Skip to main content
Log in

Potential biomarkers in hypoglycemic brain injury

  • Original Article
  • Published:
Forensic Science, Medicine and Pathology Aims and scope Submit manuscript

Abstract

Oxidative stress is a major underlying mechanism in hypoglycemic brain injury. Several oxidative stress–related proteins were identified through previous proteomics and literature review. The aim of the present study was to evaluate the potential of these proteins as biomarkers in hypoglycemic brain injury. Forty male Sprague Dawley rats were randomly and equally divided into four groups: control, acute hypoglycemia, hypoglycemia resuscitation 24 h, and hypoglycemia resuscitation 7 days. The hypoglycemic brain injury rat model was successfully constructed according to the Auer model. Real-time fluorescent quantitative polymerase chain reaction, western blot analysis, and immunohistochemical staining were used to quantify the expression of oxidative stress–related proteins. We also verified the expression level of selected protein in the brain samples of fatal insulin overdose cases. The expression of oxidative stress–related proteins PEX1/5/12 was down-regulated in hypoglycemic brain injury (P < 0.05), while the expressions of DJ-1 and NDRG1 were up-regulated (P < 0.05). Compared with the control group, the serum oxidative stress indexes SOD and MDA in the acute hypoglycemia group were significantly different (P < 0.01). The expressions of DJ-1 and NDRG1 in the hippocampus, cortex, and hypothalamus of rats were increased (P < 0.05). The expressions of DJ-1 and NDRG1 proteins in the cortex of the autopsy samples of insulin overdose were increased (P < 0.05). Oxidative stress–related proteins showed potential value as specific molecular markers in hypoglycemic brain injury, but further confirmatory studies are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Rosenfeld L. Insulin: discovery and controversy[J]. Clin Chem. 2002;12(48):2270–88.

    Article  Google Scholar 

  2. Mayer JP, Zhang F, DiMarchi RD. Insulin structure and function. Biopolymers. 2007;88(5):687–713. https://doi.org/10.1002/bip.20734.

    Article  CAS  PubMed  Google Scholar 

  3. McCall AL. Insulin therapy and hypoglycemia. Endocrinol Metab Clin North Am. 2012;41(1):57–87. https://doi.org/10.1016/j.ecl.2012.03.001.

    Article  PubMed  PubMed Central  Google Scholar 

  4. The Action to Control Cardiovascular Risk in Diabetes Study Group. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008;358(24):2545–59

  5. The ADVANCE Collaborative Group. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358(24):2560–72.

    Article  Google Scholar 

  6. Duckworth W, Abraira C, Moritz T, et al. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med. 2009;360(2):129–39.

    Article  CAS  PubMed  Google Scholar 

  7. Cryer PE, Axelrod L, Grossman AB, et al. Evaluation and management of adult hypoglycemic disorders: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2009;94(3):709–28.

    Article  CAS  PubMed  Google Scholar 

  8. Frier BM. How hypoglycaemia can affect the life of a person with diabetes. Diabetes Metab Res Rev. 2007;24:87–92.

    Article  Google Scholar 

  9. Deary IJ, Crawford JR, Hepburn DA, et al. Severe hypoglycemia and intelligence in adult patients with insulin-treated diabetes. Diabetes. 1993;42(2):341–4.

    Article  CAS  PubMed  Google Scholar 

  10. Perros P, Deary IJ, Sellar RJ, et al. Brain abnormalities demonstrated by magnetic resonance imaging in adult IDDM patients with and without a history of recurrent severe hypoglycemia. Diabetes Care. 1997;20(6):1013–8.

    Article  CAS  PubMed  Google Scholar 

  11. Fujioka M, Okuchi K, Hiramatsu KI, et al. Specific changes in human brain after hypoglycemic injury. Stroke. 1997;28(3):584–7.

    Article  CAS  PubMed  Google Scholar 

  12. Wessels AM, Lane KA, Gao S, et al. Diabetes and cognitive decline in elderly African Americans: a 15-year follow-up study. Alzheimers Dement. 2011;7(4):418–24.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Daviglus ML, Plassman BL, Pirzada A, et al. Risk factors and preventive interventions for Alzheimer disease: state of the science. Arch Neurol. 2011;68(9):1185–90.

    Article  PubMed  Google Scholar 

  14. Strachan MW, Reynolds RM, Marioni RE, et al. Cognitive function, dementia and type 2 diabetes mellitus in the elderly. Nat Rev Endocrinol. 2011;7(2):108–14.

    Article  CAS  PubMed  Google Scholar 

  15. Tong F, Wu R, Huang W, et al. Forensic aspects of homicides by insulin overdose. 2017;278:9–15.

    CAS  Google Scholar 

  16. Huang F, Li J, Tong F, et al. Forensic identification of death by insulin overdose: a case report. Chinese J Forensic Med,2020,35(02):224–225+227+232. In Chinese.

