Skip to main content

Advertisement

Log in

Investigation of inflammatory profile in MSUD patients: benefit of L-carnitine supplementation

  • Research Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Maple Syrup Urine Disease (MSUD) is a metabolic disorder caused by a severe deficiency of the branched-chain α-keto acid dehydrogenase complex activity which leads to the accumulation of branched-chain amino acids (BCAA) leucine (Leu), isoleucine and valine and their respective α-keto-acids in body fluids. The main symptomatology presented by MSUD patients includes ketoacidosis, failure to thrive, poor feeding, apnea, ataxia, seizures, coma, psychomotor delay and mental retardation, but, the neurological pathophysiologic mechanisms are poorly understood. The treatment consists of a low protein diet and a semi-synthetic formula restricted in BCAA and supplemented with essential amino acids. It was verified that MSUD patients present L-carnitine (L-car) deficiency and this compound has demonstrated an antioxidant and anti-inflammatory role in metabolic diseases. Since there are no studies in the literature reporting the inflammatory profile of MSUD patients and the L-car role on the inflammatory response in this disorder, the present study evaluates the effect of L-car supplementation on plasma inflammatory cytokines interleukin-1β (IL-1β), interleukin-6 (IL-6), interferon-gamma (INF-ɣ), and a correlation with malondialdehyde (MDA), as a marker of oxidative damage, and with free L-car plasma levels in treated MSUD patients. Significant increases of IL-1β, IL-6, and INF-ɣ were observed before the treatment with L-car. Moreover, there is a negative correlation between all cytokines tested and L-car concentrations and a positive correlation among the MDA content and IL-1β and IL-6 values. Our data show that L-car supplementation can improve cellular defense against inflammation and oxidative stress in MSUD patients and may represent an additional therapeutic approach to the patients affected by this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

MSUD:

Maple syrup urine disease

BCKAD:

Branched chain α-keto acid dehydrogenase

BCAA:

Branched-chain amino acid

Leu:

Leucine

BCKA:

Branched chain α-keto acids

KIC:

α-ketoisocaproic acid

L-car:

L-carnitine

IL-1β:

Interleukin-1β

IL-6:

Interleukin-6

IFN -ɣ:

Interferon-gamma

MDA:

Malondialdehyde

ROS:

Reactive oxygen species

References

  • Amaral AU, Leipnitz G, Fernandes CG et al (2010) Alpha-ketoisocaproic acid and leucine provokemitochondrial bioenergetic dysfunction in rat brain. Brain Res 1324:75–84

    Article  CAS  PubMed  Google Scholar 

  • Araújo P, Wassermann GF, Tallini K et al (2001) Reduction of large neutral amino acid levels in plasma and brain of hyperleucinemic rats. Neurochem Int 38:529–537

    Article  PubMed  Google Scholar 

  • Barschak AG, Sitta A, Deon M et al (2007) Erythrocyte glutathione peroxidase activity and plasma selenium concentration are reduced in maple syrup urine disease patients during treatment. Int J Dev Neurosci 25:335–338

    Article  CAS  PubMed  Google Scholar 

  • Bridi R, Araldi J, Sgarbi M et al (2003) Induction of oxidative stress in rat brain by the metabolites accumulating in maple syrup urine disease. Int J Dev Neurosci 21:327–332

    Article  CAS  PubMed  Google Scholar 

  • Bridi R, Latini A, Braum CA et al (2005a) Evaluation of the mechanisms involved in leucine-induced oxidative damage in cerebral cortex of young rats. Free Radic Res 39:71–79

    Article  CAS  PubMed  Google Scholar 

  • Bridi R, Braun CA, Zorzi GK et al (2005b) a-Keto acids accumulating in maple syrup urine disease stimulate lipid peroxidation and reduce antioxidant defenses in cerebral cortex from young rats. Metab Brain Dis 20:155–167

    Article  CAS  PubMed  Google Scholar 

  • Brüne B, Dehne N, Grossmann N et al (2013) Redox control of inflammation in macrophages. Antioxid Redox Signal 19:595–637

    Article  PubMed Central  PubMed  Google Scholar 

  • Chace DH, Hillman SL, Van Hove JL, Naylor EW (1997) Rapid diagnosis of MCAD deficiency: quantitative analysis of octanoylcarnitine and other acylcarnitines in newborn blood spots by tandem mass spectrometry. Clin Chem 43:2106–2113

    CAS  PubMed  Google Scholar 

  • Chuang DT (1998) Maple syrup urine disease: it has come a long way. J Pediatr 132:17–23

    Article  Google Scholar 

  • Chuang DT, Shih VE (2001) Maple syrup urine disease (branched- chain ketoaciduria). In: Scriver CR, Beaudt AL, Sly WL, Valle D (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp 1971–2005

