Skip to main content

Advertisement

Log in

Selective inhibition of intestinal 5-HT improves neurobehavioral abnormalities caused by high-fat diet mice

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Recent literature reported the adverse effects of high-fat diet (HFD) on animal’s emotional and cognitive function. An HFD-induced obesity/hyperlipidemia is accompanied by hormonal and neurochemical changes that can lead to depression. The important roles of gut-derived serotonin (5-Hydroxytryptamine, 5-HT) during this processing have been increasingly focused. Hence, to determine the potential role of gut-derived serotonin, HFD model was established in C57BL/6 mice. At the 4th week of feeding, a pharmacologic inhibitor of gut-derived 5-HT synthesis LP533401 (12.5 mg/kg/day), simvastatin (SIM) (5 mg/kg/day) and benzafibrate (BZ) (75 mg/kg/day) were administered for two weeks by oral gavage. Then, intraperitoneal glucose tolerance test (IPGTT), open field test (OFT), tail suspension test (TST), forced swim test (FST), sucrose preference test (SPT) were used to evaluate metabolic and neurobehavioral performances. Immunohistochemical staining, real-time quantitative PCR and other methods were to explore possible mechanisms. It was found that HFD feeding and drug treatments had some significant effects on neurobehaviors and brain: (1) All administrations reduced the total cholesterol (TC) and triglyceride (TG) parametric abnormality caused by HFD. LP533401 and SIM could significantly improve the impaired glucose tolerance, while BZ had no significant effect. (2) LP533401, SIM and BZ alleviated depression-like behavior of HFD mice in OFT, TST, FST and SPT. (3) LP533401 and SIM reversed the inhibition of Tryptophan Hydroxylase 2, Tph2 gene expression and the activation of Indoleamine 2,3-dioxy-Genase, IDO expression in HFD-treated brain, whereas BZ did not. (4) LP533401, SIM and BZ restored the inhibitory expression of 5-HT1A receptor in HFD hippocampus. Conclusions: Selective inhibition of intestinal 5-HT can attenuate depressive-like behavior, reduce 5-HT1AR impairment in hippocampus and correct abnormal 5-HT pathway in brain while ameliorating HFD-induced glucose intolerance. Further experiments are warranted to define the adequate strategy of targeting peripheral 5-HT for the treatment of such co-morbidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

5-HT:

5-Hydroxytryptamine

AUC:

Area under the curve

BBB:

Blood-brain barrier

BDNF:

Brain derived neurotrophic factor

BZ:

Benzafibrate

CREB:

cAMP-response element binding

DAB:

Diaminobenzidine

EC:

Enterochromaffin

FST:

Forced swim test

GI:

Gastrointestinal

HFD:

High-fat diet

HMG-COA:

Hydroxymethylglutaryl coenzyme A

IDO:

Indoleamine 2,3-dioxy-Genase

IPGTT:

Intraperitoneal glucose tolerance test

IRS-1:

Insulin receptor substrate-1

LPS:

Lipopolysaccharide

LRP5:

LDL-receptor related protein 5

NPY:

Neuropeptide Y

OFT:

Open Field Test

PET:

Positron Emission Computed Tomography

PPARα:

Peroxisome proliferator activated receptor α

SIM:

Simvastatin

SPT:

Sucrose preference test

TC:

total cholesterol

TG:

triglyceride

Tph:

Tryptophan Hydroxylase

TST:

Tail Suspension Test

References

  • André C, Dinel AL et al (2014) Diet-induced obesity progressively alters cognition, anxiety-like behavior and lipopolysaccharide-induced depressive-like behavior: focus on brain indoleamine 2,3-dioxygenase activation. Brain Behav Immun 41(4):10–21

    Article  PubMed  CAS  Google Scholar 

  • Arcego DM, Toniazzo AP et al (2017) Impact of high-fat diet and early stress on depressive-like behavior and hippocampal plasticity in adult male rats. Mol Neurobiol (6):1–14

