Skip to main content

Advertisement

Log in

Neuroprotective effects of guanosine administration on behavioral, brain activity, neurochemical and redox parameters in a rat model of chronic hepatic encephalopathy

  • Research Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

It is well known that glutamatergic excitotoxicity and oxidative stress are implicated in the pathogenesis of hepatic encephalopathy (HE). The nucleoside guanosine exerts neuroprotective effects through the antagonism against glutamate neurotoxicity and antioxidant properties. In this study, we evaluated the neuroprotective effect of guanosine in an animal model of chronic HE. Rats underwent bile duct ligation (BDL) and 2 weeks later they were treated with i.p. injection of guanosine 7.5 mg/kg once a day for 1-week. We evaluated the effects of guanosine in HE studying several aspects: a) animal behavior using open field and Y-maze tasks; b) brain rhythm changes in electroencephalogram (EEG) recordings; c) purines and glutamate levels in the cerebral spinal fluid (CSF); and d) oxidative stress parameters in the brain. BDL rats presented increased levels of glutamate, purines and metabolites in the CSF, as well as increased oxidative damage. Guanosine was able not only to prevent these effects but also to attenuate the behavioral and EEG impairment induced by BDL. Our study shows the neuroprotective effects of systemic administration of guanosine in a rat model of HE and highlights the involvement of purinergic system in the physiopathology of this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amodio P, Gatta A (2005) Neurophysiological Investigation of Hepatic Encephalopathy. Metab Brain Dis 20(4):369–379

    Article  PubMed  Google Scholar 

  • Apelqvist G, Hindfelt B, Andersson G, Bengtsson F (1999) Altered adaptive behaviour expressed in an open-field paradigm in experimental hepatic encephalopathy. Behav Brain Res 106:165–173

    Article  CAS  PubMed  Google Scholar 

  • Arias N, Méndez M, Fidalgo C, Aller MÁ, Arias J, Arias JL (2013) Int J Mapping metabolic brain activity in three models of hepatic encephalopathy. Int J Hypertens. 2013: ID390872. Epub 2013 Mar 14

  • Beart PM, O’Shea RD (2007) Transporters for l-glutamate: an update on their molecular pharmacology and pathological involvement. Br J Pharmacol 150(1):5–17

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brück J, Görg B, Bidmon HJ, Zemtsova I, Qvartskhava N, Keitel V, Kircheis G, Häussinger D (2011) Locomotor impairment and cerebrocortical oxidative stress in portal vein ligated rats in vivo. J Hepatol 54(2):251–257

    Article  PubMed  Google Scholar 

  • Burnstock G, Fredholm BB, Verkhratsky A (2011) Adenosine and ATP receptors in the brain. Curr Top Med Chem 11(8):973–1011

    CAS  PubMed  Google Scholar 

  • Butterworth RF (2010) Altered glial-neuronal crosstalk: cornerstone in the pathogenesis of hepatic encephalopathy. Neurochem Int 57(4):383–388

    Article  CAS  PubMed  Google Scholar 

  • Butterworth RF, Giguere JF, Michaud J, Lavoie J, Layrargues GP (1987) Ammonia: key factor in the pathogenesis of hepatic encephalopathy. Neurochem Pathol 6:1–12

    Article  CAS  PubMed  Google Scholar 

  • Butterworth RF, Le O, Lavoie J, Szerb JC (1991) Effect of portacaval anastomosis on electrically stimulated release of glutamate from rat hippocampal slices. J Neurochem 56:1481–1484

    Article  CAS  PubMed  Google Scholar 

  • Butterworth RF, Norenberg MD, Felipo V, Ferenci P, Albrecht J et al (2009) Experimental models of hepatic encephalopathy: ISHEN guidelines. Liver Int 29:783–788

    Article  PubMed  Google Scholar 

  • Cauli O, Rodrigo R, Piedrafita B, Boix J, Felipo V (2007) Inflammation and hepatic encephalopathy: ibuprofen restores learning ability in rats with portacaval shunts. Hepatology 46(2):514–9

