Skip to main content
Log in

Differential production of reactive oxygen species in distinct brain regions of hypoglycemic mice

  • Research Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Hypoglycemia is a serious complication of insulin therapy in patients suffering from type 1 Diabetes Mellitus. Severe hypoglycemia leading to coma (isoelectricity) induces massive neuronal death in vulnerable brain regions such as the hippocampus, the striatum and the cerebral cortex. It has been suggested that the production of reactive oxygen species (ROS) and oxidative stress is involved in hypoglycemic brain damage, and that ROS generation is stimulated by glucose reintroduction (GR) after the hypoglycemic coma. However, the distribution of ROS in discrete brain regions has not been studied in detail. Using the oxidation sensitive marker dihydroethidium (DHE) we have investigated the distribution of ROS in different regions of the mouse brain during prolonged severe hypoglycemia without isoelectricity, as well as the effect of GR on ROS levels. Results show that ROS generation increases in the hippocampus, the cerebral cortex and the striatum after prolonged severe hypoglycemia before the coma. The hippocampus showed the largest increases in ROS levels. GR further stimulated ROS production in the hippocampus and the striatum while in the cerebral cortex, only the somatosensory and parietal areas were significantly affected by GR. Results suggest that ROS are differentially produced during the hypoglycemic insult and that a different response to GR is present among distinct brain regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Auer RN, Olsson Y, Siesjö BK (1984a) Hypoglycemic brain injury in the rat. Correlation of density of brain damage with the EEG isoelectric time: A quantitative study. Diabetes 33:1090–1098

    Article  CAS  PubMed  Google Scholar 

  • Auer RN, Wieloch T, Olsson Y, Siesjö BK (1984b) The distribution of hypoglycemic brain damage. Acta Neuropathol 64:177–191

    Article  CAS  PubMed  Google Scholar 

  • Auer RN, Kalimo H, Olsson Y, Siesjö BK (1985a) The temporal evolution of hypoglycemic brain damage. I. Light-and electron-microscopic findings in the rat cerebral cortex. Acta Neuropathol 67:13–24

    Article  CAS  PubMed  Google Scholar 

  • Auer RN, Kalimo H, Olsson Y, Siesjö BK (1985b) The temporal evolution of hypoglycemic brain damage. II. Light-and electron-microscopic findings in the hippocampal gyrus and subiculum of the rat. Acta Neuropathol 67:25–36

    Article  CAS  PubMed  Google Scholar 

  • Auer RN, Kalimo H, Olsson Y, Wieloch T (1985c) The dentate gyrus in hypoglycemia: pathology implicating excitotoxin-mediated neuronal necrosis. Acta Neuropathol 67:279–288

    Article  CAS  PubMed  Google Scholar 

  • Bhardwaj SK, Sharma ML, Gulati G, Chhabra A, Kaushik R, Sharma P, Kaur G (1998) Effect of starvation and insulin-induced hypoglycemia on oxidative stress scavenger system and electron transport chain complexes from rat brain, liver, and kidney. Mol Chem Neuropathol 34:157–168

    Article  CAS  PubMed  Google Scholar 

  • Bindokas VP, Jordán J, Lee CC, Miller RJ (1996) Superoxide production in rat hippocampal neurons: selective imaging with hydroethidine. J Neurosci 16:1324–1336

    CAS  PubMed  Google Scholar 

  • Blasetti A, Chiuri R, Tocco A, Di Giulio C, Mattei P, Ballone E, Chiarelli F, Verrotti A (2011) The effect of recurrent severe hypoglycemia on cognitive performance in children with type 1 diabetes: a meta-analysis. J Child Neurol 26:1383–1391

    Article  PubMed  Google Scholar 

  • Cardoso S, Santos MS, Seiҫa R, Moreira P (2010) Cortical and hippocampal mitochondria bioenergetics and oxidative status during hyperglycemia and/or insulin-induced hypoglycemia. Biochim Biophys Acta 1802:942–951