  • Arnold SE, Lucki I, Brookshire BR, Carlson GC, Browne CA, Kazi H, Bang S, Choi BR, Chen Y, McMullen MF, Kim SF (2014) High fat diet produces brain insulin resistance, synaptodendritic abnormalities and altered behavior in mice. Neurobiol Dis 67(7):79–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Assies J, Pouwer F, Lok A, Mocking RJT, Bockting CLH, Visser I, Abeling NGGM, Duran M, Schene AH (2010) Plasma and erythrocyte fatty acid patterns in patients with recurrent depression: a matched case-control study. PLoS One 5:e10635

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Balduini W, Mazzoni E et al (2003) Prophylactic but not delayed administration of simvastatin protects against long-lasting cognitive and morphological consequences of neonatal hypoxic-ischemic brain injury, reduces interleukin-1beta and tumor necrosis factor-alpha mRNA induction, and does not affect endothelial nitric oxide synthase expression. Stroke 34(8):2007–2012

    Article  CAS  PubMed  Google Scholar 

  • Bertrand PP, Bertrand RL (2010) Serotonin release and uptake in the gastrointestinal tract. Auton Neurosci 153(1–2):47–57

    Article  CAS  PubMed  Google Scholar 

  • Blednov YA, Benavidez JM, Black M, Ferguson LB, Schoenhard GL, Goate AM, Edenberg HJ, Wetherill L, Hesselbrock V, Foroud T, Adron Harris R (2015) Peroxisome proliferator-activated receptors α and γ are linked with alcohol consumption in mice and withdrawal and dependence in humans. Alcohol Clin Exp Res 39(1):136–145

    Article  CAS  PubMed  Google Scholar 

  • Boitard C, Cavaroc A, Sauvant J, Aubert A, Castanon N, Layé S, Ferreira G (2014) Impairment of hippocampal-dependent memory induced by juvenile high-fat diet intake is associated with enhanced hippocampal inflammation in rats. Brain Behav Immun 40:9–17

    Article  CAS  PubMed  Google Scholar 

  • Budni J, Gadotti VM, Kaster MP, Santos ARS, Rodrigues ALS (2007) Role of different types of potassium channels in the antidepressant-like effect of agmatine in the mouse forced swimming test. Eur J Pharmacol 575(1–3):87–93

    Article  CAS  PubMed  Google Scholar 

  • Buydensbranchey L, Branchey M, Hudson J, Fergeson P (2000) Low HDL cholesterol, aggression and altered central serotonergic activity. Psychiatry Res 93:93–102

    Article  CAS  Google Scholar 

  • Can ÖD, Ulupınar E et al (2012) The effect of simvastatin treatment on behavioral parameters, cognitive performance, and hippocampal morphology in rats fed a standard or a high-fat diet. Behav Pharmacol 23(5):582–592

    Article  CAS  PubMed  Google Scholar 

  • Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, Neyrinck AM, Fava F, Tuohy KM, Chabo C, Waget A, Delmee E, Cousin B, Sulpice T, Chamontin B, Ferrieres J, Tanti JF, Gibson GR, Casteilla L, Delzenne NM, Alessi MC, Burcelin R (2007a) Metabolic Endotoxemia initiates obesity and insulin resistance. Diabetes 56(7):1761–1772

    Article  CAS  PubMed  Google Scholar 

  • Cani PD, Neyrinck AM, Fava F, Knauf C, Burcelin RG, Tuohy KM, Gibson GR, Delzenne NM (2007b) Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia 50(11):2374–2383

    Article  CAS  PubMed  Google Scholar 

  • Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM, Burcelin R (2008) Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57(6):1470–1481

    Article  CAS  PubMed  Google Scholar 

  • Carr GV, Lucki I (2011) The role of serotonin receptor subtypes in treating depression: a review of animal studies. Psychopharmacology 213(2–3):265–287

