Skip to main content

Advertisement

Log in

Camellia euphlebia exerts its antidepressant-like effect via modulation of the hypothalamic-pituitary-adrenal axis and brain monoaminergic systems

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Camellia euphlebia (family, Theaceae) is a Chinese folk medicine, known for its multiple pharmacological properties. The present study aimed to provide further insights into the therapeutic basis of C. euphlebia using several animal behavioral tests and physiological indexes. Tail suspension test, forced swimming test, open-field test, chronic unpredictable mild stress (CUMS), reversal of reserpine-induced hypothermia and palpebral ptosis, and 5-hydroxytryptophane-induced head-twitch response were used to evaluate the antidepressant effect of aqueous extract of Camellia euphlebia (AEC) on mice. The possible underlying mechanism was explored by investigating the changes associated with several parameters of animal behavior, as well as the changes in monoamine neurotransmitter and stress hormone levels in these animals during the tests. Mice administered AEC at 100 and 200 mg/kg/day doses for 7 days showed significantly reduced immobility duration in forced swimming test and tail suspension test, whilst exhibiting no apparent changes in locomotor activity. Additionally, administration of AEC also effectively antagonized reserpine-induced palpebral ptosis and hypothermia and enhanced 5-hydroxytryptophane-induced head-twitch response. AEC significantly elevated the levels of serotonin, noradrenaline and dopamine in the blood and brain compared to non-treated mice. After 28 days of administration, the maximum AEC dose (100 mg/kg/day) significantly reversed CUMS-induced inhibition of weight gain and sucrose intake, while decreasing the levels of plasma adrenocorticotropic hormone and serum corticosterone. The antidepressant effect of AEC appeared to involve the alteration of hypothalamic-pituitary-adrenal axis and monoaminergic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

Download references

Acknowledgements

This work was supported by the National Public Science and Technology Research Funds Projects of Ocean (201405003), National Natural Science Foundation of China (31400307) and the Cultivation Plan for Youth Agricultural Science and Technology Innovative Talents of Liaoning Province (2014007). This work was partly supported by the Agriculture Science Technology Achievement Transformation Fund (2013GB2B020531).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongping Xu.

Ethics declarations

Conflict of interests

The authors declare that there is no conflict of interests regarding the publication of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, D., Sai, X., Wang, N. et al. Camellia euphlebia exerts its antidepressant-like effect via modulation of the hypothalamic-pituitary-adrenal axis and brain monoaminergic systems. Metab Brain Dis 33, 301–312 (2018). https://doi.org/10.1007/s11011-017-0167-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-017-0167-1

Keywords

Navigation