    Article  CAS  PubMed  Google Scholar 

  • Connell BJ, Di Iorio P, Sayeed I, Ballerini P, Saleh MC, Giuliani P, Saleh TM, Rathbone MP, Su C, Jiang S (2013) Guanosine protects against reperfusion injury in rat brains after ischemic stroke. J Neurosci Res 91(2):262–272

    Article  CAS  PubMed  Google Scholar 

  • Conrad CD, Galea LM, Kuroda Y, McEwen BS (1996) Chronic stress impairs rat spatial memory on the YMaze, and this effect is blocked by tianeptine pretreatment. Behav Neurosci 110:1321–1334

    Article  CAS  PubMed  Google Scholar 

  • Coulter DA, Eid T (2012) Astrocytic regulation of glutamate homeostasis in epilepsy. Glia 60(8):1215–26

    Article  PubMed Central  PubMed  Google Scholar 

  • Draper HH, Hadley M (1990) Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol 186:421–431

    Article  CAS  PubMed  Google Scholar 

  • Eichenbaum H, Dudchenko P, Wood E, Shapiro M, Tanila H (1999) The hippocampus, memory, review and place cells: is it spatial memory or a memory space? Neuron 23:209–226

    Article  CAS  PubMed  Google Scholar 

  • Frizzo MS, Lara DR, Dahm KS, Prokopiuk AS, Swanson R, Souza DO (2001) Activation of glutamate uptake by guanosine in primary astrocyte cultures. NeuroReport 12:879–881

    Article  CAS  PubMed  Google Scholar 

  • Frizzo MS, Soares FA, Dall’Onder LP, Lara DR, Swanson RA, Souza DO (2003) Extracellular conversion of guanine-based purines to guanosine specifically enhances astrocyte glutamate uptake. Brain Res 972:84–89

    Article  CAS  PubMed  Google Scholar 

  • García-Ayllón MS, Cauli O, Silveyra MX, Rodrigo R, Candela A et al (2008) Brain cholinergic impairment in liver failure. Brain 131:2946–2956

    Article  PubMed Central  PubMed  Google Scholar 

  • Gottfried C, Tramontina F, Goncalves D, Goncalves CA, Moriguchi E, Dias RD, Wofchuk ST et al (2002) Glutamate uptake in cultured astrocytes depends on age: a study about the effect of guanosine and the sensitivity to oxidative stress induced by H2O2. Mech Ageing Dev 123(10):1333–1340

    Article  CAS  PubMed  Google Scholar 

  • Izquierdo I, Bevilaqua LR, Rossato JI, Bonini JS, Da Silva WC, Medina JH, Cammarota M (2006) The connection between the hippocampal and the striatal memory systems of the brain: a review of recent findings. Neurotox Res 10(2):113–121

    Article  CAS  PubMed  Google Scholar 

  • Jover R, Rodrigo R, Felipo V, Insausti R, Sáez-Valero J et al (2006) Brain edema and inflammatory activation in bile duct ligated rats with diet-induced hyperammonemia: a model of hepatic encephalopathy in cirrhosis. Hepatology 43:1257–1266

    Article  CAS  PubMed  Google Scholar 

  • Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG (2010) Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol 8(6):e1000412

    Article  PubMed Central  PubMed  Google Scholar 

  • Kim K, Lee SG, Kegelman TP, Su ZZ, Das SK, Dash R, Dasgupta S et al (2011) Role of excitatory amino acid transporter-2 (EAAT2) and glutamate in neurodegeneration: opportunities for developing novel therapeutics. J Cell Physiol 226:2484–2493

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lara DR, Schmidt A, Frizzo MS, Burgos JS, Ramirez G, Souza DO (2001) Effect of orally administered guanosine on seizures and death induced by glutamatergic agents. Brain Res 912:176–180

    Article  CAS  PubMed  Google Scholar 

  • LeBel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5:227–231

    Article  CAS  PubMed  Google Scholar 

  • Llansola M, Rodrigo R, Monfort P, Montoliu C, Kosenko E, Cauli O, Piedrafita B et al (2007) NMDA receptors in hyperammonemia and hepatic encephalopathy. Metab Brain Dis 22:321–335

