  Google Scholar 

  • Armstrong RA (2017) Visual dysfunction in Parkinson's disease. Int Rev Neurobiol 134(6):921–946

    Article  PubMed  Google Scholar 

  • Bai X, Tang Y, Yu M, Wu L, Wang J (2017) Downregulation of blood serum microRNA 29 family in patients with Parkinson’s disease. Sci Rep 7(1):5411

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cai X, Jia H, Liu Z et al (2010) Polyhydroxylated fullerene derivative C60(OH)24 prevents mitochondrial dysfunction and oxidative damage in an MPP+-induced cellular model of Parkinson's disease. J Neurosci Res 86(16):3622–3634

    Article  CAS  Google Scholar 

  • Caneda-Ferrón B, Girolamo LAD, Costa T, Beck KE, Layfield R, Billett EE (2010) Assessment of the direct and indirect effects of MPP+ and dopamine on the human proteasome: implications for Parkinson’s disease aetiology. J Neurochem 105(1):225–238

    Article  CAS  Google Scholar 

  • Casas S, García S, Cabrera R, Nanfaro F, Escudero C, Yunes R (2011) Progesterone prevents depression-like behavior in a model of Parkinson's disease induced by 6-hydroxydopamine in male rats. Pharmacol Biochem Behav 99(4):614–618

    Article  PubMed  CAS  Google Scholar 

  • Chang D, Nalls MA, Hallgrímsdóttir IB, Hunkapiller J, van der Brug M, Cai F, International Parkinson's Disease Genomics Consortium, 23andMe Research Team, Kerchner GA, Ayalon G, Bingol B, Sheng M, Hinds D, Behrens TW, Singleton AB, Bhangale TR, Graham RR (2017) A meta-analysis of genome-wide association studies identifies 17 new Parkinson's disease risk loci. Nat Genet 49(10):1511–1516

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chaudhuri KR, Healy DG, Schapira AH (2017) Non-motor symptoms of Parkinson's disease: diagnosis and management. Lancet Neurol 5(3):235–245

    Article  Google Scholar 

  • Da SF, Iop RD, Vietta GG et al (2016) microRNAs involved in Parkinson's disease: a systematic review. Mol Med Rep 14(5):4015–4022

    Article  CAS  Google Scholar 

  • Delavar MR, Baghi M, Yadegari E, Ghaedi K. Bioinformatic Prediction and Introducing of Some Targeting MicroRNAs of Sirt1 and Bcl2 Genes in Model of Parkinson's Disease. Majallah-i dānishgāh-i ̒ulūm-i pizishkī-i Arāk. 2017

  • Dong S, Huiqing Y, Cuicui D et al (2017) Corrigendum to “Predictive value of plasma MicroRNA-216a/b in the diagnosis of esophageal squamous cell carcinoma”. Dis Markers 2017:1–2

  • Dunnewold RJ, Jacobi CE, van Hilten JJ (2018) Quantitative assessment of bradykinesia in patients with Parkinson's disease. J Clin Neurosurg 74(1):107

    Google Scholar 

  • Falco MD, Luca LD, Acanfora F et al (2001) Alteration of the Bcl-2 : Bax Ratio in the placenta as pregnancy proceeds. Histochem J 33(7):421–425

    Article  PubMed  Google Scholar 

  • Falup-Pecurariu C, Diaconu Ş (2017) Sleep dysfunction in Parkinson's disease. Int Rev Neurobiol 47(1):35

    Google Scholar 

  • Guénin S, Mauriat M, Pelloux J, Wuytswinkel OV, Bellini C, Gutierrez L (2009) Normalization of qRT-PCR data: the necessity of adopting a systematic, experimental conditions-specific, validation of references. J Exp Bot 60(2):487–493

    Article  PubMed  CAS  Google Scholar 

  • Harraz MM, Dawson TM, Dawson VL (2012) MicroRNAs in Parkinson's disease. J Chem Neuroanat 46(2):279–284

    Google Scholar 

  • Hartmann A, Michel PP, Troadec JD et al (2001) Is Bax a mitochondrial mediator in apoptotic death of dopaminergic neurons in Parkinson's disease?&nbsp. J Neurochem 76(6):1785–1793

    Article  PubMed  CAS  Google Scholar 

  • He X, Yu Y, Awatramani R, Lu QR (2012) Unwrapping myelination by microRNAs. Neuroscientist 18(1):45

    Article  PubMed  CAS  Google Scholar 

  • Jung YW, Zindl CL, Lai JF, Weaver CT, Chaplin DD (2010) MMP induced by Gr-1+ cells are crucial for recruitment of Th cells into the airways. Eur J Immunol 39(8):2281–2292

    Article  CAS  Google Scholar 

  • Kim C, Ojoamaize E, Spencer B et al (2015) Hypoestoxide reduces neuroinflammation and α-synuclein accumulation in a mouse model of Parkinson’s disease. J Neuroinflammation 12(1):236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kuhar MJ, Yoho LL (2015) CART peptide analysis by Western blotting. Synapse 33(3):163–171

    Article  Google Scholar 

  • Leggio L, Vivarelli S, L'Episcopo F et al (2017) microRNAs in Parkinson's disease: from pathogenesis to novel diagnostic and therapeutic approaches. Int J Mol Sci 18(12):2698

    Article  PubMed Central  CAS  Google Scholar 

  • Lewis TB, Glasgow JN, Harms AS, Standaert DG, Curiel DT (2014) Fiber-modified adenovirus for central nervous system Parkinson's disease gene therapy. Viruses 6(8):3293–3310

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu C, Xi G, Yan P, Zhang W, Tang Y (2004) Effect of scorpion venom on the expression of Bcl-2/Bax in dopaminergic neurons of PD mice. Neuroscientist 24:623–628