    Article  CAS  PubMed  Google Scholar 

  • Cryer PE (2007) Hypoglycemia, functional brain failure, and brain death. J Clin Invest 117:868–870

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ennis K, Tran PV, Seaquist ER, Rao R (2008) Postnatal age influences hypoglycemia-induced neuronal injury in the rat brain. Brain Res 1224:119–126

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Frier BM (2011) Cognitive functioning in type diabetes: the Diabetes Control and Complications Trial (DCCT) revisited. Diabetologia 54:233–236

    Article  CAS  PubMed  Google Scholar 

  • Guemez-Gamboa A, Estrada-Sánchez AM, Montiel T, Páramo B, Massieu L, Morán J (2011) Activation of NOX2 by the stimulation of ionotropic an metabotropic glutamate receptors contributes to glutamate neurotoxicity in vivo through the production of reactive oxygen species and calpain activation. J Neuropathol Exp Neurol 70:1020–1035

    CAS  PubMed  Google Scholar 

  • Haces ML, Montiel T, Massieu L (2010) Selective vulnerability of brain regions to oxidative stress in a non-coma model of insulin-induced hypoglycemia. Neuroscience 165:28–38

    Article  CAS  PubMed  Google Scholar 

  • Isaev NK, Stelmashook EV, Dirnagl U, Plotnikov EY, Kuvshinova EA, Zorov DB (2008) Mitochondrial free radical production induced by glucose deprivation in cerebellar granule neurons. Biochemistry (Mosc) 73:149–155

    Article  CAS  Google Scholar 

  • Jacobson AM, Ryan CM, Cleary PA, Waberski BH, Weinger K, Musen G, Dahms W, Diabetes Control and Complications Trial/EDIC Research Group (2011) Biomedical risk factors for decreased cognitive functioning in type 1 diabetes: an 18 year follow-up of the Diabetes Control and Complications Trial (DCCT) cohort. Diabetologia 54:245–255

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kalimo H, Auer RN, Siesjö BK (1985) The temporal evolution of hypoglycemic brain damage. III. Light and electron microscopic findings in the rat caudoputamen. Acta Neuropathol 67:37–50

    Article  CAS  PubMed  Google Scholar 

  • Maran A, Lomas J, Macdonald IA, Amiel SA (1995) Lack of preservation of higher brain function during hypoglycaemia in patients with intensively treated-IDDM. Diabetologia 38:1412–1418

    Article  CAS  PubMed  Google Scholar 

  • McCrimmon RJ (2012) Update in the CNS response to hypoglycemia. J Clin Endocrinol Metab 97:1–8

    Article  CAS  PubMed  Google Scholar 

  • McGowan JE, Chen L, Gao D, Trush M, Wei C (2006) Increased mitochondrial reactive oxygen species production in newborn brain during hypoglycemia. Neurosci Lett 399:111–114

    Article  CAS  PubMed  Google Scholar 

  • McNay EC, Sherwin RS (2004) Effect of recurrent hypoglycemia on spatial cognition and cognitive metabolism in normal and diabetic rats. Diabetes 53:418–425

    Article  CAS  PubMed  Google Scholar 

  • Munshi M, Grande L, Hayes M, Ayres D, Suhl E, Capelson R, Lin S, Milberg W, Weinger K (2006) Cognitive dysfunction is associated with poor diabetes control in older adults. Diabetes Care 29:1794–1799

    Article  PubMed Central  PubMed  Google Scholar 

  • Páramo B, Hernández-Fonseca K, Estrada-Sánchez AM, Jiménez N, Hernández-Cruz A, Massieu L (2010) Pathways involved in the generation of reactive oxygen and nitrogen species during glucose deprivation and its role on the death of cultured hippocampal neurons. Neuroscience 167:1057–1069

    Article  PubMed  Google Scholar 

  • Patocková J, Marhol P, Tumová E, Krsiak M, Rokyta R, Stípek S, Crkovská J, Andel M (2003) Oxidative stress in the brain tissue of laboratory mice with acute post insulin hypoglycemia. Physiol Res 52:131–135

