Skip to main content

Advertisement

Log in

Comparative computational assessment of the pathogenicity of mutations in the Aspartoacylase enzyme

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Aspartoacylase (ASPA) is a zinc-dependent abundant enzyme in the brain, which catalyzes the conversion of N-acetyl aspartate (NAA) into acetate and aspartate. Mutations in the ASPA gene are associated with the development of Canavan disease (CD), leading to the deficiency of ASPA activity. Patients with CD were characterized by degeneration of the white matter of the brain. We reported earlier on two patients with severe form of CD that both had two novel missense mutations in the ASPA: c.427 A > G; p. I143V and c.557 T > A; p. V186D (Zaki et al. 2017a), patient 1 harbored both mutations (p.I143V and p.V186D) in a heterozygous form together with four other mutations, and patient 2 had both mutations in homozygous form. Wijayasinghe et al. (2014) crystallized the 3D structures of four different ASPA mutants (p.K213E, p.Y231C, p.E285A, and p.F295S). In this study, we used in silico prediction methods and molecular dynamics simulation (MDS) to understand the structural impact of all these mutations. Moreover, we used molecular docking (MD) to investigate the binding patterns of the NAA substrate to the native and mutant proteins. Among the mutations, p.E285A (crystallized mutant) was predicted to be the most deleterious for the protein function and the least deleteriousness mutant was the p.I143V (novel mutant). Among the novel mutations, p.V186D was observed to be disruptive for both the zinc binding and NAA binding than the p.I143V. This study provides practical insights on the effect of these mutations on the ASPA function and might serve as a platform for drug design for CD treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ASPA:

Aspartoacylase

CD:

Canavan disease

3D:

three-dimensional

RMSD:

Root Mean Square Deviation

References

  • Ali SK, Sneha P, Priyadharshini Christy J et al (2016) Molecular dynamics-based analyses of the structural instability and secondary structure of the fibrinogen gamma chain protein with the D356V mutation. J Biomol Struct Dyn 35(12):2714–2724

  • Baslow MH, Guilfoyle DN (2013) Canavan disease, a rare early-onset human spongiform leukodystrophy: insights into its genesis and possible clinical interventions. Biochimie 95:946–956

    Article  CAS  PubMed  Google Scholar 

  • Berendsen HJC, Postma JPM, van Gunsteren WF et al (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  • Birnbaum SM, Levintow L, Kingsley RB et al (1952) Specificity of amino acid acylases. J Biol Chem 194:455–470

    CAS  PubMed  Google Scholar 

  • Bitto E, Bingman CA, Wesenberg GE et al (2007) Structure of aspartoacylase, the brain enzyme impaired in Canavan disease. Proc Natl Acad Sci 104:456–461

    Article  CAS  PubMed  Google Scholar 

  • Capriotti E, Fariselli P, Casadio R (2005) I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res 33:W306–W310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capriotti E, Calabrese R, Casadio R (2006) Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information. Bioinformatics 22:2729–2734

    Article  CAS  PubMed  Google Scholar 

  • Capriotti E, Altman RB, Bromberg Y (2013) Collective judgment predicts disease-associated single nucleotide variants. BMC Genomics 14(Suppl 3):S2

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheatham TEI, Miller JL, Fox T et al (1995) Molecular dynamics simulations on solvated biomolecular systems: the particle mesh Ewald method leads to stable trajectories of DNA, RNA, and proteins. J Am Chem Soc 117:4193–4194

    Article  CAS  Google Scholar 

  • Chen C-W, Lin J, Chu Y-W (2013) iStable: off-the-shelf predictor integration for predicting protein stability changes. BMC Bioinf 14(Suppl 2):S5

    Article  Google Scholar 

  • Cheng J, Randall A, Baldi P (2006) Prediction of protein stability changes for single-site mutations using support vector machines. Proteins 62:1125–1132

    Article  CAS  PubMed  Google Scholar 

  • Doss CGP, Alasmar DR, Bux RI et al (2016) Genetic epidemiology of glucose-6-phosphate dehydrogenase deficiency in the Arab world. Sci Rep 6:37284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • George Priya Doss C, Chakraborty C, Narayan V, Thirumal Kumar D (2014) Computational approaches and resources in single amino acid substitutions analysis toward clinical research. Adv Protein Chem Struct Biol 94:365–423

    Article  CAS  PubMed  Google Scholar 

  • Glaser F, Pupko T, Paz I et al (2003) ConSurf: identification of functional regions in proteins by surface-mapping of phylogenetic information. Bioinformatics 19:163–164

