Skip to main content
Log in

Exposure to ethanol during neurodevelopment modifies crucial offspring rat brain enzyme activities in a region-specific manner

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

The experimental simulation of conditions falling within “the fetal alcohol spectrum disorder” (FASD) requires the maternal exposure to ethanol (EtOH) during crucial neurodevelopmental periods; EtOH has been linked to a number of neurotoxic effects on the fetus, which are dependent upon the extent and the magnitude of the maternal exposure to EtOH and for which very little is known with regard to the exact mechanism(s) involved. The current study has examined the effects of moderate maternal exposure to EtOH (10 % v/v in the drinking water) throughout gestation, or gestation and lactation, on crucial 21-day-old offspring Wistar rat brain parameters, such as the activities of acetylcholinesterase (AChE) and two adenosine triphosphatases (Na+,K+-ATPase and Mg2+-ATPase), in major offspring CNS regions (frontal cortex, hippocampus, hypothalamus, cerebellum and pons). The implemented experimental setting has provided a comparative view of the neurotoxic effects of maternal exposure to EtOH between gestation alone and a wider exposure timeframe that better covers the human third trimester-matching CNS neurodevelopment period (gestation and lactation), and has revealed a CNS region-specific susceptibility of the examined crucial neurochemical parameters to the EtOH exposure schemes attempted. Amongst these parameters, of particular importance is the recorded extensive stimulation of Na+,K+-ATPase in the frontal cortex of the EtOH-exposed offspring that seems to be a result of the deleterious effect of EtOH during gestation. Although this stimulation could be inversely related to the observed inhibition of AChE in the same CNS region, its dependency upon the EtOH-induced modulation of other systems of neurotransmission cannot be excluded and must be further clarified in future experimental attempts aiming to simulate and to shed more light on the milder forms of the FASD-related pathophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. offspring growth retardation has been linked to maternal malnutrition rather than foetal exposure to EtOH per se (Norton and Kotkoskie 1991; Ponnappa and Rubin 2000).

  2. the administration of EtOH in a controlled / forced manner (in contrast to that of diluting it in the drinking water) is certainly a more accurate method of monitoring / quantifying the maternal exposure to EtOH; it is more representative of clinical reality (with regard to dosing) compared with our approach of the constant offering of EtOH-supplemented water, but it is also more stressful for both the dam and the offspring.

  3. it should be noted that between P7 and P21, the rat septal and the hippocampal ChAT activities undergo a statistically-significant increase that is reported to be approximately 5- and 7-fold of those at P7, respectively (Swanson et al. 1995).

  4. by lubrol WX or phospholipase A (Marques and Guerri 1988).

  5. as determined by the non-synaptic plasma membrane ratio of phosphatic acid, phosphatidylinositol or phosphatidylserine against phosphatidylcholine or phosphatidylethanolamine (for more details, see Sun et al. 1984).

References

  • Aloia RC, Paxton J, Daviau JS, van Gelb O, Mlekusch W, Truppe W, Meyer JA, Brauer FS (1985) Effect of chronic alcohol consumption on rat brain microsome lipid composition, membrane fluidity and Na+-K+-ATPase activity. Life Sci 36:1003–1017

    Article  CAS  PubMed  Google Scholar 

  • Barr HM, Bookstein FL, O’Malley KD, Connor PD, Huggins JE, Streissguth AP (2006) Binge drinking during pregnancy as a predictor of psychiatric disorders on the Structured Clinical Interview for DSM-IV in young adult offspring. Am J Psychiatry 163:1061–1065

    Article  PubMed  Google Scholar 

  • Bogdanski DF, Tissari A, Brodie BB (1968) Role of sodium, potassium, ouabain and reserpine in up-take, storage and metabolism of biogenic amines in synaptosomes. Life Sci 7:419–428

    Article  CAS  PubMed  Google Scholar 

  • Bowler K, Tirri R (1974) The temperature characteristics of synaptic membrane ATPases from immature and adult rat brain. J Neurochem 23:611–613

    Article  CAS  PubMed  Google Scholar 

  • Conry J (1990) Neuropsychological deficits in fetal alcohol syndrome and fetal alcohol effects. Alcohol Clin Exp Res 14:650–655

