Skip to main content
Log in

Effect of coenzyme Q10 supplementation on diabetes induced memory deficits in rats

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

The main objective of current work was to determine the effects of low and high dose supplementation with coenzyme Q10 (CoQ10) on spatial learning and memory in rats with streptozotocin (STZ)-induced diabetes. Male Wistar rats (weighing 220 ± 10) were randomly divided into six groups: (i) Control (Con, n = 8); (ii) Control+ Low dose of CoQ10 (100 mg/kg) (CLD, n = 10); (iii) Control+ high dose of CoQ10 (600 mg/kg) (CHD, n = 10); (iv) Diabetic (D, n = 10); (v) Diabetic + Low dose of CoQ10 (100 mg/kg) (DLD, n = 10); (vi) Diabetic + high dose of CoQ10 (600 mg/kg) (DHD, n = 10). Diabetes was induced by a single intraperitoneal injection of 50 mg/kg STZ. CoQ10 was administered intragastrically by gavage once a day for 90 days. After 90 days, Morris water maze (MWM) task was used to evaluate the spatial learning and memory in rats. Diabetic animals showed a slower rate of acquisition with respect to the control animals [F (1, 51) = 92.81, P < 0.0001, two-way ANOVA]. High dose (but no low dose) supplementation with CoQ10 could attenuate deteriorative effect of diabetes on memory acquisition. Diabetic animals which received CoQ10 (600 mg/kg) show a considerable decrease in escape latency and traveled distance compared to diabetic animals (p < 0.05, two-way ANOVA,). The present study has shown that low dose supplementation with CoQ10 in diabetic rats failed to improve deficits in cognitive function but high dose supplementation with CoQ10 reversed diabetes-related declines in spatial learning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmad M, Saleem S, Ahmad AS, Yousuf S, Ansari MA, Khan MB, Ishrat T, Chaturvedi RK, Agrawal AK, Islam F (2005) Ginkgo biloba affords dose-dependent protection against 6-hydroxydopamine-induced parkinsonism in rats: neurobehavioural, neurochemical and immunohistochemical evidences. J Neurochem 93:94–104

    Article  CAS  PubMed  Google Scholar 

  • Aksenov M, Aksenova M, Butterfield D, Geddes J, Markesbery W (2001) Protein oxidation in the brain in Alzheimer's disease. Neuroscience 103:373–383

    Article  CAS  PubMed  Google Scholar 

  • Arvanitakis Z, Wilson RS, Li Y, Aggarwal NT, Bennett DA (2006) Diabetes and function in different cognitive systems in older individuals without dementia. Diabetes Care 29:560–565

    Article  PubMed  Google Scholar 

  • Asadbegi M, Yaghmaei P, Salehi I, Komaki A, Ebrahim-Habibi A (2017) Investigation of thymol effect on learning and memory impairment induced by intrahippocampal injection of amyloid beta peptide in high fat diet-fed rats. Metab Brain Dis 32:827–839

    Article  CAS  PubMed  Google Scholar 

  • Association AD (2016) 2. Classification and diagnosis of diabetes. Diabetes Care 39:S13–S22

    Article  CAS  Google Scholar 

  • Bashan N, Kovsan J, Kachko I, Ovadia H, Rudich A (2009) Positive and negative regulation of insulin signaling by reactive oxygen and nitrogen species. Physiol Rev 89:27–71

    Article  CAS  PubMed  Google Scholar 

  • Baydas G, Nedzvetskii VS, Nerush PA, Kirichenko SV, Yoldas T (2003) Altered expression of NCAM in hippocampus and cortex may underlie memory and learning deficits in rats with streptozotocin-induced diabetes mellitus. Life Sci 73:1907–1916

    Article  CAS  PubMed  Google Scholar 

  • Beal MF (2004a) Mitochondrial dysfunction and oxidative damage in Alzheimer's and Parkinson's diseases and coenzyme Q 10 as a potential treatment. J Bioenerg Biomembr 36:381–386

    Article  CAS  PubMed  Google Scholar 

  • Beal MF (2004b) Therapeutic effects of coenzyme Q10 in neurodegenerative diseases. In: Methods in enzymology. Elsevier, pp 473–487