  17. Sunderland N, Wong S, Lee CK. Fatal insulin overdoses: case report and update on testing methodology. J Forensic Sci. 2016;61(Suppl 1):S281.

    Article  PubMed  Google Scholar 

  18. Marks V. Murder by insulin: suspected, purported and proven- a review. Drug Test Anal. 2009;1(4):162–76.

    Article  CAS  PubMed  Google Scholar 

  19. Auer RN, Wieloch T, Olsson Y, et al. The distribution of hypoglycemic brain damage[J]. Acta Neuropathol. 1984;64(3):177–91. https://doi.org/10.1007/bf00688108.

    Article  CAS  PubMed  Google Scholar 

  20. Deng J, Zhao F, Yu X, et al. Identification of the protective role of DJ-1 in hypoglycemic astrocyte injury using proteomics. J Proteome Res. 2015;14(7):2839–48.

    Article  CAS  PubMed  Google Scholar 

  21. Tong F. Pathologic and proteomic research on hypoglycemic brain damage induced by insulin overdose.

  22. Draper HH, Hadley M. Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol. 1990;186:421–31. https://doi.org/10.1016/0076-6879(90)86135-i.

    Article  CAS  PubMed  Google Scholar 

  23. Dalle-Donne I, Rossi R, Colombo R, et al. Biomarkers of oxidative damage in human disease. Clin Chem. 2006;52(4):601–23. https://doi.org/10.1373/clinchem.2005.061408.

    Article  CAS  PubMed  Google Scholar 

  24. Giustarini D, Dalle-Donne I, Tsikas D, et al. Oxidative stress and human diseases: origin, link, measurement, mechanisms, and biomarkers. Crit Rev Clin Lab Sci. 2009;46(5–6):241–81. https://doi.org/10.3109/10408360903142326.

    Article  CAS  PubMed  Google Scholar 

  25. Peña-Blanco A, García-Sáez AJ. Bax, Bak and beyond - mitochondrial performance in apoptosis. FEBS J. 2018;285(3):416–31. https://doi.org/10.1111/febs.14186.

    Article  CAS  PubMed  Google Scholar 

  26. Mastalski T, Brinkmeier R, Platta HW. The peroxisomal PTS1-import defect of PEX1- deficient cells is independent of pexophagy in Saccharomyces cerevisiae. Int J Mol Sci. 2020;21(3):867. https://doi.org/10.3390/ijms21030867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Waterham HR, Ferdinandusse S, Wanders RJ. Human disorders of peroxisome metabolism and biogenesis. Biochim Biophys Acta. 2016;1863(5):922–33. https://doi.org/10.1016/j.bbamcr.2015.11.015.

    Article  CAS  PubMed  Google Scholar 

  28. Pedrosa AG, Francisco T, Bicho D, et al. Peroxisomal monoubiquitinated PEX5 interacts with the AAA ATPases PEX1 and PEX6 and is unfolded during its dislocation into the cytosol. J Biol Chem. 2018;293(29):11553–63. https://doi.org/10.1074/jbc.RA118.003669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Geisbrecht BV, Collins CS, Reuber BE, et al. Disruption of a PEX1-PEX6 interaction is the most common cause of the neurologic disorders Zellweger syndrome, neonatal adrenoleukodystrophy, and infantile Refsum disease. Proc Natl Acad Sci USA. 1998;95(15):8630–5. https://doi.org/10.1073/pnas.95.15.8630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Slawecki ML, Dodt G, Steinberg S, et al. Identification of three distinct peroxisomal protein import defects in patients with peroxisome biogenesis disorders. J Cell Sci. 1995;108(Pt 5):1817–29.

    Article  CAS  PubMed  Google Scholar 

  31. Stephenson L, van den Heuvel C, Humphries M, et al. Characteristics of fatal insulin overdoses. Forensic Sci Med Pathol. 2022. https://doi.org/10.1007/s12024-022-00511-3.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Birkinshaw VJ, Gurd MR, Randall SS, et al. Investigations in a case of murder by insulin poisoning[J]. Br Med J. 1958;2(5094):463–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhao F, Deng J, Xu X, et al. Aquaporin-4 deletion ameliorates hypoglycemia-induced BBB permeability by inhibiting inflammatory responses. J Neuroinflammation. 2018;15(1):157.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sugiki T, Murakami M, Taketomi Y, et al. N-myc downregulated gene 1 is a phosphorylated protein in mast cells. Biol Pharm Bull. 2004;27(5):624–7. https://doi.org/10.1248/bpb.27.624.

    Article  CAS  PubMed  Google Scholar 

  35. Ellen TP, Ke Q, Zhang P, et al. NDRG1, a growth and cancer related gene: regulation of gene expression and function in normal and disease states. Carcinogenesis. 2008;29(1):2–8. https://doi.org/10.1093/carcin/bgm200.

