Skip to main content

Advertisement

Log in

Pluralistic roles for glycogen in the central and peripheral nervous systems

  • Research Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Glycogen is present in the mammalian nervous system, but at concentrations of up to one hundred times lower than those found in liver and skeletal muscle. This relatively low concentration has resulted in neglect of assigning a role(s) for brain glycogen, but in the last 15 years enormous progress has been made in revealing the multifaceted roles that glycogen plays in the mammalian nervous system. Initial studies highlighted a role for glycogen in supporting neural elements (neurons and axons) during aglycemia, where glycogen supplied supplementary energy substrate in the form of lactate to fuel neural oxidative metabolism. The appropriate enzymes and membrane bound transporters have been localized to cellular locations consistent with astrocyte to neuron energy substrate shuttling. A role for glycogen in supporting the induction of long term potential (LTP) in the hippocampus has recently been described, where glycogen is metabolized to lactate and shuttled to neurons via the extracellular space by monocarboxylate transporters, where it plays an integral role in the induction process of LTP. This is the first time that glycogen has been assigned a role in a distinct, complex physiological brain function, where the lack of glycogen, in the presence of normoglycemia, results in disturbance of the function. The signalling pathway that alerts astrocytes to increased neuronal activity has been recently described, highlighting a pivotal role for increased extracellular potassium ([K+]o) that routinely accompanies increased neural activity. An astrocyte membrane bound bicarbonate transporter is activated by the [K+]o, the resulting increase in intracellular bicarbonate alkalizing the cell’s interior and activating soluble adenyl cyclase (sAC). The sAC promotes glycogenolysis via increases in cyclic AMP, ultimately producing lactate, which is shuttled out of the astrocyte and presumably taken up by neurons from the extracellular space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allaman I, Pellerin L, Magistretti PJ (2000) Protein targeting to glycogen mRNA expression is stimulated by noradrenaline in mouse cortical astrocytes. Glia 30:382–391

    Article  CAS  PubMed  Google Scholar 

  • Araque A, Parpura V, Sanzgiri RP, Haydon PG (1998) Glutamate-dependent astrocyte modulation of synaptic transmission between cultured hippocampal neurons. Eur J Neurosci 10:2129–2142

    Article  CAS  PubMed  Google Scholar 

  • Baltan Tekkök S, Brown AM, Ransom BR (2003) Axon function persists during anoxia in mammalian white matter. J Cereb Blood Flow Metab 23:1340–1348

    Google Scholar 

  • Baltan Tekkök S, Brown AM, Westenbroek RE, Pellerin L, Ransom BR (2005) Transfer of glycogen-derived lactate from astrocytes to axons via specific monocarboxylate transporters supports mouse optic nerve activity. J Neurosci Res 81:644–652

    Article  Google Scholar 

  • Bliss TV, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232:331–356

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bouzier-Sore AK, Voisin P, Canioni P, Magistretti PJ, Pellerin L (2003) Lactate is a preferential oxidative energy substrate over glucose for neurons in culture. J Cereb Blood Flow Metab 23:1298–1306

    Article  CAS  PubMed  Google Scholar 

  • Brown AM (2004) Brain glycogen re-awakened. J Neurochem 89:537–552

    Article  CAS  PubMed  Google Scholar 

  • Brown AM, Wender R, Ransom BR (2001) Ionic mechanisms of aglycemic axon injury in mammalian central white matter. J Cereb Blood Flow Metab 21:385–395

    Article  CAS  PubMed  Google Scholar 

  • Brown AM, Tekkok SB, Ransom BR (2003a) Glycogen regulation and functional role in mouse white matter. J Physiol 549:501–512

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brown AM, Baltan Tekkök S, Ransom BR (2003b) Glycogen regulation and functional role in mouse white matter. J Physiol 549(2):501–512

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brown AM, Sickmann HM, Fosgerau K, Lund TM, Schousboe A, Waagepetersen HS, Ransom BR (2005) Astrocyte glycogen metabolism is required for neural activity during aglycemia or intense stimulation in mouse white matter. J Neurosci Res 79:74–80

    Article  CAS  PubMed  Google Scholar 

  • Brown AM, Evans RD, Black J, Ransom BR (2012) Schwann cell glycogen selectively supports myelinated axon function. Ann Neurol 72:406–418

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cataldo AM, Broadwell RD (1986) Cytochemical identification of cerebral glycogen and glucose-6-phosphatase activity under normal and experimental conditions. I. Neurons and glia. J Electron Microsc Tech 3:413–437