  • Beal MF, Henshaw DR, Jenkins BG, Rosen BR, Schulz JB (1994) Coenzyme Q10 and nicotinamide block striatal lesions produced by the mitochondrial toxin malonate. Ann Neurol 36:882–888

    Article  CAS  PubMed  Google Scholar 

  • Berr C, Balansard B, Arnaud J, Roussel AM, Alpérovitch A, Group ES (2000) Cognitive decline is associated with systemic oxidative stress: the EVA study. J Am Geriatr Soc 48:1285–1291

    Article  CAS  PubMed  Google Scholar 

  • Bhagavan HN, Chopra RK (2006) Coenzyme Q10: absorption, tissue uptake, metabolism and pharmacokinetics. Free Radic Res 40:445–453

    Article  CAS  PubMed  Google Scholar 

  • Brands AM, Biessels GJ, De Haan EH, Kappelle LJ, Kessels RP (2005) The effects of type 1 diabetes on cognitive performance: a meta-analysis. Diabetes Care 28:726–735

    Article  PubMed  Google Scholar 

  • Brismar T, Maurex L, Cooray G, Juntti-Berggren L, Lindström P, Ekberg K, Adner N, Andersson S (2007) Predictors of cognitive impairment in type 1 diabetes. Psychoneuroendocrinology 32:1041–1051

    Article  PubMed  Google Scholar 

  • Care IoLARCo, Animals UoL, Resources NIoHDoR (1985) Guide for the care and use of laboratory animals: National Academies

  • Crane FL (2001) Biochemical functions of coenzyme Q10. J Am Coll Nutr 20:591–598

    Article  CAS  PubMed  Google Scholar 

  • Cummings JL (2000) The role of cholinergic agents in the management of behavioural disturbances in Alzheimer's disease. Int J Neuropsychopharmacol 3:S21–S29

    Article  Google Scholar 

  • El-ghoroury EA, Raslan HM, Badawy EA, El-Saaid GS, Agybi MH, Siam I, Salem SI (2009) Malondialdehyde and coenzyme Q10 in platelets and serum in type 2 diabetes mellitus: correlation with glycemic control. Blood Coagul Fibrinolysis 20:248–251

    Article  CAS  PubMed  Google Scholar 

  • Ernster L, Dallner G (1995) Biochemical, physiological and medical aspects of ubiquinone function. Biochim Biophys Acta (BBA) - Mol Basis Dis 1271:195–204

    Article  Google Scholar 

  • Fukui K, Onodera K, Shinkai T, Suzuki S, Urano S (2001) Impairment of learning and memory in rats caused by oxidative stress and aging, and changes in antioxidative defense systems. Ann N Y Acad Sci 928:168–175

    Article  CAS  PubMed  Google Scholar 

  • Furman BL (2015) Streptozotocin-induced diabetic models in mice and rats. Curr Protoc Pharmacol 70:5.47.1–20

  • Groneberg DA, Kindermann B, Althammer M, Klapper M, Vormann J, Littarru GP, Döring F (2005) Coenzyme Q10 affects expression of genes involved in cell signalling, metabolism and transport in human CaCo-2 cells. Int J Biochem Cell Biol 37:1208–1218

    Article  CAS  PubMed  Google Scholar 

  • Hajisoltani R, Karimi SA, Rahdar M, Davoudi S, Borjkhani M, Hosseinmardi N, Behzadi G, Janahmadi M (2019) Hyperexcitability of hippocampal CA1 pyramidal neurons in male offspring of a rat model of autism spectrum disorder (ASD) induced by prenatal exposure to valproic acid: a possible involvement of Ih channel current. Brain Res 1708:188–199

    Article  CAS  PubMed  Google Scholar 

  • Hidaka T, Fujii K, Funahashi I, Fukutomi N, Hosoe K (2008) Safety assessment of coenzyme Q10 (CoQ10). Biofactors 32:199–208

    Article  CAS  PubMed  Google Scholar 

  • Hosoe K, Kitano M, Kishida H, Kubo H, Fujii K, Kitahara M (2007) Study on safety and bioavailability of ubiquinol (Kaneka QH™) after single and 4-week multiple oral administration to healthy volunteers. Regul Toxicol Pharmacol 47:19–28