    Article  CAS  PubMed  Google Scholar 

  • Druse MJ, Kelly GM (1985) Maternal ethanol consumption: effect on (Na+-K+)-ATPase in rat offspring. Alcohol 2:667–670

    Article  CAS  PubMed  Google Scholar 

  • Dubois C, Naassila M, Daoust M, Pierrefiche O (2006) Early chronic ethanol exposure in rats disturbs respiratory network activity and increases sensitivity to ethanol. J Physiol 576:297–307

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • EEC Council (1986) EEC Council Directive 86/609/EEC of 24 November 1986 on the approximation of laws, regulations and administrative provisions of the Member States regarding the protection of animals used for experimental and other scientific purposes. Off J Eur Union L358:1–28

    Google Scholar 

  • Ellman GL, Courtney KD, Andres V Jr, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  PubMed  Google Scholar 

  • Fukui Y, Sakata-Haga H (2009) Intrauterine environment-genome interaction and children’s development (1): Ethanol: a teratogen in developing brain. J Toxicol Sci 34:SP273–SP278

    Article  CAS  PubMed  Google Scholar 

  • Gil-Mohapel J, Titterness AK, Patten AR, Taylor S, Ratzlaff A, Ratzlaff T, Helfer J, Christie BR (2014) Prenatal ethanol exposure differentially affects hippocampal neurogenesis in the adolescent and aged brain. Neuroscience 273:174–188

    Article  CAS  PubMed  Google Scholar 

  • Heller M, Burd L (2014) Review of ethanol dispersion, distribution, and elimination from the fetal compartment. Birth Defects Res A Clin Mol Teratol 100:277–283

    Article  CAS  PubMed  Google Scholar 

  • Kalant H, Rangaraj N (1981) Interaction of catecholamines and ethanol on the kinetics of rat brain (Na++K+)-ATPase. Eur J Pharmacol 70:157–166

    Article  CAS  PubMed  Google Scholar 

  • Kojima H, Mineta-Kitajima R, Saitoh-Harada N, Kurihara T, Takahashi Y, Furudate S, Shirataka M, Nakamura K, Tamai Y (1994) Prenatal ethanol exposure affects the activity and mRNA expression of neuronal membrane enzymes in rat offspring. Life Sci 55:1433–1442

    Article  CAS  PubMed  Google Scholar 

  • Koromilas C, Liapi C, Zarros A, Stolakis V, Tsagianni A, Skandali N, Al-Humadi H, Tsakiris S (2014) Effects of experimentally-induced maternal hypothyroidism on crucial offspring rat brain enzyme activities. Int J Dev Neurosci 35:1–6

    Article  CAS  PubMed  Google Scholar 

  • Koromilas C, Tsakiris S, Kalafatakis K, Zarros A, Stolakis V, Kimpizi D, Bimpis A, Tsagianni A, Liapi C (2015) Experimentally-induced maternal hypothyroidism alters crucial enzyme activities in the frontal cortex and hippocampus of the offspring rat. Metab Brain Dis 30:241–246

    Article  CAS  PubMed  Google Scholar 

  • Ledig M, Kopp P, Mandel P (1985) Effect of ethanol on adenosine triphosphatase and enolase activities in rat brain and in cultured nerve cells. Neurochem Res 10:1311–1324

    Article  CAS  PubMed  Google Scholar 

  • Ledig M, Tholey G, Kopp P, Mandel P (1989) An experimental study of fetal alcohol syndrome in the rat: biochemical modifications in brain and liver. Alcohol Alcohol 24:231–240

    CAS  PubMed  Google Scholar 

  • Liapi C, Feskou I, Zarros A, Galanopoulou P, Tsakiris S (2007) Effects of gestational and lactational choline deprivation on brain antioxidant status, acetylcholinesterase, (Na+,K+)- and Mg2+-ATPase activities in offspring rats. Clin Chem Lab Med 45:651–656

  • Liapi C, Stolakis V, Zarros A, Zissis KM, Botis J, Al-Humadi H, Tsakiris S (2013) Gestational exposure to cadmium alters crucial offspring rat brain enzyme activities: the role of cadmium-free lactation. Environ Toxicol Pharmacol 36:835–839

    Article  CAS  PubMed  Google Scholar 

  • Light KE, Serbus DC, Santiago M (1989a) Exposure of rats to ethanol from postnatal days 4 to 8: alterations of cholinergic neurochemistry in the cerebral cortex and corpus striatum at day 20. Alcohol Clin Exp Res 13:29–35