    Article  CAS  PubMed  Google Scholar 

  36. Askautrud HA, Gjernes E, Gunnes G, et al. Global gene expression analysis reveals a link between NDRG1 and vesicle transport. PLoS One. 2014;9(1):e87268. https://doi.org/10.1371/journal.pone.0087268

  37. Schonkeren SL, Massen M, van der Horst R, et al. Nervous NDRGs: the N-myc downstream-regulated gene family in the central and peripheral nervous system. Neurogenetics. 2019;20(4):173–86. https://doi.org/10.1007/s10048-019-00587-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sundar R, Jeyasekharan AD, Pang B, et al. Low levels of NDRG1 in nerve tissue are predictive of severe paclitaxel-induced neuropathy[J]. PLoS ONE. 2016;11(10): e0164319.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Echaniz-Laguna A, Degos B, Bonnet C, et al. NDRG1-linked Charcot-Marie-Tooth disease (CMT4D) with central nervous system involvement. Neuromuscul Disord. 2007;17(2):163–8. https://doi.org/10.1016/j.nmd.2006.10.002.

    Article  PubMed  Google Scholar 

  40. Qin L, Liu X, Liu S, et al. Differentially expressed proteins underlying childhood cortical dysplasia with epilepsy identified by iTRAQ proteomic profiling. PLoS One. 2017;12(2):e0172214. https://doi.org/10.1371/journal.pone.0172214

  41. Crino PB, Chou K. Epilepsy and cortical dysplasias. Curr Treat Options Neurol. 2000;2(6):543–52. https://doi.org/10.1007/s11940-000-0032-z.

    Article  CAS  PubMed  Google Scholar 

  42. Antipova D, Bandopadhyay R. Expression of DJ-1 in neurodegenerative disorders. Adv Exp Med Biol. 2017;1037:25–43. https://doi.org/10.1007/978-981-10-6583-5_3.

    Article  CAS  PubMed  Google Scholar 

  43. Ghaderi S, Alidadiani N, SoleimaniRad J, et al. DJ1 and microRNA-214 act synergistically to rescue myoblast cells after ischemia/reperfusion injury. J Cell Biochem. 2018;119(9):7192–203. https://doi.org/10.1002/jcb.26842.

    Article  CAS  PubMed  Google Scholar 

  44. Junn E, Jang WH, Zhao X, et al. Mitochondrial localization of DJ-1 leads to enhanced neuroprotection. J Neurosci Res. 2009;87(1):123–9. https://doi.org/10.1002/jnr.21831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ariga H, Takahashi-Niki K, Kato I, et al. Neuroprotective function of DJ-1 in Parkinson's disease. Oxid Med Cell Longev. 2013:683920. https://doi.org/10.1155/2013/683920

  46. D Mayo S, Benito-León J, Peña-Bautista C, et al. Recent evidence in epigenomics and proteomics biomarkers for early and minimally invasive diagnosis of Alzheimer's and Parkinson's diseases[J]. Curr Neuropharmacol. 2021,19(8): 1273–1303

  47. Schrader M, Fahimi HD. Peroxisomes and oxidative stress. Biochim Biophys Acta. 2006;1763(12):1755–66. https://doi.org/10.1016/j.bbamcr.2006.09.006.

    Article  CAS  PubMed  Google Scholar 

  48. Jedd G, Chua NH. A new self-assembled peroxisomal vesicle required for efficient resealing of the plasma membrane. Nat Cell Biol. 2000;2(4):226–31. https://doi.org/10.1038/35008652.

    Article  CAS  PubMed  Google Scholar 

  49. Apanasets O, Grou CP, Van Veldhoven PP, et al. PEX5, the shuttling import receptor for peroxisomal matrix proteins, is a redox-sensitive protein. Traffic. 2014;15(1):94–103. https://doi.org/10.1111/tra.12129.

    Article  CAS  PubMed  Google Scholar 

  50. Walton PA, Pizzitelli M. Effects of peroxisomal catalase inhibition on mitochondrial function. Front Physiol. 2012;3:108. https://doi.org/10.3389/fphys.2012.00108.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Terlecky SR, Koepke JI, Walton PA. Peroxisomes and aging. Biochim Biophys Acta. 2006;1763(12):1749–54. https://doi.org/10.1016/j.bbamcr.2006.08.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dirkx R, Vanhorebeek I, Martens K, et al. Absence of peroxisomes in mouse hepatocytes causes mitochondrial and ER abnormalities. Hepatology. 2005;41(4):868–78. https://doi.org/10.1002/hep.20628.

