Skip to main content

Advertisement

Log in

Resveratrol protects the brain against oxidative damage in a dopaminergic animal model of mania

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

The present study aimed to evaluate the effects of resveratrol on behavior and oxidative stress parameters in the brain of rats submitted to the animal model of mania induced by m-AMPH. In the first model (reversal treatment), rats received intraperitoneal (i.p.) injection of saline or m-AMPH (1 mg/kg body weight) once a day for 14 days, and from the 8th to the 14th day, they were orally treated with water or resveratrol (15 mg/kg), once a day. In the second model (maintenance treatment), rats were orally pretreated with water or resveratrol (15 mg/kg) once a day, and from the 8th to the 14th day, they received saline or m-AMPH i.p., once a day. Locomotor and exploratory activities were assessed in the open-field test. Oxidative and nitrosative damage parameters to lipid and proteins were evaluated by TBARS, 4-HNE, carbonyl, and 3-nitrotyrosine in the brain submitted to the experimental models. m-AMPH administration increased the locomotor and exploratory activities; resveratrol was not able to reverse or prevent these manic-like behaviors. Additionally, m-AMPH increased the lipid and protein oxidation and nitrosylation in the frontal cortex, hippocampus, and striatum of rats. However, resveratrol prevented and reversed the oxidative and nitrosative damage to proteins and lipids in all cerebral areas assessed. Since oxidative stress plays an important role in BD pathophysiology, supplementation of resveratrol in BD patients could be regarded as a possible adjunctive treatment with mood stabilizers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmed T, Javed S, Javed S, Tariq A, Šamec D, Tejada S, Nabavi SF, Braidy N, Nabavi SM (2017) Resveratrol and Alzheimer's disease: mechanistic insights. Mol Neurobiol 54(4):2622–2635

    Article  CAS  PubMed  Google Scholar 

  • Andreazza AC, Kauer-Sant'Anna M, Frey BN, Stertz L, Zanotto C, Ribeiro L, Giasson K, Valvassori SS, Réus GZ, Salvador M, Quevedo J, Gonçalves CA, Kapczinski F (2008) Effects of mood stabilizers on DNA damage in an animal model of mania. J Psychiatry Neurosci 33(6):516–524

    PubMed  PubMed Central  Google Scholar 

  • Andreazza AC, Shao L, Wang JF, Young LT (2010) Mitochondrial complex I activity and oxidative damage to mitochondrial proteins in the prefrontal cortex of patients with bipolar disorder. Arch Gen Psychiatry 67(4):360–368

    Article  CAS  PubMed  Google Scholar 

  • Andreazza AC, Wang JF, Salmasi F, Shao L, Young LT (2013) Specific subcellular changes in oxidative stress in prefrontal cortex from patients with bipolar disorder. J Neurochem 127(4):552–561

    Article  CAS  PubMed  Google Scholar 

  • Bastin J, Djouadi F (2016) Resveratrol and myopathy. Nutrients. 8(5):E254

  • Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-Lluch G, Lewis K, Pistell PJ, Poosala S, Becker KG, Boss O, Gwinn D, Wang M, Burrows KB, Gudelsky G, Yamamoto BK (2000) Rapid and transient inhibition of mitochondrial function following methamphetamine or 3, 4-methylenedioxymethamphetamine administration. Eur J Pharmacol 398:11–18

    Article  Google Scholar 

  • Berk M, Dodd S, Kauer-Sant'anna M, Malhi GS, Bourin M, Kapczinski F, Norman T (2007) Dopamine dysregulation syndrome: implications for a dopamine hypothesis of bipolar disorder. Acta Psychiatr Scand Supplementum(434):41–49

    Article  Google Scholar 

  • Broadhurst PL (1960) Experiments in psychogenetics: application of biometrical genetics to the inheritance of behavior. In: Eisenk HJ (ed) Experiments in personality: psychogenetics and psychopharmacology. Routledge & Kegan Paul, London, pp 31–71 