    Article  CAS  PubMed  Google Scholar 

  • Chalon S, Delion-Vancassel S, Belzung C, Guilloteau D, Leguisquet AM, Besnard JC, Durand G (1998) Dietary fish oil affects monoaminergic neurotransmission and behavior in rats. J Nutr 128:2512–2519

    Article  CAS  PubMed  Google Scholar 

  • Cunha MP, Pazini FL, Oliveira Á, Machado DG, Rodrigues ALS (2013) Evidence for the involvement of 5-HT1A receptor in the acute antidepressant-like effect of creatine in mice. Brain Res Bull 95:61–69

    Article  CAS  PubMed  Google Scholar 

  • Dantzer R, O'Connor JC, Freund GG, Johnson RW, Kelley KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9(1):46–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding S, Chi MM, Scull BP, Rigby R, Schwerbrock NMJ, Magness S, Jobin C, Lund PK (2010) High-fat diet: Bacteria interactions promote intestinal inflammation which precedes and correlates with obesity and insulin resistance in mouse. PLoS One 5(8):e12191

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dunbar JA, Reddy P, Davis-Lameloise N, Philpot B, Laatikainen T, Kilkkinen A, Bunker SJ, Best JD, Vartiainen E, Kai Lo S, Janus ED (2008) Depression: an important comorbidity with metabolic syndrome in a general population. Diabetes Care 31(12):2368–2373

    Article  PubMed  PubMed Central  Google Scholar 

  • Elbatsh MM (2015) Antidepressant-like effect of simvastatin in diabetic rats. Can J Physiol Pharmacol 93(8):649–656

    Article  CAS  PubMed  Google Scholar 

  • Ferguson LB, Most D, Blednov YA, Harris RA (2014) PPAR agonists regulate brain gene expression: relationship to their effects on ethanol consumption. Neuropharmacology 86(1):397–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freemantle E, Chen GG, Cruceanu C, Mechawar N, Turecki G (2013) Analysis of oxysterols and cholesterol in prefrontal cortex of suicides. Int J Neuropsychopharmacol 16:1241–1249

    Article  CAS  PubMed  Google Scholar 

  • Gershon MD (2013) 5-Hydroxytryptamine (serotonin) in the gastrointestinal tract. Curr Opin Endocrinol Diabetes Obes 20(1):14–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gul S, Saleem D, Haleem MA, Haleem DJ (2017) Inhibition of hormonal and behavioral effects of stress by tryptophan in rats. Nutr Neurosci:1–9

  • Haleem DJ (2014) Investigations into the involvement of leptin in responses to stress. Behav Pharmacol 25(5–6):384

    CAS  PubMed  Google Scholar 

  • Hao JX, Han M et al (2012) Relationship between intestinal mucosal inflammation and mental disorders in patients with irritable bowel syndrome. Zhonghua Yi Xue Za Zhi 92(32):2247–2251

    PubMed  Google Scholar 

  • Ismail K, Winkley K, Stahl D, Chalder T, Edmonds M (2007) A cohort study of people with diabetes and their first foot ulcer: the role of depression on mortality. Diabetes Care 30(6):1473–1479

    Article  PubMed  Google Scholar 

  • Jr CW, Mague SD, Parow AM, Stoll AL, Cohen BM, Renshaw PF (2005) Antidepressant-like effects of uridine and omega-3 fatty acids are potentiated by combined treatment in rats. Biol Psychiatry 57:343–350

    Article  CAS  Google Scholar 

  • Kan C, Silva N, Golden SH, Rajala U, Timonen M, Stahl D, Ismail K (2013) A systematic review and meta-analysis of the association between depression and insulin resistance. Diabetes Care 36(2):480–489

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaneko H, Goto H (2013) Functional gastrointestinal disorders (FGID): progress in diagnosis and treatments. Topic II. Current status and future prospective of medical care of the representative disorders; 4. Pathophysiology, diagnosis and treatment of irritable bowel syndrome. Nihon Naika Gakkai Zasshi 102(1):70–76