    Article  CAS  PubMed  Google Scholar 

  • Ishrat T, Khan MB, Hoda MN, Yousuf S, Ahmad M, Ansari MA, Ahmad AS, Islam F (2006) Coenzyme Q10 modulates cognitive impairment against intracerebroventricular injection of streptozotocin in rats. Behav Brain Res 171:9–16

    Article  CAS  PubMed  Google Scholar 

  • Karimi SA, Hosseinmardi N, Janahmadi M, Sayyah M, Hajisoltani R (2017) The protective effect of hydrogen sulfide (H2S) on traumatic brain injury (TBI) induced memory deficits in rats. Brain Res Bull 134:177–182

    Article  CAS  PubMed  Google Scholar 

  • Karimi SA, Salehi I, Shykhi T, Zare S, Komaki A (2019) Effects of exposure to extremely low-frequency electromagnetic fields on spatial and passive avoidance learning and memory, anxiety-like behavior and oxidative stress in male rats. Behav Brain Res 359:630–638

    Article  PubMed  Google Scholar 

  • Kucukatay V, Ağar A, Gumuslu S, Yargiçoğlu P (2007) Effect of sulfur dioxide on active and passive avoidance in experimental diabetes mellitus: relation to oxidant stress and antioxidant enzymes. Int J Neurosci 117:1091–1107

    Article  CAS  PubMed  Google Scholar 

  • Kwong LK, Kamzalov S, Rebrin I, Bayne A-CV, Jana CK, Morris P, Forster MJ, Sohal RS (2002) Effects of coenzyme Q10 administration on its tissue concentrations, mitochondrial oxidant generation, and oxidative stress in the rat. Free Radic Biol Med 33:627–638

    Article  CAS  PubMed  Google Scholar 

  • Lass A, Sohal RS (1998) Electron transport-linked ubiquinone-dependent recycling of α-tocopherol inhibits autooxidation of mitochondrial membranes. Arch Biochem Biophys 352:229–236

    Article  CAS  PubMed  Google Scholar 

  • Lenaz G, Bovina C, Formiggini G, Parenti GC (1999) Mitochondria, oxidative stress, and antioxidant defences. Acta Biochim Pol 46:1–21

    CAS  PubMed  Google Scholar 

  • Littarru GP, Lambrechts P (2011) Coenzyme Q 10: multiple benefits in one ingredient. Oléagineux, Corps gras, Lipides 18:76–82

    Article  Google Scholar 

  • Matthews RT, Yang L, Browne S, Baik M, Beal MF (1998) Coenzyme Q10 administration increases brain mitochondrial concentrations and exerts neuroprotective effects. Proc Natl Acad Sci 95:8892–8897

    Article  CAS  PubMed  Google Scholar 

  • McDonald SR, Sohal RS, Forster MJ (2005) Concurrent administration of coenzyme Q10 and α-tocopherol improves learning in aged mice. Free Radic Biol Med 38:729–736

    Article  CAS  PubMed  Google Scholar 

  • Moradkhani S, Salehi I, Abdolmaleki S, Komaki A (2015) Effect of Calendula officinalis hydroalcoholic extract on passive avoidance learning and memory in streptozotocin-induced diabetic rats. Anc Sci Life 34:157

    Google Scholar 

  • Niedzielska E, Smaga I, Gawlik M, Moniczewski A, Stankowicz P, Pera J, Filip M (2016) Oxidative stress in neurodegenerative diseases. Mol Neurobiol 53:4094–4125

    Article  CAS  PubMed  Google Scholar 

  • Quinzii CM, López LC, Gilkerson RW, Dorado B, Coku J, Naini AB, Lagier-Tourenne C, Schuelke M, Salviati L, Carrozzo R (2010) Reactive oxygen species, oxidative stress, and cell death correlate with level of CoQ10 deficiency. FASEB J 24:3733–3743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rauchova H, Drahota Z, Lenaz G (1995) Function of coenzyme Q in the cell: some biochemical and physiological properties. Physiol Res 44:209–209