    Article  CAS  PubMed  Google Scholar 

  • Light KE, Serbus DC, Santiago M (1989b) Exposure of rats to ethanol from postnatal days 4 to 8: alterations of cholinergic neurochemistry in the hippocampus and cerebellum at day 20. Alcohol Clin Exp Res 13:686–692

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Mandel P, Ledig M, M’Paria JR (1980) Ethanol and neuronal metabolism. Pharmacol Biochem Behav 13(suppl1):175–182

    Article  CAS  PubMed  Google Scholar 

  • Manzo-Avalos S, Saavedra-Molina A (2010) Cellular and mitochondrial effects of alcohol consumption. Int J Environ Res Public Health 7:4281–4304

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marques A, Guerri C (1988) Effects of ethanol on rat brain (Na+K)ATPase from native and delipidized synaptic membranes. Biochem Pharmacol 37:601–606

  • Mattson SN, Riley EP (1998) A review of the neurobehavioral deficits in children with fetal alcohol syndrome or prenatal exposure to alcohol. Alcohol Clin Exp Res 22:279–294

    Article  CAS  PubMed  Google Scholar 

  • May PA, Baete A, Russo J, Elliott AJ, Blankenship J, Kalberg WO, Buckley D, Brooks M, Hasken J, Abdul-Rahman O, Adam MP, Robinson LK, Manning M, Hoyme HE (2014) Prevalence and characteristics of fetal alcohol spectrum disorders. Pediatrics 134:855–866

    Article  PubMed Central  PubMed  Google Scholar 

  • Meyer EM, Cooper JR (1981) Correlations between Na+,K+-ATPase activity and acetylcholine release in rat cortical synaptosomes. J Neurochem 36:467–475

  • Nio E, Kogure K, Yae T, Onodera H (1991) The effects of maternal ethanol exposure on neurotransmission and second messenger systems: a quantitative autoradiographic study in the rat brain. Brain Res Dev Brain Res 62:51–60

    Article  CAS  PubMed  Google Scholar 

  • Norton S, Kotkoskie LA (1991) Basic animal research. Recent Dev Alcohol 9:95–115

    CAS  PubMed  Google Scholar 

  • Olney JW, Wozniak DF, Farber NB, Jevtovic-Todorovic V, Bittigau P, Ikonomidou C (2002) The enigma of fetal alcohol neurotoxicity. Ann Med 34:109–119

    Article  CAS  PubMed  Google Scholar 

  • Ornoy A, Ergaz Z (2010) Alcohol abuse in pregnant women: effects on the fetus and newborn, mode of action and maternal treatment. Int J Environ Res Public Health 7:364–379

    Article  PubMed Central  PubMed  Google Scholar 

  • Ponnappa BC, Rubin E (2000) Modeling alcohol’s effects on organs in animal models. Alcohol Res Health 24:93–104

    CAS  PubMed  Google Scholar 

  • Rangaraj N, Kalant H (1980) Acute and chronic catecholamine-ethanol interactions on rat brain (Na++K+)-ATPase. Pharmacol Biochem Behav 13(suppl1):183–189

    Article  CAS  PubMed  Google Scholar 

  • Rawat AK (1977) Developmental changes in the brain levels of neurotransmitters as influenced by maternal ethanol consumption in the rat. J Neurochem 28:1175–1182

    Article  CAS  PubMed  Google Scholar 

  • Rudeen PK, Guerri C (1985) The effects of alcohol exposure in utero on acetylcholinesterase, Na/K-ATPase and Ca-ATPase activities in six regions of rat brain. Alcohol Alcohol 20:417–425

    CAS  PubMed  Google Scholar 

  • Sanui H, Rubin H (1982) The role of magnesium in cell proliferation and transformation. In: Boynton AL, McKochan WL, Whitfield JP (eds) Ions, Cell Proliferation and Cancer. Academic Press, New York, pp 517–537

  • Sastry BS, Phillis JW (1977) Antagonism of biogenic amine-induced depression of cerebral cortical neurones by Na+,K+-ATPase inhibitors. Can J Physiol Pharmacol 55:170–179