    Article  PubMed  Google Scholar 

  • Karsenty G, Gershon MD (2011) The importance of the gastrointestinal tract in the control of bone mass accrual. Gastroenterology 141(2):439–442

    Article  PubMed  Google Scholar 

  • Kaufman J, Delorenzo C et al (2016) The 5-HT1A receptor in major depressive disorder. Eur Neuropsychopharmacol 26(3):397–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawada T (2013) Comment on: Pan et al. bidirectional association between depression and metabolic syndrome: a systematic review and meta-analysis of epidemiological studies. Diabetes care 2012;35:1171–1180. Diabetes Care 36(2):E27–E27

    Article  PubMed  PubMed Central  Google Scholar 

  • Kellum JM, Donowitz M, Cerel A, Wu J (1984) Acid and isoproterenol cause serotonin release by acting on opposite surfaces of duodenal mucosa. J Surg Res 36(2):172–176

    Article  CAS  PubMed  Google Scholar 

  • Kessler RC, Berglund P, Demler O, Jin R, Koretz D, Merikangas KR, Rush AJ, Walters EE, Wang PS (2003) The epidemiology of major depressive disorder. JAMA 289(23):3095–3105

    Article  PubMed  Google Scholar 

  • Kim DY, Camilleri M (2000) Serotonin: a mediator of the brain-gut connection. Am J Gastroenterol 95(10):2698–2709

    CAS  PubMed  Google Scholar 

  • Kinoshita M, Ono K, Horie T, Nagao K, Nishi H, Kuwabara Y, Takanabe-Mori R, Hasegawa K, Kita T, Kimura T (2010) Regulation of adipocyte differentiation by activation of serotonin (5-HT) receptors 5-HT2AR and 5-HT2CR and involvement of MicroRNA-448-mediated repression of KLF5. Mol Endocrinol 24(10):1978–1987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knol MJ, Twisk JW et al (2006) Depression as a risk factor for the onset of type 2 diabetes mellitus. A meta-analysis. Diabetologia 49(5):837–845

    Article  CAS  PubMed  Google Scholar 

  • Krevvata M, Silva BC, Manavalan JS, Galan-Diez M, Kode A, Matthews BG, Park D, Zhang CA, Galili N, Nickolas TL, Dempster DW, Dougall W, Teruya-Feldstein J, Economides AN, Kalajzic I, Raza A, Berman E, Mukherjee S, Bhagat G, Kousteni S (2014) Inhibition of leukemia cell engraftment and disease progression in mice by osteoblasts. Blood 124(18):2834–2846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishna S, Lin Z, de la Serre CB, Wagner JJ, Harn DH, Pepples LM, Djani DM, Weber MT, Srivastava L, Filipov NM (2016) Time-dependent behavioral, neurochemical, and metabolic dysregulation in female C57BL/6 mice caused by chronic high-fat diet intake. Physiol Behav 157:196–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim SW, Shiue YL, Liao JC, Wee HY, Wang CC, Chio CC, Chang CH, Hu CY, Kuo JR (2017) Simvastatin therapy in the acute stage of traumatic brain injury attenuates brain trauma-induced depression-like behavior in rats by reducing Neuroinflammation in the Hippocampus. Neurocrit Care 26(1):122–132

    Article  CAS  PubMed  Google Scholar 

  • Lin PY, Huang SY, Su KP (2010) A meta-analytic review of polyunsaturated fatty acid compositions in patients with depression. Biol Psychiatry 68:140–147

    Article  CAS  PubMed  Google Scholar 

  • Lin PY, Chang AY et al (2014) Simvastatin treatment exerts antidepressant-like effect in rats exposed to chronic mild stress. Pharmacol Biochem Behav 124(124):174–179

