Skip to main content

Advertisement

Log in

Increased susceptibility of brain acetylcholinesterase activity to methylmalonate in young rats with renal failure

  • Original Paper
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Tissue methylmalonic acid (MMA) accumulation is the biochemical hallmark of methylmalonic acidemia. Clinically, the disease is characterized by progressive neurological deterioration and renal failure, whose pathophysiology is still undefined. In the present study we investigated the effect of acute MMA administration on some important parameters of brain neurotransmission in cerebral cortex of rats, namely Na+, K+-ATPase, ouabain-insensitive ATPases and acetylcholinesterase activities, in the presence or absence of kidney injury induced by gentamicin administration. Initially, thirty-day old Wistar rats received one intraperitoneal injection of saline or gentamicin (70 mg/kg). One hour after, the animals received three consecutive subcutaneous injections of MMA (1.67 μmol/g) or saline, with an 11 h interval between each injection. One hour after the last injection the animals were killed and the cerebral cortex isolated. MMA administration by itself was not able to modify Na+, K+-ATPase, ATPases ouabain-insensitive or acetylcholinesterase activities in cerebral cortex of young rats. In rats receiving gentamicin simultaneously with MMA, it was observed an increase in the activity of acetylcholinesterase activity in cerebral cortex, without any alteration in the activity of the other studied enzymes. Therefore, it may be speculated that cholinergic imbalance may play a role in the pathogenesis of the brain damage. Furthermore, the pathophysiology of tissue damage cannot be exclusively attributed to MMA toxicity, and control of kidney function should be considered as a priority in the management of these patients, specifically during episodes of metabolic decompensation when MMA levels are higher.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bartus RT (2000) On neurodegenerative diseases, models, and treatment strategies: lessons learned and lessons forgotten a generation following the cholinergic hypothesis. Exp Neurol 163:495–529

    Article  PubMed  CAS  Google Scholar 

  • Beeri R, Andres C, Lev-Lehman E, Timberg R, Huberman T, Shani M, Soreq H (1995) Transgenic expression of human acetylcholinesterase induces progressive cognitive deterioration in mice. Curr Biol 5:1063–1071

    Article  PubMed  CAS  Google Scholar 

  • Brusque AM, Borba Rosa R, Schuck PF, Dalcin KB, Ribeiro CA, Silva CG, Wannmacher CM, Dutra-Filho CS, Wyse AT, Briones P, Wajner M (2002) Inhibition of the mitochondrial respiratory chain complex activities in rat cerebral cortex by methylmalonic acid. Neurochem Int 40:593–601

    Article  PubMed  CAS  Google Scholar 

  • Chan KM, Delfert D, Junger KD (1986) A direct colorimetric assay for Ca2 + -stimulated ATPase activity. Anal Biochem 157:375–380

    Article  PubMed  CAS  Google Scholar 

  • Chandler RJ, Venditti CP (2005) Genetic and genomic systems to study methylmalonic acidemia. Mol Genet Metab 86:34–43

    Article  PubMed  CAS  Google Scholar 

  • Clothier JC, Chakrapani A, Preece MA, McKiernan P, Gupta R, Macdonald A, Hulton SA (2011) Renal transplantation in a boy with methylmalonic acidaemia. J Inherit Metab Dis 34:695–700

    Article  PubMed  Google Scholar 

  • D’Angio CT, Dillon MJ, Leonard JV (1991) Renal tubular dysfunction in methylmalonic acidemia. Eur J Pediatr 150:259–263

    Article  PubMed  Google Scholar 

  • Dionisi-Vici C, Deodato F, Roschinger W, Rhead W, Wilcken B (2006) Classical’ organic acidurias, propionic aciduria, methyl- malonic aciduria and isovaleric aciduria: long-term outcome and effects of expanded newborn screening using tandem mass spectrometry. J Inherit Metab Dis 29:383–389

    Article  PubMed  CAS  Google Scholar 

  • Dutra JC, Wajner M, Wannmacher CM, Wannmacher LE, Pires RF, Rosa-júnior A (1991) Effect of postnatal methylmalonate administration on adult rat behavior. Braz J Med Bio Res 24:595–605

    CAS  Google Scholar 

  • Easton A, Douchamps V, Eacott M, Lever C (2012) A specific role for septohippocampal acetylcholine in memory? Neuropsychologia 50:3156–3168

    Google Scholar 

  • Ellman GL, Courtney KD, Andres V Jr, Feather-Stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  PubMed  CAS  Google Scholar 

  • Fenton WA, Gravel RA, Rosenblatt DS (2001) Disorders of propionate and methylmalonate metabolism. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, 8ath edn. McGraw-Hill, New York, pp 2165–2193

    Google Scholar 

  • Gao Y, Guan W, Wang J, Zhang Y, Li Y, Han L (2009) Fractional anisotropy for assessment of white matter tracts injury in methylmalonic acidemia. Chin Med J 122:945–949