    Article  CAS  Google Scholar 

  • Champe PC, Harvey R (2008) Biochemistry, 4th edn. Lippincott Williams & Wilkins, Baltimore

    Google Scholar 

  • Choi HB, Gordon GR, Zhou N, Tai C, Rungta RL, Martinez J, Milner TA, Ryu JK, McLarnon JG, Tresguerres M, Levin LR, Buck J, MacVicar BA (2012) Metabolic communication between astrocytes and neurons via bicarbonate-responsive soluble adenylyl cyclase. Neuron 75:1094–1104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Connors BW, Ransom BR, Kunis DM, Gutnick MJ (1982) Activity-dependent K+ accumulation in the developing rat optic nerve. Science 216:1341–1343

    Article  CAS  PubMed  Google Scholar 

  • Dalsgaard MK (2006) Fuelling cerebral activity in exercising man. J Cereb Blood Flow Metab 26:731–750

    Article  CAS  PubMed  Google Scholar 

  • Dalsgaard MK, Madsen FF, Secher NH, Laursen H, Quistorff B (2006) High glycogen levels in the hippocampus of patients with epilepsy. J Cereb Blood Flow Metab 27:1–5

    Google Scholar 

  • Devaux J, Gow A (2008) Tight junctions potentiate the insulative properties of small CNS myelinated axons. J Cell Biol 183:909–921

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dienel GA, Cruz NF (2004) Nutrition during brain activation: does cell-to-cell lactate shuttling contribute significantly to sweet and sour food for thought? Neurochem Int 45:321–351

    Article  CAS  PubMed  Google Scholar 

  • Dienel GA, Hertz L (2001) Glucose and lactate metabolism during brain activation. J Neurosci Res 66:824–838

    Article  CAS  PubMed  Google Scholar 

  • DiNuzzo M, Mangia S, Maraviglia B, Giove F (2010) Glycogenolysis in astrocytes supports blood-borne glucose channeling not glycogen-derived lactate shuttling to neurons: evidence from mathematical modeling. J Cereb Blood Flow Metab 30:1895–1904

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • DiNuzzo M, Maraviglia B, Giove F (2011) Why does the brain (not) have glycogen? Bioessays 33:319–326

    Article  CAS  PubMed  Google Scholar 

  • Dringen R (2000) Metabolism and functions of glutathione in brain. Prog Neurobiol 62:649–671

    Article  CAS  PubMed  Google Scholar 

  • Dringen R, Hamprecht B (1992) Glucose, insulin, and insulin-like growth factor I regulate the glycogen content of astroglia-rich primary cultures. J Neurochem 58:511–517

    Article  CAS  PubMed  Google Scholar 

  • Dringen R, Gebhardt R, Hamprecht B (1993) Glycogen in astrocytes: possible function as lactate supply for neighboring cells. Brain Res 623:208–214

    Article  CAS  PubMed  Google Scholar 

  • Dringen R, Peters H, Wiesinger H, Hamprecht B (1995) Lactate transport in cultured glial cells. Dev Neurosci 17:63–69

    Article  CAS  PubMed  Google Scholar 

  • Evans RD, Brown AM, Ransom BR (2013) Glycogen function in adult central and peripheral nerves. J Neurosci Res 91:1044–1049

    Article  CAS  PubMed  Google Scholar 

  • Frier BM, Fisher BM (2007) Hypoglycaemia in clinical diabetes, 2nd edn. Wiley, New York

    Book  Google Scholar 

  • Gibbs ME, Anderson DG, Hertz L (2006) Inhibition of glycogenolysis in astrocytes interrupts memory consolidation in young chickens. Glia 54:214–222

    Article  PubMed  Google Scholar 

  • Gordon GR, Choi HB, Rungta RL, Ellis-Davies GC, MacVicar BA (2008) Brain metabolism dictates the polarity of astrocyte control over arterioles. Nature 456:745–749

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gruetter R (2003) Glycogen: the forgotten cerebral energy store. J Neurosci Res 74:179–183

    Article  CAS  PubMed  Google Scholar 

  • Han X, Chen M, Wang F, Windrem M, Wang S, Shanz S, Xu Q, Oberheim NA, Bekar L, Betstadt S, Silva AJ, Takano T, Goldman SA, Nedergaard M (2013) Forebrain engraftment by human glial progenitor cells enhances synaptic plasticity and learning in adult mice. Cell Stem Cell 12:342–353