    Article  CAS  PubMed  Google Scholar 

  • Guex N, Peitsch, MC, (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis. 18(15):2714–2723

  • Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472

    Article  CAS  Google Scholar 

  • Jakobs C, ten Brink HJ, Langelaar SA et al (1991) Stable isotope dilution analysis of N-acetylaspartic acid in CSF, blood, urine and amniotic fluid: accurate postnatal diagnosis and the potential for prenatal diagnosis of Canavan disease. J Inherit Metab Dis 14:653–660

    Article  CAS  PubMed  Google Scholar 

  • Johnson AD, Handsaker RE, Pulit SL et al (2008) SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap. Bioinformatics 24:2938–2939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaul R, Ping Gao G, Balamurugan K, Matalon R (1993) Cloning of the human Aspart-acylase cDNA and a common missense mutation in Canavan disease. Nat Genet 5:118–123

    Article  CAS  PubMed  Google Scholar 

  • Kocak A, Yildiz M (2017) Docking, molecular dynamics and free energy studies on aspartoacylase mutations involved in Canavan disease. J Mol Graph Model 74:44–53

    Article  CAS  PubMed  Google Scholar 

  • Kots ED, Khrenova MG, Lushchekina SV et al (2016) Modeling the complete catalytic cycle of Aspartoacylase. J PhysChem B 120:4221–4231

    CAS  Google Scholar 

  • Kumar DT, Doss CGP (2016) Investigating the inhibitory effect of Wortmannin in the hotspot mutation at codon 1047 of PIK3CA kinase domain: a molecular docking and molecular dynamics approach. Adv Protein Chem Struct Biol 102:267–297

    Article  CAS  PubMed  Google Scholar 

  • Le Coq J, Pavlovsky A, Malik R et al (2008) Examination of the mechanism of human brain Aspartoacylase through the binding of an intermediate. Analogue Biochemistry 47:3484–3492

    Article  PubMed  Google Scholar 

  • Matalon R, Kaul R, Michals K (1993) Canavan disease: biochemical and molecular studies. J Inherit Metab Dis 16:744–752

    Article  CAS  PubMed  Google Scholar 

  • Matalon R, Michals K, Kaul R (1995) Canavan disease: from spongy degeneration to molecular analysis. J Pediatr 127:511–517

    Article  CAS  PubMed  Google Scholar 

  • Matalon R, Rady PL, Platt KA et al (2000) Knock-out mouse for Canavan disease: a model for gene transfer to the central nervous system. J Gene Med 2:165–175

    Article  CAS  PubMed  Google Scholar 

  • Mi H, Thomas P (2009) PANTHER pathway: an ontology-based pathway database coupled with data analysis tools. Methods Mol Biol 563:123–140

  • Miyamoto S, Kollman PA (1992) Settle: an analytical version of the SHAKE and RATTLE algorithm for rigid water models. J Comput Chem 13:952–962

    Article  CAS  Google Scholar 

  • Moore RA, Le Coq J, Faehnle CR, Viola RE (2003) Purification and preliminary characterization of brain aspartoacylase. Arch Biochem Biophys 413:1–8

    Article  CAS  PubMed  Google Scholar 

  • Mosaeilhy A, Mohamed MM, George Priya Doss C et al (2017) Genotype-phenotype correlation in 18 Egyptian patients with glutaric acidemia type I. Metab Brain Dis. doi:https://doi.org/10.1007/s11011-017-0006-4

  • Ng PC, Henikoff S (2003) SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res 31:3812–3814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Boyle NM, Banck M, James CA et al (2011) Open babel: an open chemical toolbox. J Chem Inf 3:33

    Google Scholar 

  • Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182–7190

    Article  CAS  Google Scholar 

  • Peng Y, Norris J, Schwartz C, Alexov E (2016) Revealing the effects of missense mutations causing Snyder-Robinson syndrome on the stability and dimerization of Spermine synthase. Int J Mol Sci 17:E77

    Article  PubMed  Google Scholar 

  • Pronk S, Páll S, Schulz R et al (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29:845–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salentin S, Schreiber S, Haupt VJ et al (2015) PLIP: fully automated protein-ligand interaction profiler. Nucleic Acids Res 43:W443–W447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shastry BS (2007) SNPs in disease gene mapping, medicinal drug development and evolution. J Hum Genet 52:871–880