    Google Scholar 

  • Marconi R, Lefebvrecaparros D, Bonnet AM, Vidailhet M, Dubois B, Agid Y (2010) Levodopa-induced dyskinesias in Parkinson's disease phenomenology and pathophysiology. Mov Disord 9(1):2–12

    Article  Google Scholar 

  • Mei JM, Niu CS (2014) Effects of CDNF on 6-OHDA-induced apoptosis in PC12 cells via modulation of Bcl-2/Bax and caspase-3 activation. Neurol Sci 35(8):1275–1280

    Article  PubMed  Google Scholar 

  • Menghini R, Casagrande V, Marino A et al (2017) MiR-216a: a link between endothelial dysfunction and autophagy. Cell Death Dis 5(1):e1029

  • Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O'Briant KC, Allen A, Lin DW, Urban N, Drescher CW, Knudsen BS, Stirewalt DL, Gentleman R, Vessella RL, Nelson PS, Martin DB, Tewari M (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 105(30):10513–10518

    Article  PubMed  PubMed Central  Google Scholar 

  • O'Connor L, Strasser A, O'Reilly LA et al (2014) Bim: a novel member of the Bcl-2 family that promotes apoptosis. EMBO J 17(2):384–395

    Article  Google Scholar 

  • Onyango IG (2008) Mitochondrial dysfunction and oxidative stress in Parkinson’s disease. Neurochem Res 33(3):589–597

    Article  PubMed  CAS  Google Scholar 

  • Pang X, Hogan EM, Casserly A, Gao G, Gardner PD, Tapper AR (2014) Dicer expression is essential for adult midbrain dopaminergic neuron maintenance and survival. Mol Cell Neurosci 58(1):22–28

    Article  PubMed  CAS  Google Scholar 

  • Reed JC (2006) Proapoptotic multidomain Bcl-2/Bax-family proteins: mechanisms, physiological roles, and therapeutic opportunities. Cell Death Differ 13(8):1378–1386

    Article  PubMed  CAS  Google Scholar 

  • Rodriguezoroz MC, Jahanshahi M, Krack P et al (2009) Initial clinical manifestations of Parkinson's disease: features and pathophysiological mechanisms. Lancet Neurol 8(12):1128–1139

    Article  CAS  Google Scholar 

  • Singleton AB, Farrer M, Johnson J et al (2003) Alpha-Synuclein locus triplication causes Parkinson's disease. Science 302(5646):841–841

    Article  PubMed  CAS  Google Scholar 

  • Staudt MD, Di SA, Xu H et al (2015) Advances in Neurotrophic factor and cell-based therapies for Parkinson's disease: a mini-review. Gerontology 62(3):371–380

    Article  PubMed  CAS  Google Scholar 

  • Suh DC, Pahwa R, Mallya U (2012) Treatment patterns and associated costs with Parkinson's disease levodopa induced dyskinesia. J Neurol Sci 319(1–2):24–31

    Article  PubMed  Google Scholar 

  • Titzedealmeida R, Titzedealmeida SS (2018) miR-7 replacement therapy in Parkinson's disease. Curr Gene Ther 18(3):143–153

  • Tolosa E, Bottaorfila T, Morató X et al (2018) MicroRNA alterations in iPSC-derived dopaminergic neurons from Parkinson disease patients. Neurobiol Aging 4(5):eaao5553

  • Wang Z, Li Y, Kong D, Ahmad A, Banerjee S, Sarkar FH (2010) Cross-talk between miRNA and notch signaling pathways in tumor development and progression. Cancer Lett 292(2):141–148

    Article  PubMed  CAS  Google Scholar 

  • Wang DB, Uo T, Kinoshita C et al (2017) Bax interacting Factor-1 promotes survival and mitochondrial elongation in neurons. J Neurosci the Official Journal of the Society for Neuroscience 34(7):2674–2683

  • Willis AW, Schootman M, Kung N, Racette BA (2013) Epidemiology and neuropsychiatric manifestations of young onset Parkinson’s disease in the United States. Parkinsonism Relat Disord 19(2):202–206

    Article  PubMed  CAS  Google Scholar 

  • Xiao M, Li J, Li W, Wang Y, Wu F, Xi Y, Zhang L, Ding C, Luo H, Li Y, Peng L, Zhao L, Peng S, Xiao Y, Dong S, Cao J, Yu W (2017) MicroRNAs activate gene transcription epigenetically as an enhancer trigger. RNA Biol 14(10):1326–1334

    Article  PubMed  Google Scholar 

  • Xie Y, Chen Y (2016) microRNAs: emerging targets regulating oxidative stress in the models of Parkinson's disease. Front Neurosci 10

  • Yang B, Gao G, Wang Z, et al (2018) Long non-coding RNA HOTTIP promotes prostate cancer cells proliferation and migration by sponging miR-216a-5p. Biosci Rep 38(5):BSR20180566

  • Zhao N, Jin L, Fei G, Zheng Z, Zhong C (2014) Serum microRNA-133b is associated with low ceruloplasmin levels in Parkinson's disease. Parkinsonism Relat Disord 20(11):1177–1180

    Article  PubMed  Google Scholar 

  • Zou XZ, Liu T, Gong ZC, Hu CP, Zhang Z (2017) MicroRNAs-mediated epithelial-mesenchymal transition in fibrotic diseases. Eur J Pharmacol 796:190–206

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongmei Cao.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Zhang, M., Wei, M. et al. MicroRNA-216a inhibits neuronal apoptosis in a cellular Parkinson’s disease model by targeting Bax. Metab Brain Dis 35, 627–635 (2020). https://doi.org/10.1007/s11011-020-00546-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-020-00546-x

Keywords

Navigation