  • Carrizzo A, Forte M, Damato A, Trimarco V, Salzano F, Bartolo M, Maciag A, Puca AA, Vecchione C (2013) Antioxidant effects of resveratrol in cardiovascular, cerebral and metabolic diseases. Food Chem Toxicol 61:215–226

    Article  CAS  PubMed  Google Scholar 

  • Cobb CA, Cole MP (2015) Oxidative and nitrative stress in neurodegen eration. Neurobiol Dis 84:4–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • da-Rosa DD, Valvassori SS, Steckert AV, Ornell F, Ferreira CL, Lopes-Borges J, Varela RB, Dal-Pizzol F, Andersen ML, Quevedo J (2012a) Effects of lithium and valproate on oxidative stress and behavioral changes induced by administration of m-AMPH. Psychiatry Res 198(3):521–526

    Article  CAS  PubMed  Google Scholar 

  • da-Rosa DD, Valvassori SS, Steckert AV, Arent CO, Ferreira CL, Borges JL, Varela RB, Mariot E, Dal-Pizzol F, Andersen ML, Quevedo J (2012b) Differences between dextroamphetamine and methamphetamine: behavioral changes and oxidative damage in brain of Wistar rats. J Neural Transm 119:31–38

    Article  CAS  PubMed  Google Scholar 

  • Dawson VL, Dawson TM (1996) Nitric oxide neurotoxicity. J Chem Neuroanat 10:179–190

    Article  CAS  PubMed  Google Scholar 

  • de Sousa RT, Zarate CA Jr, Zanetti MV, Costa AC, Talib LL, Gattaz WF, Machado-Vieira R (2014) Oxidative stress in early stage bipolar disorder and the association with response to lithium. J Psychiatr Res 50:36–41

    Article  PubMed  Google Scholar 

  • Ellenbroek BA, Cools AR (1990) Animal models with construct validity for schizophrenia. Behav Pharmacol 1(6):469–490

  • Feier G, Valvassori SS, Lopes-Borges J, Varela RB, Bavaresco DV, Scaini G, Morais MO, Andersen ML, Streck EL, Quevedo J (2012) Behavioral changes and brain energy metabolism dysfunction in rats treated with methamphetamine or dextroamphetamine. Neurosci Lett 530:75–79

    Article  CAS  PubMed  Google Scholar 

  • Feier G, Valvassori SS, Varela RB, Resende WR, Bavaresco DV, Morais MO, Scaini G, Andersen ML, Streck EL, Quevedo J (2013) Lithium and valproate modulate energy metabolism in an animal model of mania induced by methamphetamine. Pharmacol Biochem Behav 103:89–96

    Article  CAS  Google Scholar 

  • Floyd RA, Carney JM (1992) Free radical damage to protein and DNA: mechanisms involved and relevant observations on brain undergoing oxidative stress. Ann Neurol 32:22–27

    Article  Google Scholar 

  • Gaballah HH, Zakaria SS, Elbatsh MM, Tahoon NM (2016) Modulatory effects of resveratrol on endoplasmic reticulum stress-associated apoptosis and oxido-inflammatory markers in a rat model of rotenone-induced Parkinson's disease. Chem Biol Interact 251:10–16

    Article  CAS  PubMed  Google Scholar 

  • Garthwaite J (1991) Glutamate, nitric oxide and cell–cell signaling in the nervous system. Trends Neurosci 14:60–67

    Article  CAS  PubMed  Google Scholar 

  • Girbovan C, Morin L, Plamondon H (2012) Repeated resveratrol administration confers lasting protection against neuronal damage but induces dose-related alterations of behavioral impairments after global ischemia. Behav Pharmacol 23:1–13

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B (2001) Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging 18:685–716

    Article  CAS  PubMed  Google Scholar 

  • Innamorato NG, Rojo AI, García-Yague AJ, Yamamoto M, de Ceballos ML, Cuadrado A (2008) Transcription factor Nrf2 is a therapeutic target against brain inflammation. J Immunol 181(1):680–690