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Yang Q, Sun W, Vogel P, Heydorn W, Yu XQ, Hu Z, Yu W, Jonas B, Pineda R, Calderon-Gay V, Germann M, O'Neill E, Brommage R, Cullinan E, Platt K, Wilson A, Powell D, Sands A, Zambrowicz B, Shi ZC (2008) Discovery and characterization of novel tryptophan hydroxylase inhibitors that selectively inhibit serotonin synthesis in the gastrointestinal tract. J Pharmacol Exp Ther 325(1):47–55

    Article  CAS  PubMed  Google Scholar 

  • Luppino FS, de Wit LM, Bouvy PF, Stijnen T, Cuijpers P, Penninx BWJH, Zitman FG (2010) Overweight, obesity, and depression: a systematic review and meta-analysis of longitudinal studies. Arch Gen Psychiatry 67(3):220

    Article  PubMed  Google Scholar 

  • Lustman PJ, Clouse RE (2005) Depression in diabetic patients: the relationship between mood and glycemic control. J Diabetes Complicat 19(2):113–122

    Google Scholar 

  • Magliano DC, Bargut TC et al (2013) Peroxisome proliferator-activated receptors-alpha and gamma are targets to treat offspring from maternal diet-induced obesity in mice. PLoS One 8(5):e64258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manev H, Manev R (2007) 5-lipoxygenase as a possible biological link between depressive symptoms and atherosclerosis. Arch Gen Psychiatry 64(11):1333

    Article  PubMed  Google Scholar 

  • Manocha M, Shajib MS, Rahman MM, Wang H, Rengasamy P, Bogunovic M, Jordana M, Mayer L, Khan WI (2013) IL-13-mediated immunological control of enterochromaffin cell hyperplasia and serotonin production in the gut. Mucosal Immunol 6(1):146–155

    Article  CAS  PubMed  Google Scholar 

  • Martin AM, Young RL, Leong L, Rogers GB, Spencer NJ, Jessup CF, et al (2017) The diverse metabolic roles of peripheral serotonin. Endocrinology 158(5):1049–1063

  • Oh C-M, Namkung J, Go Y, Shong KE, Kim K, Kim H, Park B-Y, Lee HW, Jeon YH, Song J, Shong M, Yadav VK, Karsenty G, Kajimura S, Lee I-K, Park S, Kim H (2015) Regulation of systemic energy homeostasis by serotonin in adipose tissues. Nat Commun 6 (1). https://doi.org/10.1038/ncomms7794

  • Orth M, Bellosta S (2012) Cholesterol: its regulation and role in central nervous system disorders. Cholesterol 2012:292598

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Papazoglou IK, Jean A, Gertler A, Taouis M, Vacher CM (2015) Hippocampal GSK3β as a molecular link between obesity and depression. Mol Neurobiol 52(1):363–374

    Article  CAS  PubMed  Google Scholar 

  • Porsolt RD, Le Pichon M et al (1977) Depression: a new animal model sensitive to antidepressant treatments. Nature 266(5604):730–732

    Article  CAS  PubMed  Google Scholar 

  • Santos T, Baungratz MM et al (2012) Behavioral interactions of simvastatin and fluoxetine in tests of anxiety and depression. Neuropsychiatr Dis Treat 8(8):413–422

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schachter M (2005) Chemical, pharmacokinetic and pharmacodynamic properties of statins: an update. Fundam Clin Pharmacol 19(1):117–125

    Article  CAS  PubMed  Google Scholar 

  • Schachter J, Martel J et al (2017) Effects of obesity on depression: a role for inflammation and the gut microbiota. Brain Behav Immun

  • Sharma S, Fulton S (2013) Diet-induced obesity promotes depressive-like behaviour that is associated with neural adaptations in brain reward circuitry. Int J Obes 37(3):382–389