    Article  CAS  PubMed  Google Scholar 

  • Llansola M, Montoliu C, Cauli O, Hernández-Rabaza V, Agustí A, Cabrera-Pastor A, Giménez-Garzó C, González-Usano A, Felipo V (2013) Chronic hyperammonemia, glutamatergic neurotransmission and neurological alterations. Metab Brain Dis 28(2):151–4

    Article  CAS  PubMed  Google Scholar 

  • Méndez M, Méndez-López M, López L, Aller MA, Arias J, Arias JL (2008) Working memory impairment and reduced hippocampal and prefrontal cortex c-Fos expression in a rat model of cirrhosis. Physiol Behav 95(3):302–7

    Article  PubMed  Google Scholar 

  • Méndez M, Méndez-López M, López L, Aller MA, Arias J, Arias JL (2009) Basal and learning task-related brain oxidative metabolism in cirrhotic rats. Brain Res Bull 78(4–5):195–201

    Article  PubMed  Google Scholar 

  • Mohammad RA, Regal RE, Alaniz C (2012) Combination therapy for the treatment and prevention of hepatic encephalopathy. Ann Pharmacother. 1559–1563

  • Monfort P, Munoz MD, El Ayadi A, Kosenko E, Felipo V (2002) Effects of hyperammonemia and liver failure on glutamatergic neurotransmission. Metab Brain Dis 17:237–250

    Article  CAS  PubMed  Google Scholar 

  • Oliveira DL, Horn JF, Rodrigues JM, Frizzo ME, Moriguchi E, Souza DO, Wofchuk S (2004) Quinolinic acid promotes seizures and decreases glutamate uptake in young rats: reversal by orally administered guanosine. Brain Res 1018(1):48–54

    Article  PubMed  Google Scholar 

  • Packard MG (2009) Anxiety, cognition, and habit: a multiple memory systems perspective. Brain Res 1293(1):121–1

    Article  CAS  PubMed  Google Scholar 

  • Packard MG, Knowlton BJ (2002) Learning and memory functions of the Basal Ganglia. Annu Rev Neurosci 25:563–593

    Article  CAS  PubMed  Google Scholar 

  • Paul CM, Magda G, Abel S (2009) Spatial memory: theoretical basis and comparative review on experimental methods in rodents. Behav Brain Res 203(2):151–164

    Article  PubMed  Google Scholar 

  • Petronilho F, Périco S, Vuolo F, Mina F, Constantino L, Comim C, Quevedo J et al (2012) Protective effects of guanosine against sepsis-induced damage in rat brain and cognitive impairment. Brain Behav Immun 26:904–910

    Article  CAS  PubMed  Google Scholar 

  • Rathbone MP, Saleh TM, Connell BJ, Chang R, Su C, Worley B, Kim M, Jiang S (2011) Systemic administration of guanosine promotes functional and histological improvement following an ischemic stroke in rats. Brain Res 1407:79–89

    Article  CAS  PubMed  Google Scholar 

  • Rodrigo R, Erceg S, Rodriguez-Diaz J, Saez-Valero J, Piedrafita B, Suarez I, Felipo V (2007) Glutamate-induced activation of nitric oxide synthase is impaired in cerebral cortex in vivo in rats with chronic liver failure. J Neurochem 102:51–64

    Article  CAS  PubMed  Google Scholar 

  • Schmidt AP, Souza DO (2010) The role of the guanine-based purinergic system in seizures and epilepsy. Open Neurosci J 4:102–113

    Article  CAS  Google Scholar 

  • Schmidt AP, Lara DR, Maraschin JF, Perla AS, Souza DO (2000) Guanosine and GMP prevent seizures induced by quinolinic acid in mice. Brain Res 864:40–43

    Article  CAS  PubMed  Google Scholar 

  • Schmidt AP, Lara DR, Souza DO (2007) Proposal of a guanine-based purinergic system in the mammalian central nervous system. Pharmacol Ther 116(3):401–416

    Article  CAS  PubMed  Google Scholar 

  • Schmidt AP, Tort AB, Silveira PP, Böhmer AE, Hansel G, Knorr L, Schallenberger C, Dalmaz C, Elisabetsky E, Crestana RH, Lara DR, Souza DO (2009) The NMDA antagonist MK-801 induces hyperalgesia and increases CSF excitatory amino acids in rats: reversal by guanosine. Pharmacol Biochem Behav 91(4):549–553