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heinemann U, Lux HD (1977) Ceiling of stimulus induced rises in extracellular potassium concentration in the cerebral cortex of cat. Brain Res 120:231–249

    Article  CAS  PubMed  Google Scholar 

  • Hertz L, Xu J, Song D, Du T, Yan E, Peng L (2013) Brain glycogenolysis, adrenoceptors, pyruvate carboxylase, Na(+), K(+)-ATPase and Marie E. Gibbs’ pioneering learning studies. Front Integr Neurosci 7:20

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hodgkin AL, Keynes RD (1953) Sodium extrusion and potassium absorption in Sepia axons. J Physiol 120:46P–47P

    CAS  PubMed  Google Scholar 

  • Hodgkin AL, Keynes RD (1955) The potassium permeability of a giant nerve fibre. J Physiol 128:61–88

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hof PR, Pascale E, Magistretti PJ (1988) K+ at concentrations reached in the extracellular space during neuronal activity promotes a Ca2+-dependent glycogen hydrolysis in mouse cerebral cortex. J Neurosci 8:1922–1928

    CAS  PubMed  Google Scholar 

  • Kalichman MW, Powell HC, Mizisin AP (1998) Reactive, degenerative, and proliferative Schwann cell responses in experimental galactose and human diabetic neuropathy. Acta Neuropathol 95:47–56

    Article  CAS  PubMed  Google Scholar 

  • Kocsis JD, Waxman SG (1980) Absence of potassium conductance in central myelinated axons. Nature 287:348–349

    Article  CAS  PubMed  Google Scholar 

  • Lomako J, Lomako WM, Whelan WJ, Dombro RS, Neary JT, Norenberg MD (1993) Glycogen synthesis in the astrocyte: from glycogenin to proglycogen to glycogen. FASEB J 7:1386–1393

    CAS  PubMed  Google Scholar 

  • Magistretti PJ, Pellerin L, Rothman DL, Shulman RG (1999) Energy on demand. Science 283:496–497

    Article  CAS  PubMed  Google Scholar 

  • Marty N, Dallaporta M, Thorens B (2007) Brain glucose sensing, counterregulation, and energy homeostasis. Physiology (Bethesda) 22:241–251

    Article  CAS  Google Scholar 

  • Nilaweera K, Herwig A, Bolborea M, Campbell G, Mayer CD, Morgan PJ, Ebling FJ, Barrett P (2011) Photoperiodic regulation of glycogen metabolism, glycolysis, and glutamine synthesis in tanycytes of the Siberian hamster suggests novel roles of tanycytes in hypothalamic function. Glia 59:1695–1705

    Article  PubMed  Google Scholar 

  • Obel LF, Muller MS, Walls AB, Sickmann HM, Bak LK, Waagepetersen HS, Schousboe A (2012) Brain glycogen-new perspectives on its metabolic function and regulation at the subcellular level. Front Neuroenerg 4:3

    Article  CAS  Google Scholar 

  • Oberheim NA, Takano T, Han X, He W, Lin JH, Wang F, Xu Q, Wyatt JD, Pilcher W, Ojemann JG, Ransom BR, Goldman SA, Nedergaard M (2009) Uniquely hominid features of adult human astrocytes. J Neurosci 29:3276–3287

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oz G, Henry PG, Seaquist ER, Gruetter R (2003) Direct, noninvasive measurement of brain glycogen metabolism in humans. Neurochem Int 43:323–329

    Article  CAS  PubMed  Google Scholar 

  • Oz G, Seaquist ER, Kumar A, Criego AB, Benedict LE, Rao JP, Henry PG, Van De Moortele PF, Gruetter R (2007) Human brain glycogen content and metabolism: implications on its role in brain energy metabolism. Am J Physiol Endocrinol Metab 292:E946–E951

    Article  CAS  PubMed  Google Scholar 

  • Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci U S A 91:10625–10629

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pellerin L, Magistretti PJ (2003) Food for thought: challenging the dogmas. J Cereb Blood Flow Metab 23:1282–1286

    Article  PubMed  Google Scholar 

  • Pellerin L, Magistretti PJ (2004) Neuroenergetics: calling upon astrocytes to satisfy hungry neurons. Neuroscientist 10:53–62