    Article  CAS  PubMed  Google Scholar 

  • Sneha P, Doss CG (2016) Molecular dynamics: new frontier in personalized medicine. Adv Protein Chem Struct Biol 102:181–224

  • Sneha P, Kumar Thirumal D, Tanwar H et al (2017a) Structural analysis of G1691S variant in the human Filamin B gene responsible for Larsen syndrome: a comparative computational approach. J Cell Biochem 118:1900–1910

    Article  CAS  Google Scholar 

  • Sneha P, Thirumal Kumar D, George Priya Doss C et al (2017b) Determining the role of missense mutations in the POU domain of HNF1A that reduce the DNA-binding affinity: a computational approach. PLoS One 12(4):e0174953

    Article  Google Scholar 

  • Stefl S, Nishi H, Petukh M et al (2013) Molecular mechanisms of disease-causing missense mutations. J Mol Biol 425:3919–3936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sujitha SP, Kumar DT, Doss CGP et al (2016) DNA repair gene (XRCC1) polymorphism (Arg399Gln) associated with schizophrenia in south Indian population: a genotypic and molecular dynamics study. PLoS One 11:e0147348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Surendran S, Michals-Matalon K, Quast MJ et al (2003) Canavan disease: a monogenic trait with complex genomic interaction. Mol Genet Metab 80:74–80

    Article  CAS  PubMed  Google Scholar 

  • Thirumal Kumar D, George Priya Doss C (2016) Role of E542 and E545 missense mutations of PIK3CA in breast cancer: a comparative computational approach. J Biomol Struct Dyn 35:2745–2757

  • Thirumal Kumar D, Lavanya P, George Priya Doss C et al (2017) A molecular docking and dynamics approach to screen potent inhibitors against fosfomycin resistant enzyme in clinical Klebsiellapneumoniae. J Cell Biochem 45:777–787

    Google Scholar 

  • Türkel N (2015) Stability constants of mixed ligand complexes of nickel(II) with adenine and some amino acids. Bioinorg Chem Appl 2015:374782

    Article  PubMed  PubMed Central  Google Scholar 

  • van Gunsteren WF, Billeter SR, Eising AA, Hünenberger PH, Krüger P, Mark AE, Scott WRP, Tironi IG (1996) Biomolecular simulation: the GROMOS96 manual and user guide. Vdf Hochschulverlag AG an der ETH Zürich, Zürich, pp 1–1042

  • Wang Z, Moult J (2001) SNPs, protein structure, and disease. Hum Mutat 17:263–270

    Article  PubMed  Google Scholar 

  • Wang Z, Moult J (2003) Three-dimensional structural location and molecular functional effects of missense SNPs in the T cell receptor VB domain. Proteins Struct Funct Genet 53:748–757

    Article  CAS  PubMed  Google Scholar 

  • Wijayasinghe YS, Pavlovsky AG, Viola RE (2014) Aspartoacylase catalytic deficiency as the cause of Canavan disease: a structural perspective. Biochemistry 53:4970–4978

    Article  CAS  PubMed  Google Scholar 

  • Zaki OK, Krishnamoorthy N, El Abd HS et al (2017a) Two patients with Canavan disease and structural modeling of a novel mutation. Metab Brain Dis 32:171–177

    Article  PubMed  Google Scholar 

  • Zaki OK, Priya Doss CG, Ali SA et al (2017b) Genotype–phenotype correlation in patients with isovaleric acidemia: comparative structural modelling and computational analysis of novel variants. Hum Mol Genet 12:e0174953

    Google Scholar 

  • Zayed H (2015) Canavan disease: an Arab scenario. Gene. 560(1):9–14

  • Zhang Z, Norris J, Schwartz C et al (2011) In silico and in vitro investigations of the mutability of disease-causing missense mutation sites in Spermine synthase. PLoS One 6:e20373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Hatem Zayed is supported by the Qatar University grant QUUG-CAS-DHS-14/15-3.The authors also thank the VIT University management for their encouragement and provision of facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. George Priya Doss or Hatem Zayed.

Ethics declarations

Conflict of Interests

All authors declare no competing interests.

Electronic supplementary material

ESM 1

(DOCX 75.3 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

George Priya Doss, C., Zayed, H. Comparative computational assessment of the pathogenicity of mutations in the Aspartoacylase enzyme. Metab Brain Dis 32, 2105–2118 (2017). https://doi.org/10.1007/s11011-017-0090-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-017-0090-5

Keywords

Navigation