    Article  CAS  PubMed  Google Scholar 

  • Schmidt AP, Böhmer AE, Schallenberger C, Antunes C, Tavares RG, Wofchuk ST, Elisabetsky E, Souza DO (2010a) Mechanisms involved in the antinociception induced by systemic administration of guanosine in mice. Br J Pharmacol 159(6):1247–1263

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schmidt AP, Paniz L, Schallenberger C, Böhmer AE, Wofchuk ST, Elisabetsky E, Portela et al (2010b) Guanosine Prevents thermal hyperalgesia in a rat model of peripheral mononeuropathic. J Pain 11(2):131–141

    Article  CAS  PubMed  Google Scholar 

  • Schmidt AP, Böhmer AE, Soares FA, Posso IP, Machado SB, Mendes FF, Portela LV, Souza DO (2010c) Changes in purines concentration in the cerebrospinal fluid of patients experiencing pain: a case–control study. Neurosci Lett 474(2):69–73

    Article  CAS  PubMed  Google Scholar 

  • Sheldon AL, Robinson MB (2007) The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention. Neurochem Int 51(6–7):333–355

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stover JF, Lowitzsch K, Kempski OS (1997) Cerebrospinal fluid hypoxanthine, xanthine and uric acid levels may reflect glutamate mediated excitotoxicity in different neurological disease. Neurosci Lett 238:25–28

    Article  CAS  PubMed  Google Scholar 

  • Torres FV, da Silva FM, Antunes C, Kalinine E, Antoniolli E, Portela LV, Souza DO et al (2012) Electrophysiological effects of guanosine and MK-801 in a quinolinic acid-induced seizure model. Exp Neurol 221:296–306

    Article  Google Scholar 

  • Tossman U, Delin A, Eriksson LS, Ungerstedt U (1987) Brain cortical amino acids measured by intracerebral dialysis in portacaval shunted rats. Neurochem Res 12:265–269

    Article  CAS  PubMed  Google Scholar 

  • Vinadé ER, Izquierdo I, Lara DR, Schmidt AP, Souza DO (2004) Oral administration of guanosine impairs inhibitory avoidance performance in rats and mice. Neurobiol Learn Mem 81(2):137–43

    Article  PubMed  Google Scholar 

  • Vogels BA, Maas MA, Daalhuisen J, Quack G, Chamuleau RA (1997a) Memantine, a noncompetitive NMDA receptor antagonist improves hyperammonemia-induced encephalopathy and acute hepatic encephalopathy in rats. Hepatology 25:820–827

    Article  CAS  PubMed  Google Scholar 

  • Vogels BA, van Steynen B, Maas MA, Jörning GG, Chamuleau RA (1997b) The effects of ammonia and portal-systemic shunting on brain metabolism, neurotransmission and intracranial hypertension in hyperammonaemia-induced encephalopathy. J Hepatol 26:387–395

    Article  CAS  PubMed  Google Scholar 

  • Walsh RN, Cummins RA (1976) The open-field test: a critical review. Psychol Bull 83(3):482–504

    Article  CAS  PubMed  Google Scholar 

  • Yonden Z, Aydin M, Kilbas A, Hilmi D, Sutcu R, Delibas N (2010) Effects of ammonia and allopurinol on rat hippocampal NMDA receptors. Cell Biochem Funct 28:159–163

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to the financial support of FINEP Rede Instituto Brasileiro de Neurociência (IBN-Net) # 01.06.08.42-00, CNPq, CAPES, FAPERGS, UFRGS and Instituto Nacional de Ciência e Tecnologia - Neurotoxicidade e Neuroproteção (INCT-EN).

Conflict of interests

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. G. Paniz or M. E. Calcagnotto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paniz, L.G., Calcagnotto, M.E., Pandolfo, P. et al. Neuroprotective effects of guanosine administration on behavioral, brain activity, neurochemical and redox parameters in a rat model of chronic hepatic encephalopathy. Metab Brain Dis 29, 645–654 (2014). https://doi.org/10.1007/s11011-014-9548-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-014-9548-x

Keywords

Navigation