    PubMed  Google Scholar 

  • García-Ayllón MS, Cauli O, Silveyra MX, Rodrigo R, Candela A, Campañ A, Jover R, Pérez-Mateo M, Martínez S, Felipo V, Sáez-Valero J (2008) Brain cholinergic impairment in liver failure. Brain 131:2946–2956

    Article  PubMed  Google Scholar 

  • Giacobini E (2003) Cholinesterases: new roles in brain function and in Alzheimer’s disease. Neurochem Res 28:515–522

    Article  PubMed  CAS  Google Scholar 

  • Herlenius E, Lagercrantz H (2004) Development of neurotransmitter systems during critical periods. Exp Neurol 190:S8–S21

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann GF, Meier-Augenstein W, Stocker S, Surtees R, Rating D, Nyhan WL (1993) Physiology and pathophysiology of organic acids in cerebrospinal fluids. J Inherit Metab Dis 16:648–666

    Article  PubMed  CAS  Google Scholar 

  • Jones DH, Matus AI (1974) Isolation of synaptic plasma membrane from brain by combined flotation-sedimentation density gradient centrifugation. Biochim Biophys Acta 356:276–287

    Article  PubMed  CAS  Google Scholar 

  • Kashtan CE, Abousedira M, Rozen S, Manivel JC, McCann M, Tuchman M (1998) Chronic administration of methylmaloic acid (MMA) to rats causes proteinuria and renal tubular injury. Pediatr Res 43:309

    Article  Google Scholar 

  • Keseler IM, Collado-Vides J, Gama-Castro S, Ingraham J, Paley S, Paulsen IT, Peralta-Gil M, Karp PD (2005) EcoCyc: a comprehensive database resource for Escherichia coli. Nucleic Acids Res 33:334–337

    Article  Google Scholar 

  • Khishna S, Andersson AM, Semsey S, Sneppen K (2006) Structure and function of negative feedback loops at the interface of genetic and metabolic networks. Nucleic Acids Res 34:2455–2462

    Article  Google Scholar 

  • Kölker S, Okun JG (2005) Methylmalonic acid-an endogenous toxin? Cell Mol Life Sci 62:621–624

    Article  PubMed  Google Scholar 

  • Kölker S, Schwab M, Hörster F, Sauer S, Hinz A, Wolf NI, Mayatepek E, Hoffmann GF, Smeitink JA, Okun JG (2003) Methylmalonic acid, a biochemical hallmark of methylmalonic acidurias but no inhibitor of mitochondrial respiratory chain. J Biol Chem 278:47388–47393

    Article  PubMed  Google Scholar 

  • Lin TH, Sawada Y, Sugiyama Y, Iga T, Hanano M (1987) Inhibition of blood–brain barrier permeability to DL-propranolol by serum from acute renal failure rats. Biochem Pharmacol 36:3425–3431

    Article  PubMed  CAS  Google Scholar 

  • Liu M, Liang Y, Chigurupati S, Lathia JD, Pletnikov M, Sun Z, Crow M, Ross CA, Mattson MP, Rabb H (2008) Acute kidney injury leads to inflammation and functional changes in the brain. J Am Soc Nephrol 19:1360–1370

    Article  PubMed  CAS  Google Scholar 

  • Lotti M (1995) Cholinesterase inhibition: complexities in interpretation. Clin Chem 41:1814–1818

    PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Lubrano R, Elli M, Rossi M, Travasso E, Raggi C, Barsotti P, Carducci C, Berloco P (2007) Renal transplant in methylmalonic acidemia: could it be the best option? Report on a case at 10 years and review of the literature. Pediatr Nephrol 22:1209–1214

    Article  PubMed  Google Scholar 

  • Machado DG, Cunha MP, Neis VB, Balen GO, Colla A, Grando J, Brocardo PS, Bettio LE, Capra JC, Rodrigues AL (2012a) Fluoxetine reverses depressive-like behaviors and increases hippocampal acetylcholinesterase activity induced by olfactory bulbectomy. Pharmacol Biochem Behav 103:220–229

    Article  PubMed  CAS  Google Scholar 

  • Machado DG, Cunha MP, Neis VB, Balen GO, Colla AR, Grando J, Brocardo PS, Bettio LE, Dalmarco JB, Rial D, Prediger RD, Pizzolatti MG, Rodrigues AL (2012b) Rosmarinus officinalis L. hydroalcoholic extract, similar to fluoxetine, reverses depressive-like behavior without altering learning deficit in olfactory bulbectomized mice. J Ethnopharmacol 143:158–169

    Article  PubMed  CAS  Google Scholar 

  • Maciel EN, Kowaltowski AJ, Schwalm FD, Rodrigues JM, Souza DO, Vercesi AE, Wajner M, Castilho RF (2004) Mitochondrial permeability transition in neuronal damage promoted by Ca2+ and respiratory chain complex II inhibition. J Neurochem 90:1025–1035

    Article  PubMed  CAS  Google Scholar 

  • Malfatti CR, Royes LF, Francescato L, Sanabria ER, Rubin MA, Cavalheiro EA, Mello CF (2003) Intrastriatal methylmalonic acid administration induces convulsions and TBARS production, and alters Na +, K + -ATPase activity in the rat striatum and cerebral cortex. Epilepsia 44:761–767

    Article  PubMed  CAS  Google Scholar 

  • Manoli I, Venditti CP (2005) Methylmalonic Acidemia. Gene Reviews Bookshelf ID: NBK1231PMID: 20301409.