    PubMed  Google Scholar 

  • Perantie DC, Lim A, Wu J, Weaver P, Warren SL, Sadler M, White NH, Hershey T (2008) Effects of prior hypoglycemia and hyperglycemia on cognition in children with type 1 diabetes mellitus. Pediatr Diabetes 9:87–95

    Article  PubMed  Google Scholar 

  • Roberts RO, Geda YE, Knopman DS, Christianson TJ, Pankratz VS, Boeve BF, Vella A, Rocca WA, Petersen RC (2008) Association of duration and severity of diabetes mellitus with mild cognitive impairment. Arch Neurol 65:1066–1073

    Article  PubMed Central  PubMed  Google Scholar 

  • Schwarcz R, Whetsell WO, Mangano REM (1983) Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain. Science 219:316–318

    Article  CAS  PubMed  Google Scholar 

  • Serrano F, Kolluri NS, Wientjes FB, Card JP, Klann E (2003) NADPH oxidase immunoreactivity in the mouse brain. Brain Res 988:193–198

    Article  CAS  PubMed  Google Scholar 

  • Singh P, Jain A, Kaur G (2004) Impact of hypoglycemia and diabetes on CNS: correlation of mitochondrial oxidative stress with DNA damage. Mol Cell Biochem 260:153–159

    Article  CAS  PubMed  Google Scholar 

  • Strachan MW, Deary IJ, Ewing FM, Frier BM (2000) Recovery of cognitive function and mood after severe hypoglycemia in adults with insulin-treated diabetes. Diabetes Care 23:305–312

    Article  CAS  PubMed  Google Scholar 

  • Suh SW, Aoyama K, Chen Y, Garnier P, Matsumori Y, Gum E, Liu J, Swanson RA (2003) Hypoglycemic neuronal death and cognitive impairment are prevented by Poly(ADP-Ribose) polymerase inhibitors administered after hypoglycemia. J Neurosci 23:10681–10690

    CAS  PubMed  Google Scholar 

  • Suh SW, Gum ET, Hamby AM, Chan PH, Swanson RA (2007) Hypoglycemic neuronal death is triggered by glucose reperfusion and activation of neuronal NADPH oxidase. J Clin Invest 117:910–918

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Suh SW, Hamby AM, Gum ET, Shin BS, Won SJ, Sheline CT, Chan PH, Swanson RA (2008) Sequential release of nitric oxide, zinc, and superoxide in hypoglycemic neuronal death. J Cereb Blood Flow Metab 28:1697–1706

    Article  CAS  PubMed  Google Scholar 

  • Tkacs NC, Pan Y, Raghupathi R, Dunn-Meynell AA, Levin BE (2005) Cortical Fluoro-Jade staining and blunted adrenomedullary response to hypoglycemia after noncoma hypoglycemia in rats. J Cereb Blood Flow Metab 25:1645–1655

    Article  CAS  PubMed  Google Scholar 

  • Won SJ, Yoo BH, Kauppinen TM, Choi BY, Kim JH, Jang BG, Lee WM, Sohn M, Liu J, Swanson RA, Suh SW (2012) Recurrent/moderate hypoglycemia induces hippocampal dendritic injury, microglial activation, and cognitive impairment in diabetic rats. J Neuroinflammation 9:182

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu C, Yogaratnam J, Lua R, Naik S, Khoo CL, Pillai SS, Sim K (2011) Persistent, severe hypoglycemia-induced organic brain syndrome with neurological sequelae: a case report. Gen Hosp Psychiatry 33:411–412

    Google Scholar 

Download references

Acknowledgments

The present study was supported by CONACYT grant S-112179 to LM. The authors thank Gabriel Orozco for his help with confocal images and Francisco Pérez Eugenio for his computer technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lourdes Massieu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amador-Alvarado, L., Montiel, T. & Massieu, L. Differential production of reactive oxygen species in distinct brain regions of hypoglycemic mice. Metab Brain Dis 29, 711–719 (2014). https://doi.org/10.1007/s11011-014-9508-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-014-9508-5

Keywords

Navigation