    Google Scholar 

  • Cuturic M, Abramson RK, Moran RR et al (2013) Serum carnitine levels and levocarnitine supplementation in institutionalized Huntington’s disease patients. Neurol Sci 34:93–98

    Article  PubMed  Google Scholar 

  • De Simone R, Vissicchio F, Mingarelli C et al (2013) Branched-chain amino acids influence the immune properties of microglial cells and their responsiveness to pro-inflammatory signals. Biochim Biophys Acta 1832:650–659

    Article  PubMed  Google Scholar 

  • Famularo G, De Simone C (1995) A new era for carnitine? Immunol Today 16:211–213

    Article  CAS  PubMed  Google Scholar 

  • Famularo G, De Simone C, Trinchieri V, Mosca L (2004) Carnitines and its congeners: a metabolic pathway to the regulation of immune response and inflammation. Ann N Y Acad Sci 1033:132–138

    Article  CAS  PubMed  Google Scholar 

  • Fontella FU, Gassen E, Pulronik V et al (2002) Stimulation of lipid peroxidation in vitro in rat brain by the metabolites accumulating in maple syrup urine disease. Metab Brain Dis 17:47–54

    Article  CAS  PubMed  Google Scholar 

  • Foster DW (2004) The role of the carnitine system in human metabolism. Ann NY Acad Sci 1033:1–16

    Article  CAS  PubMed  Google Scholar 

  • Frazier DM, Allgeier C, Homer C et al (2014) Nutrition management guideline for maple syrup urine disease: an evidence- and consensus-based approach. Mol Genet Metab 112:210–217

    Article  CAS  PubMed  Google Scholar 

  • Guerreiro G, Mescka CP, Sitta A et al (2015) Urinary biomarkers of oxidative damage in maple syrup urine disease: the l-carnitine role. Int J Dev Neurosci 42:10–14

    Article  CAS  PubMed  Google Scholar 

  • Gulcin I (2006) Antioxidant and antiradical activities of L-carnitine. Life Sci 78:803–811

    Article  PubMed  Google Scholar 

  • Hatamkhani S, Karimzadeh I, Elyasi S et al (2013) Carnitine and sepsis: a review of an old clinical dilemma. J Pharm Pharm Sci 16:414–423

    PubMed  Google Scholar 

  • Hoffmann B, Helbling C, Schadewaldt P, Wendel U (2006) Impact of longitudinal plasma leucine levels on the intellectual outcome in patients with classic MSUD. Pediatr Res 59:17–20

    Article  CAS  PubMed  Google Scholar 

  • Izgüt-Uysal VN, Ağaç A, Derin N (2003) Effect of L-carnitine on carrageenan-induced inflammation in aged rats. Gerontology 49:287–292

    Article  PubMed  Google Scholar 

  • Jouvet P, Rustin P, Taylor DL et al (2000) Branched chain amino acids induce apoptosis in neural cells without mitochondrial membrane depolarization or cytochrome c release: implications for neurological impairment associated with maple syrup urine disease. Mol Biol Cell 11:1919–1932

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Karatepe M (2004) Simultaneous determination of ascorbic acid and free malondialdehyde in human serum by HPLC–UV. LCGC N Am 22:362–365

    CAS  Google Scholar 

  • Lugrin J, Rosenblatt-Velin N, Parapanov R, Liaudet L (2014) The role of oxidative stress during inflammatory process. Biol Chem 395:203–230

    Article  CAS  PubMed  Google Scholar 

  • Malaguarnera M, Vacante M, Motta M et al (2011a) Acetyl-L-carnitine improves cognitive functions in severe hepatic encephalopathy: a randomized and controlled clinical trial. Metab Brain Dis 26:281–289

    Article  CAS  PubMed  Google Scholar 

  • Malaguarnera M, Bella R, Vacante M et al (2011b) Acetyl-L-carnitine reduces depression and improves quality of life in patients with minimal hepatic encephalopathy. Scand J Gastroenterol 46:750–759

    Article  CAS  PubMed  Google Scholar 

  • Mangge H, Becker K, Fuchs D, Gostner JM (2014) Antioxidants: inflammation and cardiovascular disease. World J Cardiol 6:462–477

    Article  PubMed Central  PubMed  Google Scholar 

  • Mescka CP, Wayhs CA, Vanzin CS (2013) Protein and lipid damage in maple syrup urine disease patients: l-carnitine effect. Int J Dev Neurosci 31:21–24

    Article  CAS  PubMed  Google Scholar 

  • Muñoz A, Costa M (2013) Nutritionally mediated oxidative stress and inflammation. Oxidative Med Cell Longev 2013:610950