  • Jabben N, Arts B, van Os J, Krabbendam L (2010) Neurocognitive functioning as intermediary phenotype and predictor of psychosocial functioning across the psychosis continuum: studies in schizophrenia and bipolar disorder. J Clin Psychiatry 71(6):764–774

  • Kim HK, Andreazza AC, Yeung PY, Isaacs-Trepanier C, Young LT (2014) Oxidation and nitration in dopaminergic areas of the prefrontal cortex from patients with bipolar disorder and schizophrenia. J Psychiatry Neurosci 39(4):276–285

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Naidu PS, Seghal N, Padi SS (2007) Neuroprotective effects of resveratrol against intracerebroventricular colchicine-induced cognitive impairment and oxidative stress in rats. Pharmacology. 79(1):17–26

    Article  CAS  PubMed  Google Scholar 

  • Kunz M, Gama CS, Andreazza AC, Salvador M, Ceresér KM, Gomes FA, Belmonte-de-Abreu PS, Berk M, Kapczinski F (2008) Elevated serum superoxide dismutase and thiobarbituric acid reactive substances in different phases of bipolar disorder and in schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry 32(7):1677–1681

    Article  CAS  Google Scholar 

  • Lappano R, Rosano C, Madeo A, Albanito L, Plastina P, Gabriele B, Forti L, Stivala LA, Iacopetta D, Dolce V, Andò S, Pezzi V, Maggiolini M (2009) Structure-activity relationships of resveratrol and derivatives in breast cancer cells. Mol Nutr Food Res 53(7):845–858

    Article  CAS  PubMed  Google Scholar 

  • Lee JM, Shih AY, Murphy TH, Johnson JA (2003) NF-E2-related factor-2 mediates neuroprotection against mitochondrial complex I inhibitors and increased concentrations of intracellular calcium in primary cortical neurons. J Biol Chem 278(39):37948–37956

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–267

    CAS  PubMed  Google Scholar 

  • Magalhães PVS, Costa MH, Pinheiro RT (2016) Epidemiologia do transtorno bipolar. In: Kapczinski, F; Quevedo, J. editores. Transtorno Bipolar. Teoria e clínica. 2a ed. Porto Alegre: Artmed; pp. 17–27

  • Miller DK, Oelrichs CE, Sabio AS, Sun GY, Simonyi A (2013) Repeated resveratrol treatment attenuates methamphetamine-induced hyperactivity and [3H] dopamine overflow in rodents. Neurosci Lett 554:53–58

    Article  CAS  PubMed  Google Scholar 

  • Moi P, Chan K, Asunis I, Cao A, Kan YW (1994) Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region. Proc Natl Acad Sci U S A 91(21):9926–9930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mokni M, Elkahoui S, Limam F, Amri M, Aouani E (2007) Effect of resveratrol on antioxidant enzyme activities in the brain of healthy rat. Neurochem Res 32(6):981–987

    Article  CAS  PubMed  Google Scholar 

  • Morris-Blanco KC, Cohan CH, Neumann JT, Sick TJ, Perez-Pinzon MA (2014) Protein kinase C epsilon regulates mitochondrial pools of Nampt and NAD following resveratrol and ischemic preconditioning in the rat cortex. J Cereb Blood Flow Metab 34(6):1024–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mur M, Portella MJ, Martinez-Aran A, Pifarre J, Vieta E (2009) Influence of clinical and neuropsychological variables on the psychosocial and occupational outcome of remitted bipolar patients. Psychopathology. 42(3):148–156

    Article  PubMed  Google Scholar 

  • Mustak MS, Hegde ML, Dinesh A, Britton GB, Berrocal R, Subba Rao K, Shamasundar NM, Rao KS, Sathyanarayana Rao TS (2010) Evidence of altered DNA integrity in the brain regions of suicidal victims of bipolar depression. Indian J Psychiatry 52(3):220–228