  • Shea KM, Hewitt AJ, Olmstead MC, Brien JF, Reynolds JN (2012) Maternal ethanol consumption by pregnant guinea pigs causes neurobehavioral deficits and increases ethanol preference in offspring. Behav Pharmacol 23:105–112

    Article  PubMed  Google Scholar 

  • Sokol RJ, Delaney-Black V, Nordstrom B (2003) Fetal alcohol spectrum disorder. JAMA 290:2996–2999

    Article  CAS  PubMed  Google Scholar 

  • Stolakis V, Tsakiris S, Kalafatakis K, Zarros A, Skandali N, Gkanti V, Kyriakaki A, Liapi C (2013) Developmental neurotoxicity of cadmium on enzyme activities of crucial offspring rat brain regions. Biometals 26:1013–1021

    Article  CAS  PubMed  Google Scholar 

  • Stoltenburg-Didinger G, Spohr HL (1983) Fetal alcohol syndrome and mental retardation: spine distribution of pyramidal cells in prenatal alcohol-exposed rat cerebral cortex; a Golgi study. Brain Res 313:119–123

    Article  CAS  PubMed  Google Scholar 

  • Sun GY, Huang HM, Lee DZ, Sun AY (1984) Increased acidic phospholipids in rat brain membranes after chronic ethanol administration. Life Sci 35:2127–2133

    Article  CAS  PubMed  Google Scholar 

  • Swann AC (1984) (Na+,K+)-adenosine triphosphatase regulation by the sympathetic nervous system: effects of noradrenergic stimulation and lesions in vivo. J Pharmacol Exp Ther 228:304–311

  • Swanson DJ, King MA, Walker DW, Heaton MB (1995) Chronic prenatal ethanol exposure alters the normal ontogeny of choline acetyltransferase activity in the rat septohippocampal system. Alcohol Clin Exp Res 19:1252–1260

    Article  CAS  PubMed  Google Scholar 

  • Syapin PJ, Alkana RL (1986) Ethanol-induced inhibition of mouse brain adenosine triphosphatase activities: lack of interaction with norepinephrine in vitro. Alcohol Clin Exp Res 10:635–640

    Article  CAS  PubMed  Google Scholar 

  • Syapin PJ, Chen J, Alkana RL (1985) Effect of norepinephrine on inhibition of mouse brain (Na++K+)-stimulated, (Mg++)-dependent, and (Ca++)-dependent ATPase activities by ethanol. Alcohol 2:145–148

    Article  CAS  PubMed  Google Scholar 

  • Tsakiris S (2001) Effects of L-phenylalanine on acetylcholinesterase and Na+,K+-ATPase activities in adult and aged rat brain. Mech Ageing Dev 122:491–501

  • Tsakiris S, Angelogianni P, Schulpis KH, Behrakis P (2000) Protective effect of L-cysteine and glutathione on rat brain Na+,K+-ATPase inhibition induced by free radicals. Z Naturforsch C 55:271–277

  • West JR, Dewey SL, Cassell MD (1984) Prenatal ethanol exposure alters the post-lesion reorganization (sprouting) of acetylcholinesterase staining in the dentate gyrus of adult rats. Brain Res 314:83–95

    Article  CAS  PubMed  Google Scholar 

  • Workman AD, Charvet CJ, Clancy B, Darlington RB, Finlay BL (2013) Modeling transformations of neurodevelopmental sequences across mammalian species. J Neurosci 33:7368–7383

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zarros A, Liapi C, Al-Humadi H, Almpani M, Stolakis V, Skandali N, Voumvourakis K, Katsouni E, Tsakiris S (2013) Experimentally-induced Wernicke’s encephalopathy modifies crucial rat brain parameters: the importance of Na+,K+-ATPase and a potentially neuroprotective role for antioxidant supplementation. Metab Brain Dis 28:387–396

Download references

Acknowledgments

The authors wish to acknowledge their appreciation to Drs Alexios Bimpis and Hussam Al-Humadi for their assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Charis Liapi or Stylianos Tsakiris.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stolakis, V., Liapi, C., Zarros, A. et al. Exposure to ethanol during neurodevelopment modifies crucial offspring rat brain enzyme activities in a region-specific manner. Metab Brain Dis 30, 1467–1477 (2015). https://doi.org/10.1007/s11011-015-9730-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-015-9730-9

Keywords

Navigation