    CAS  PubMed  Google Scholar 

  • Rezvani-Kamran A, Salehi I, Shahidi S, Zarei M, Moradkhani S, Komaki A (2017) Effects of the hydroalcoholic extract of Rosa damascena on learning and memory in male rats consuming a high-fat diet. Pharm Biol 55:2065–2073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ristow M (2004) Neurodegenerative disorders associated with diabetes mellitus. J Mol Med 82:510–529

    Article  PubMed  Google Scholar 

  • Saedi E, Gheini MR, Faiz F, Arami MA (2016) Diabetes mellitus and cognitive impairments. World J Diabetes 7:412–422

    Article  PubMed  PubMed Central  Google Scholar 

  • Sandhir R, Sethi N, Aggarwal A, Khera A (2014) Coenzyme Q10 treatment ameliorates cognitive deficits by modulating mitochondrial functions in surgically induced menopause. Neurochem Int 74:16–23

    Article  CAS  PubMed  Google Scholar 

  • Shen Q, Pierce J (2015) Supplementation of coenzyme Q10 among patients with type 2 diabetes mellitus. In: Healthcare: Multidisciplinary Digital Publishing Institute. p 296–309

  • Shetty RA, Forster MJ, Sumien N (2013) Coenzyme Q 10 supplementation reverses age-related impairments in spatial learning and lowers protein oxidation. Age 35:1821–1834

    Article  CAS  PubMed  Google Scholar 

  • Somayajulu M, McCarthy S, Hung M, Sikorska M, Borowy-Borowski H, Pandey S (2005) Role of mitochondria in neuronal cell death induced by oxidative stress; neuroprotection by coenzyme Q10. Neurobiol Dis 18:618–627

    Article  CAS  PubMed  Google Scholar 

  • Sumien N, Heinrich KR, Shetty RA, Sohal RS, Forster MJ (2009) Prolonged intake of coenzyme Q10 impairs cognitive functions in mice. J Nutr 139:1926–1932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiwari V, Kuhad A, Bishnoi M, Chopra K (2009) Chronic treatment with tocotrienol, an isoform of vitamin E, prevents intracerebroventricular streptozotocin-induced cognitive impairment and oxidative-nitrosative stress in rats. Pharmacol Biochem Behav 93:183–189

    Article  CAS  PubMed  Google Scholar 

  • Turunen M, Olsson J, Dallner G (2004) Metabolism and function of coenzyme Q. Biochim. Biophys Acta Biomembr 1660:171–199

    Article  CAS  Google Scholar 

  • Vijayakumar T, Sirisha G, Farzana Begam M, Dhanaraju M (2012) Mechanism linking cognitive impairment and diabetes mellitus. European Journal of Applied Sciences 4:1–5

    CAS  Google Scholar 

  • Volpe CMO, Villar-Delfino PH, dos Anjos PMF, Nogueira-Machado JA (2018) Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death Dis 9:119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zahedi H, Eghtesadi S, Seifirad S, Rezaee N, Shidfar F, Heydari I, Golestan B, Jazayeri S (2014) Effects of CoQ10 supplementation on lipid profiles and glycemic control in patients with type 2 diabetes: a randomized, double blind, placebo-controlled trial. J Diabetes Metab 13:81

    Google Scholar 

  • Zarrinkalam E, Heidarianpour A, Salehi I, Ranjbar K, Komaki A (2016) Effects of endurance, resistance, and concurrent exercise on learning and memory after morphine withdrawal in rats. Life Sci 157:19–24

    Article  CAS  PubMed  Google Scholar 

  • Zarrinkalam E, Ranjbar K, Salehi I, Kheiripour N, Komaki A (2018) Resistance training and hawthorn extract ameliorate cognitive deficits in streptozotocin-induced diabetic rats. Biomed Pharmacother 97:503–510

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the staff of the Neurophysiology Research Center for helping us to carry out this project. This research was supported by a grant (grant number: IR.UMSHA.REC.1394.360) of the Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Komaki.

Ethics declarations

Conflict of interest statement

We confirm that the authors do not have any conflict of interest with this publication.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omidi, G., Karimi, S.A., Rezvani-Kamran, A. et al. Effect of coenzyme Q10 supplementation on diabetes induced memory deficits in rats. Metab Brain Dis 34, 833–840 (2019). https://doi.org/10.1007/s11011-019-00402-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-019-00402-7

Keywords

Navigation