    Article  CAS  PubMed  Google Scholar 

  • Pellerin L, Magistretti PJ (2012) Sweet sixteen for ANLS. J Cereb Blood Flow Metab 32:1152–1166

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pellerin L, Stolz M, Sorg O, Martin JL, Deschepper CF, Magistretti PJ (1997) Regulation of energy metabolism by neurotransmitters in astrocytes in primary culture and in an immortalized cell line. Glia 21:74–83

    Article  CAS  PubMed  Google Scholar 

  • Pfeiffer-Guglielmi B, Coles JA, Francke M, Reichenbach A, Fleckenstein B, Jung G, Nicaise G, Hamprecht B (2006) Immunocytochemical analysis of rat vagus nerve by antibodies against glycogen phosphorylase isozymes. Brain Res 1110:23–29

    Article  CAS  PubMed  Google Scholar 

  • Pfeiffer-Guglielmi B, Francke M, Reichenbach A, Hamprecht B (2007) Glycogen phosphorylase isozymes and energy metabolism in the rat peripheral nervous system–an immunocytochemical study. Brain Res 1136:20–27

    Article  CAS  PubMed  Google Scholar 

  • Powell HC, Haas R, Hall CL, Wolff JA, Nyhan W, Brown BI (1985) Peripheral nerve in type III glycogenosis: selective involvement of unmyelinated fiber Schwann cells. Muscle Nerve 8:667–671

    Article  CAS  PubMed  Google Scholar 

  • Quach TT, Duchemin AM, Rose C, Schwartz JC (1980) 3H-Glycogen hydrolysis elicited by histamine in mouse brain slices: selective involvement of H1 receptors. Mol Pharmacol 17:301–308

    CAS  PubMed  Google Scholar 

  • Ransom BR, Fern R (1997) Does astrocytic glycogen benefit axon function and survival in CNS white matter during glucose deprivation? Glia 21:134–141

    Article  CAS  PubMed  Google Scholar 

  • Reichenbach A, Wolburg H (2005) Astrocytes and ependymal cells. In: Ransom BR, Kettenmann H (eds) Neuroglia, 2nd edn. Oxford University Press, Oxford, pp 19–35

    Google Scholar 

  • Ritchie JM (1995) Physiology of axons. In: Waxman SG, Kocsis JD, Stys PK (eds) The axon: structure, function and pathophysiology. Oxford University Press, Oxford

    Google Scholar 

  • Sorg O, Magistretti PJ (1991) Characterization of the glycogenolysis elicited by vasoactive intestinal peptide, noradrenaline and adenosine in primary cultures of mouse cerebral cortical astrocytes. Brain Res 563:227–233

    Article  CAS  PubMed  Google Scholar 

  • Sotelo C, Palay SL (1968) The fine structure of the lateral vestibular nucleus in the rat. I. Neurons and neuroglial cells. J Cell Biol 36:151–179

    Article  PubMed Central  Google Scholar 

  • Stryer L (1995) Biochemistry, 4th edn. W.H. Freeman & Co., New York

    Google Scholar 

  • Stys PK, Waxman SG, Ransom BR (1992) Ionic mechanisms of anoxic injury in mammalian CNS white matter: role of Na+ channels and Na+-Ca2+ exchanger. J Neurosci 12:430–439

    CAS  PubMed  Google Scholar 

  • Suzuki A, Stern SA, Bozdagi O, Huntley GW, Walker RH, Magistretti PJ, Alberini CM (2011) Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 144:810–823

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wender R, Brown AM, Fern R, Swanson RA, Farrell K, Ransom BR (2000) Astrocytic glycogen influences axon function and survival during glucose deprivation in central white matter. J Neurosci 20:6804–6810

    CAS  PubMed  Google Scholar 

  • Wilkening D, Makman MH (1977) Activation of glycogen phosphorylase in rat caudate nucleus slices by L-isopropylnorepinepherine and dibutyryl cyclic AMP. J Neurochem 28:1001–1007

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Song D, Xue Z, Gu L, Hertz L, Peng L (2013) Requirement of glycogenolysis for uptake of increased extracellular K+ in astrocytes: potential implications for K+ homeostasis and glycogen usage in brain. Neurochem Res 38:472–485

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angus M. Brown.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fryer, K.L., Brown, A.M. Pluralistic roles for glycogen in the central and peripheral nervous systems. Metab Brain Dis 30, 299–306 (2015). https://doi.org/10.1007/s11011-014-9516-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-014-9516-5

Keywords

Navigation