    Article  CAS  Google Scholar 

  • Shi ZC, Devasagayaraj A, Gu K, Jin H, Marinelli B, Samala L, Scott S, Stouch T, Tunoori A, Wang Y, Zang Y, Zhang C, Kimball SD, Main AJ, Sun W, Yang Q, Nouraldeen A, Yu XQ, Buxton E, Patel S, Nguyen N, Swaffield J, Powell DR, Wilson A, Liu Q (2008) Modulation of peripheral serotonin levels by novel tryptophan hydroxylase inhibitors for the potential treatment of functional gastrointestinal disorders. J Med Chem 51(13):3684–3687

    Article  CAS  PubMed  Google Scholar 

  • Sierra S, Ramos MC et al (2010) Statins as neuroprotectants: a comparative in vitro study of lipophilicity, blood-brain-barrier penetration, lowering of brain cholesterol, and decrease of neuron cell death. J Alzheimers Dis 23(2):307–318

    Article  CAS  Google Scholar 

  • Skilton MR, Moulin P, Terra JL, Bonnet F (2007) Associations between anxiety, depression, and the metabolic syndrome. Biol Psychiatry 62(11):1251–1257

    Article  CAS  PubMed  Google Scholar 

  • Stockmeier CA (2003) Involvement of serotonin in depression: evidence from postmortem and imaging studies of serotonin receptors and the serotonin transporter. J Psychiatr Res 37(5):357–373

    Article  PubMed  Google Scholar 

  • Stunes AK, Reseland JE, Hauso Ø, Kidd M, Tømmerås K, Waldum HL, Syversen U, Gustafsson BI (2011) Adipocytes express a functional system for serotonin synthesis, reuptake and receptor activation. Diabetes Obes Metab 13(6):551–558

    Article  CAS  PubMed  Google Scholar 

  • Sumara G, Sumara O, Kim JK, Karsenty G (2012) Gut-derived serotonin is a multifunctional determinant to fasting adaptation. Cell Metab 16(5):588–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terasawa T, Aso Y, Omori K, Fukushima M, Momobayashi A, Inukai T (2015) Bezafibrate, a peroxisome proliferator-activated receptor α agonist, decreases circulating CD14(+)CD16(+) monocytes in patients with type 2 diabetes. Transl Res 165(2):336–345

    Article  CAS  PubMed  Google Scholar 

  • Tiemeier H, Van DW et al (2004) Relationship between atherosclerosis and late-life depression: the Rotterdam study. Arch Gen Psychiatry 61(4):369

    Article  PubMed  Google Scholar 

  • Valassi E, Scacchi M, Cavagnini F (2008) Neuroendocrine control of food intake. Nutr Metab Cardiovasc Dis 18(2):158–168

    Article  CAS  PubMed  Google Scholar 

  • Valladolidacebes I, Fole A et al (2013) Spatial memory impairment and changes in hippocampal morphology are triggered by high-fat diets in adolescent mice. Is there a role of leptin? Neurobiol Learn Mem 106(6):18–25

    Article  CAS  Google Scholar 

  • Vancassel S, Leman S, Hanonick L, Denis S, Roger J, Nollet M, Bodard S, Kousignian I, Belzung C, Chalon S (2008) N-3 polyunsaturated fatty acid supplementation reverses stress-induced modifications on brain monoamine levels in mice. J Lipid Res 49:340–348

    Article  CAS  PubMed  Google Scholar 

  • Vanner SJ, Meerveld GV et al (2006) Fundamentals of Neurogastroenterology: basic science. Gastroenterology 130(5):1391–1411

    Article  CAS  Google Scholar 

  • Vevera J, Žukov I, Morcinek T, Papežová H (2003) Cholesterol concentrations in violent and non-violent women suicide attempters. Eur Psychiatry 18:23–27

    Article  CAS  PubMed  Google Scholar 

  • Vevera J, Valeš K, Fišar Z, Hroudová J, Singh N, Stuchlík A, Kačer P, Nekovářová T (2016) The effect of prolonged simvastatin application on serotonin uptake, membrane microviscosity and behavioral changes in the animal model. Physiol Behav 158:112–120