    Article  PubMed  PubMed Central  Google Scholar 

  • Poon HF, Calabrese V, Scapagnini G, Butterfield DA (2004) Free radicals and brain aging. Clin Geriatr Med 20(2):329–359

    Article  PubMed  Google Scholar 

  • Rege SD, Kumar S, Wilson DN, Tamura L, Geetha T, Mathews ST, Huggins KW, Broderick TL, Babu JR (2013) Resveratrol protects the brain of obese mice from oxidative damage. Oxidative Med Cell Longev 2013(419092):1–7

    Article  CAS  Google Scholar 

  • Robb EL, Stuart JA (2011) Resveratrol interacts with estrogen receptor-β to inhibit cell replicative growth and enhance stress resistance by upregulating mitochondrial superoxide dismutase. Free Radic Biol Med 50(7):821–831

    Article  CAS  PubMed  Google Scholar 

  • Sawda C, Moussa C, Turner RS (2017) Resveratrol for Alzheimer's disease. Ann N Y Acad Sci 1403(1):142–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah ZA, Li RC, Thimmulappa RK, Kensler TW, Yamamoto M, Biswal S, Doré S (2007) Role of reactive oxygen species in the modulation of Nrf2 after ischemic reperfusion injury. Neuroscience. 147:53–59

    Article  CAS  PubMed  Google Scholar 

  • Shang YJ, Qian YP, Liu XD, Dai F, Shang XL, Jia WQ, Liu Q, Fang JG, Zhou B (2009) Radical-scavenging activity and mechanism of resveratrol-oriented analogues: influence of the solvent, radical, and substitution. J Org Chem 74(14):5025–5031

    Article  CAS  PubMed  Google Scholar 

  • Siemann E, Creasy L (1992) Concentration of the phytoalexin resveratrol in wine am. Am J Enol Vitic 43(1):49–52

    CAS  Google Scholar 

  • Sigitova E, Fišar Z, Hroudová J, Cikánková T, Raboch J (2017) Biological hypotheses and biomarkers of bipolar disorder. Psychiatry Clin Neurosci 71(2):77–103

    Article  PubMed  Google Scholar 

  • Singh KC, Kumar A, LaVoie AL, Di Pipette DJ, Singh US (2013) Diabetic complications in pregnancy: is resveratrol a solution? Exp Biol Med 238:482–490

    Article  CAS  Google Scholar 

  • Siwek M, Sowa-Kucma M, Styczen K, Misztak P, Szewczyk B, Topor-Madry R, Nowak G, Dudek D, Rybakowski JK (2016) Thiobarbituric acid-reactive substances: markers of an acute episode and a late stage of bipolar disorder. Neuropsychobiology. 73(2):116–122

    Article  CAS  PubMed  Google Scholar 

  • Stringer D, Marshall D, Pester B, Baker A, Langenecker SA, Angers K, Frazier N, Archer C, Kamali M, McInnis M, Ryan KA (2014) Openness predicts cognitive functioning in bipolar disorder. J Affect Disord 168:51–57

    Article  PubMed  Google Scholar 

  • Sun D, Yue Q, Guo W, Li T, Zhang J, Li G, Liu Z, Sun J (2015) Neuroprotection of resveratrol against neurotoxicity induced by methamphetamine in mouse mesencephalic dopaminergic neurons. Biofactors. 41(4):252–260

    Article  CAS  PubMed  Google Scholar 

  • Tadolini B, Juliano C, Piu L, Franconi F, Cabrini L (2000) Resveratrol inhibition of lipid peroxidation. Free Radic Res 33(1):105–114

    Article  CAS  PubMed  Google Scholar 

  • Tata DA, Yamamoto BK (2007) Interactions between methamphetamine and environmental stress: role of oxidative stress, glutamate and mitochondrial dysfunction. Addiction. 1:49–60