    Article  CAS  PubMed  Google Scholar 

  53. Uzor NE, Scheihing DM, et al. Aging lowers PEX5 levels in cortical neurons in male and female mouse brains. Mol Cell Neurosci. 2020;107:103536. https://doi.org/10.1016/j.mcn.2020.103536

  54. Chen Y, Yu Q, Wang H, et al. The malfunction of peroxisome has an impact on the oxidative stress sensitivity in Candida albicans. Fungal Genet Biol. 2016;95:1–12. https://doi.org/10.1016/j.fgb.2016.07.010.

    Article  CAS  PubMed  Google Scholar 

  55. Wood PL, Barnette BL, Kaye JA, et al. Non-targeted lipidomics of CSF and frontal cortex grey and white matter in control, mild cognitive impairment, and Alzheimer’s disease subjects. Acta Neuropsychiatr. 2015;27(5):270–8. https://doi.org/10.1017/neu.2015.18.

    Article  PubMed  Google Scholar 

  56. Zarrouk A, Riedinger JM, Ahmed SH, et al. Fatty acid profiles in demented patients: identification of hexacosanoic acid (C26:0) as a blood lipid biomarker of dementia. J Alzheimers Dis. 2015;44(4):1349–59. https://doi.org/10.3233/JAD-142046.

    Article  CAS  PubMed  Google Scholar 

  57. Sasabe J, Suzuki M, Imanishi N, Aiso S. Activity of D-amino acid oxidase is widespread in the human central nervous system. Front Synaptic Neurosci. 2014;6:14. https://doi.org/10.3389/fnsyn.2014.00014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dyall SC. Long-chain omega-3 fatty acids and the brain: a review of the independent and shared effects of EPA. DPA and DHA Front Aging Neurosci. 2015;7:52. https://doi.org/10.3389/fnagi.2015.00052.

    Article  PubMed  Google Scholar 

  59. Berger J, Dorninger F, Forss-Petter S, et al. Peroxisomes in brain development and function. Biochim Biophys Acta. 2016;1863(5):934–55. https://doi.org/10.1016/j.bbamcr.2015.12.005.

    Article  CAS  PubMed  Google Scholar 

  60. Gardner BM, Castanzo DT, Chowdhury S, et al. The peroxisomal AAA-ATPase Pex1/Pex6 unfolds substrates by processive threading. Nat Commun. 2018;9(1):135. https://doi.org/10.1038/s41467-017-02474-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Waterham HR, Ebberink MS. Genetics and molecular basis of human peroxisome biogenesis disorders. Biochim Biophys Acta. 2012;1822(9):1430–41. https://doi.org/10.1016/j.bbadis.2012.04.006.

    Article  CAS  PubMed  Google Scholar 

  62. Powers JM, Moser HW. Peroxisomal disorders: genotype, phenotype, major neuropathologic lesions, and pathogenesis. Brain Pathol. 1998;8(1):101–20. https://doi.org/10.1111/j.1750-3639.1998.tb00139.x.

    Article  CAS  PubMed  Google Scholar 

  63. Tong F, Zou Y, Liang Y, et al. The water diffusion of brain following hypoglycemia in rats - a study with diffusion weighted imaging and neuropathologic analysis. Neuroscience. 2019;409:58–68.

    Article  CAS  PubMed  Google Scholar 

  64. Yanagida T, Tsushima J, Kitamura Y, Yanagisawa D, Takata K, Shibaike T, Yamamoto A, Taniguchi T, Yasui H, Taira T, Morikawa S, Inubushi T, Tooyama I, Ariga H. Oxidative stress induction of DJ-1 protein in reactive astrocytes scavenges free radicals and reduces cell injury. Oxid Med Cell Longev. 2009;2(1):36–42. https://doi.org/10.4161/oxim.2.1.7985.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Kaneko Y, Tajiri N, Shojo H, Borlongan CV. Oxygen-glucose-deprived rat primary neural cells exhibit DJ-1 translocation into healthy mitochondria: a potent stroke therapeutic target. CNS Neurosci Ther. 2014;20(3):275–81. https://doi.org/10.1111/cns.12208.

    Article  CAS  PubMed  Google Scholar 

  66. Mullett SJ, Di Maio R, Greenamyre JT, Hinkle DA. DJ-1 expression modulates astrocyte-mediated protection against neuronal oxidative stress. J Mol Neurosci. 2013;49(3):507–11. https://doi.org/10.1007/s12031-012-9904-4.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Program of China (No.2018YFC0807203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiwu Zhou.

Ethics declarations

Ethical approval

All procedures performed in this study involving human participants and animals were approved by the Ethics Committee of Tongji Medical College, HUST.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, S., Liu, Z., Ma, L. et al. Potential biomarkers in hypoglycemic brain injury. Forensic Sci Med Pathol (2023). https://doi.org/10.1007/s12024-023-00681-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12024-023-00681-8

Keywords

Navigation