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Steeds J, Motomura Y, Deng Y, Verma-Gandhu M, el-Sharkawy RT, McLaughlin JT, Grencis RK, Khan WI (2007) CD4+ T cell-mediated immunological control of enterochromaffin cell hyperplasia and 5-hydroxytryptamine production in enteric infection. Gut 56(7):949–957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang KW, Chen HJ et al (2014) Simvastatin attenuates the cerebral vascular endothelial inflammatory response in a rat traumatic brain injury. Ann Clin Lab Sci 44(2):145–150

    CAS  PubMed  Google Scholar 

  • Wang J, Liu Y, Li L, Qi Y, Zhang Y, Li L, Teng L, Wang D (2017a) Dopamine and serotonin contribute to Paecilomyces hepiali against chronic unpredictable mild stress induced depressive behavior in Sprague Dawley rats. Mol Med Rep 16(4):5675–5682

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Zhou J et al (2017b) Simvastatin and Bezafibrate ameliorate emotional disorder induced by high fat diet in C57BL/6 mice. Sci Rep 7(1)

  • Wu HL, Pang SL, Liu QZ, Wang Q, Cai MX, Shang J (2014) 5-HT1A/1B receptors as targets for optimizing pigmentary responses in C57BL/6 mouse skin to stress. PLoS One 9:e89663

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu H, Feng J, Lv W, Huang Q, Fu M, Cai M, He Q, Shang J (2016) Developmental neurotoxic effects of percutaneous drug delivery: behavior and neurochemical studies in C57BL/6 mice. PLoS One 11(9):e0162570

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu H, Liu Q, Kalavagunta PK, Huang Q, Lv W, An X, Chen H, Wang T, Heriniaina RM, Qiao T, Shang J (2018) Normal diet vs high fat diet - a comparative study: behavioral and neuroimmunological changes in adolescent male mice. Metab Brain Dis 33:177–190

    Article  CAS  PubMed  Google Scholar 

  • Yadav VK, Ryu JH, Suda N, Tanaka KF, Gingrich JA, Schütz G, Glorieux FH, Chiang CY, Zajac JD, Insogna KL, Mann JJ, Hen R, Ducy P, Karsenty G (2008) Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum. Cell 135(5):825–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav VK, Balaji S, Suresh PS, Liu XS, Lu X, Li Z, Guo XE, Mann JJ, Balapure AK, Gershon MD, Medhamurthy R, Vidal M, Karsenty G, Ducy P (2010) Pharmacological inhibition of gut-derived serotonin synthesis is a potential bone anabolic treatment for osteoporosis. Nat Med 16(3):308–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zemdegs J, Quesseveur G, Jarriault D, Pénicaud L, Fioramonti X, Guiard BP (2016) High-fat diet-induced metabolic disorders impairs 5-HT function and anxiety-like behavior in mice. Br J Pharmacol 173(13):2095–2110

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by One Hundred Person Project of The Chinese Academy of Sciences, Applied Basic Research Programs of Qinghai Province (Y229461211); Science and Technology Plan Projects in Xinjiang (2014AB043); 2017 CMA-L’OREAL China Skin/Hair Grant (No.S2017140917); Prospective Joint Research Project of Jiangsu Province (BY2016078-02); The Open Project of State Key Laboratory of Natural Medicines (No. 3144060130); The National Natural Science Foundation of China (No. 81874331) and Science and Technology Plan Projects in Qinghai Province (2015-ZJ-733).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Shang or Huali Wu.

Ethics declarations

Conflict of interest

The authors have declared that there are no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Q., Liu, Q., Wan, R. et al. Selective inhibition of intestinal 5-HT improves neurobehavioral abnormalities caused by high-fat diet mice. Metab Brain Dis 34, 747–761 (2019). https://doi.org/10.1007/s11011-019-0392-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-019-0392-x

Keywords

Navigation