    Article  Google Scholar 

  • Teixeira AL, Salem H, Frey BN, Barbosa IG, Machado-Vieira R (2016) Update on bipolar disorder biomarker candidates. Expert Rev Mol Diagn 16(11):1209–1220

    Article  CAS  PubMed  Google Scholar 

  • Tellone E, Galtieri A, Russo A, Giardina B, Ficarra S (2015) Resveratrol: a focus on several neurodegenerative diseases. Oxidative Med Cell Longev 2015:392169

    Article  CAS  Google Scholar 

  • Tsai MC, Huang TL (2015) Thiobarbituric acid reactive substances (TBARS) is a state biomarker of oxidative stress in bipolar patients in a manic phase. J Affect Disord 173:22–26

    Article  CAS  PubMed  Google Scholar 

  • Valvassori SS, Elias G, de Souza B, Petronilho F, Dal-Pizzol F, Kapczinski F, Trzesniak C, Tumas V, Dursun S, Chagas MH, Hallak JE, Zuardi AW, Quevedo J, Crippa JA (2011) Effects of cannabidiol on amphetamine-induced oxidative stress generation in an animal model of mania. J Psychopharmacol 25(2):274–280

    Article  CAS  PubMed  Google Scholar 

  • Vargas MR, Johnson JA (2009) The Nrf2-ARE cytoprotective pathway in astrocytes. Expert Rev Mol Med 11:e17

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang JF, Shao L, Sun X, Young LT (2009) Increased oxidative stress in the anterior cingulate cortex of subjects with bipolar disorder and schizophrenia. Bipolar Disord 11(5):523–529

    Article  CAS  PubMed  Google Scholar 

  • Whitlock NC, Baek SJ (2012) The anticancer effects of resveratrol: modulation of transcription factors. Nutr Cancer 64(4):493–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie W, Ge X, Li L, Yao A, Wang X, Li M, Gong X, Chu Z, Lu Z, Huang X, Jiao Y, Wang Y, Xiao M, Chen H, Xiang W, Yao P (2018) Resveratrol ameliorates prenatal progestin exposure-induced autism-like behavior through ERβ activation. Mol Autism 9:43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yui K, Kawasaki Y, Yamada H, Ogawa S (2016) Oxidative stress and nitric oxide in autism spectrum disorder and other neuropsychiatric disorders. CNS Neurol Disord Drug Targets 15(5):587–596

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was in part funded by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES - Finance Code 001), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina (FAPESC), Instituto Cérebro e Mente and Universidade do Extremo Sul Catarinense (UNESC). JQ and SSV are CNPq Research Fellows. GCD, JHC and SM are holder of a FAPESC studentship and FFG is holder of a CNPq studentship.

Funding

“This study was funded in part by the following brazillian institutions: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) - Finance Code 001”, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina (FAPESC), Instituto Cérebro e Mente and Universidade do Extremo Sul Catarinense (UNESC), and Associação Fundo de Incetivo à Pesquisa (AFIP).   

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samira S. Valvassori.

Ethics declarations

Conflict of interest

João Quevedo has the following conflicts of interest:

I. Clinical Research Support: Janssen Pharmaceutical (Clinical Trial), Allergan (Clinical Trial)

II. Advisory Boards, Speaker Bureaus, Expert Witness, or Consultant: Daiichi Sankyo (Speaker Bureau)

III. Patent, Equity, or Royalty: Instituto de Neurociencias Dr. Joao Quevedo (Stockholder)

IV. Other: Artmed Editora (Copyright), Artmed Panamericana (Copyright)

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menegas, S., Ferreira, C.L., Cararo, J.H. et al. Resveratrol protects the brain against oxidative damage in a dopaminergic animal model of mania. Metab Brain Dis 34, 941–950 (2019). https://doi.org/10.1007/s11011-019-00408-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-019-00408-1

Keywords

Navigation