    Article  Google Scholar 

  • Muralidharan S, Mandrekar P (2013) Cellular stress response and innate immune signaling: integrating pathways in host defense and inflammation. J Leukoc Biol 94:1167–1184

    Article  PubMed Central  PubMed  Google Scholar 

  • Muriach M, Flores-Bellver M, Romero FJ, Barcia JM (2014) Diabetes and the brain: oxidative stress, inflammation, and authophagy. Oxidative Med Cell Longev 2014:102158

    Article  Google Scholar 

  • Pertosa G, Grandaliano G, Simone S et al (2005) Inflammation and carnitine in hemodialysis patients. J Ren Nutr 15:8–12

    Article  PubMed  Google Scholar 

  • Reznick AZ, Kagan VE, Ramsey R et al (1992) Antiradical effects in L-propionyl carnitine protection of the heart against ischemia-reperfusiom injury: the possible role of iron chelation. Arch Biochem Biophys 296:394–401

    Article  CAS  PubMed  Google Scholar 

  • Ribas GS, Vargas CR, Wajner M (2014) L-carnitine supplementation as a potencial antioxidant therapy for inherited neurometabolic disorders. Gene 533:469–476

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro CA, Sgaravatti AM, Rosa RB et al (2008) Inhibition of brain energy metabolism by the branched-chain amino acids accumu- lating in maple syrup urine disease. Neurochem Res 33:114–124

    Article  CAS  PubMed  Google Scholar 

  • Scaini G, Morais MO, Galant LS et al (2014) Coadministration of branched-chain amino acids and lipopolysaccharide causes matrix metalloproteinase activation and blood–brain barrier breakdown. Mol Neurobiol 50:358–367

    Article  CAS  PubMed  Google Scholar 

  • Schönberger S, Schweiger B, Schwahn B et al (2004) Dysmyelination in the brain of adolescents and young adults with maple syrup urine disease. Mol Genet Metab 82:69–75

    Article  PubMed  Google Scholar 

  • Sgaravatti AM, Rosa RB, Schuck PF et al (2003) Inhibition of brain energy metabolism by the α-keto acids accumulating in maple syrup urine disease. Biochim Biophys Acta 1639:232–238

    Article  CAS  PubMed  Google Scholar 

  • Shakeri A, Tabibi H, Hedayati M (2010) Effects of L-carnitine supplement on serum inflammatory cytokines, C-reactive protein, lipoprotein (a), and oxidative stress in hemodialysis patients with Lp (a) hyperlipoproteinemia. Hemodial Int 14:498–504

    Article  PubMed  Google Scholar 

  • Sitta A, Ribas GS, Mescka CP et al (2014) Neurological damage in MSUD: the role of oxidative stress. Cell Mol Neurobiol 34:157–165

    Article  CAS  PubMed  Google Scholar 

  • Strauss KA, Wardley B, Robinson D et al (2010) Classical maple syrup urine disease and brain development: principles of management and formula design. Mol Genet Metab 99:333–345

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Szefel J, Kruszzewski WJ, Ciesielski M et al (2012) L-carnitine and cancer cachexia. II. Effects of lipid emulsion used in total parenteral nutrition on parameters of hemostasis and inflammatory state in L-carnitine deficiency in myocytes. Oncol Rep 28:324–329

    CAS  PubMed  Google Scholar 

  • Tavares RG, Santos CE, Tasca CI et al (2000) Inhibition of glutamate uptake into synaptic vesicles of rat brain by the metabolites accumulating in maple syrup urine disease. J Neurol Sci 181:44–49

    Article  CAS  PubMed  Google Scholar 

  • Winter BK, Fiskum G, Gallo LL (1995) Effects of L-carnitine on serum triglyceride and cytokine levels in rat models of cachexia and septic shock. Br J Cancer 72:1173–1179

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zielke HR, Huang Y, Baab PJ et al (1997) Effect of alpha-ketoisocaproate and leucine on the in vivo oxidation of glutamate and glutamine in the rat brain. Neurochem Res 22:1159–1164

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Very special thanks are dedicated to the physicians at the Medical Genetic Service of Hospital de Clinicas de Porto Alegre, families and patients who participated in this study. This work was supported in part by grants from FAPERGS, CNPq and FIPE/HCPA-Brazil.

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Paula Mescka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mescka, C.P., Guerreiro, G., Donida, B. et al. Investigation of inflammatory profile in MSUD patients: benefit of L-carnitine supplementation. Metab Brain Dis 30, 1167–1174 (2015). https://doi.org/10.1007/s11011-015-9686-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-015-9686-9

Keywords

Navigation