  • Melo JB, Agostinho P, Oliveira CR (2003) Involvement of oxidative stress in the enhancement of acetylcholinesterase activity induced by amyloid beta-peptide. Neurosci Res 45:117–127

    Article  PubMed  CAS  Google Scholar 

  • Melo DR, Kowaltowski AJ, Wajner M, Castilho RF (2011) Mitochondrial energy metabolism in neurodegeneration associated with methylmalonic acidemia. J Bioenerg Biomembr 43:39–46

    Article  PubMed  CAS  Google Scholar 

  • Michel SJ, Given CA 2nd, Robertson WC Jr (2004) Imaging of the brain, including diffusion-weighted imaging in methylmalonic acidemia. Pediatr Radiol 34:580–582

    Article  PubMed  Google Scholar 

  • Mirandola SR, Melo DR, Schuck PF, Ferreira GC, Wajner M, Castilho RF (2008) Methylmalonate inhibits succinate-supported oxygen consumption by interfering with mitochondrial succinate uptake. J Inherit Metab Dis 31:44–54

    Article  PubMed  CAS  Google Scholar 

  • Morath MA, Okun JG, Müller IB, Sauer SW, Hörster F, Hoffmann GF, Kölker S (2008) Neurodegeneration and chronic renal failure in methylmalonic aciduria - A pathophysiological approach. J Inherit Metab Dis 31:35–43

    Article  PubMed  CAS  Google Scholar 

  • Morath MA, Hörster F, Sauer SW (2012) Renal dysfunction in methylmalonic acidurias: review for the pediatric nephrologist. Pediatr Nephrol In press

  • Naud J, Laurin LP, Michaud J, Beauchemin S, Leblond FA, Pichette V (2012) Effects of chronic renal failure on brain drug transporters in rats. Drug Metab Dispos 40:39–46

    Article  PubMed  CAS  Google Scholar 

  • Nicolaides P, Leonard J, Surtees R (1998) Neurological outcome of methylmalonic acidemia. Arch Dis Child 78:508–512

    Article  PubMed  CAS  Google Scholar 

  • Okun JG, Hörster F, Farkas LM, Feyh P, Hinz A, Sauer S, Hoffmann GF, Unsicker K, Mayatepek E, Kölker S (2002) Neurodegeneration in methylmalonic aciduria involves inhibition of complex II and the tricarboxylic acid cycle, and synergistically acting excitotoxicity. J Biol Chem 277:14674–14680

    PubMed  CAS  Google Scholar 

  • Petronilho F, Constantino L, Souza B, Reinke A, Martins MR, Fraga CM, Ritter C, Dal-pizzol F (2009) Efficacy of the combination of N-acetylcysteine and desferrioxamine in the prevention and treatment of gentamicin-induced acute renal failure in male Wistar rats. Nephrol Dial Transplant 24:2077–2082

    Article  PubMed  CAS  Google Scholar 

  • Petrov KA, Malomouzh AI, Kovyazina IV, Krejci E, Nikitashina AD, Svetlana E, Proskurina SE, Zobov VV, Nikolsky EE (2013) Regulation of acetylcholinesterase activity by nitric oxide in rat neuromuscular junction via N-methyl-D-aspartate receptor activation. Eur J Neurosci 37:181–189

    Article  PubMed  Google Scholar 

  • Pettenuzzo LF, Schuck PF, Wyse AT, Wannamacher CM, Dutra-Filho CS, Netto CA, Wajner M (2003a) Ascorbic acid prevents water maze behavioral deficits caused by early postnatal methylmalonic acid administration in the rat. Brain Res 976:234–242

    Article  PubMed  CAS  Google Scholar 

  • Pettenuzzo LF, Wyse AT, Wannmacher CM, Dutra-Filho CS, Netto CA, Wajner M (2003b) Evaluation of the effect of chronic administration of drugs on rat behavior in the water maze task. Brain Res Brain Res Protoc 12:109–115

    Article  PubMed  CAS  Google Scholar 

  • Pettenuzzo LF, Ferreira GC, Schmidt AL, Dutra-Filho CS, Wyse AT, Wajner M (2006) Differential inhibitory effects of methylmalonic acid on respiratory chain complex activities in rat tissues. Inter J Devel Neurosc 24:45–52

    Article  CAS  Google Scholar 

  • Prust MJ, Gropman AL, Hauser N (2011) New frontiers in neuroimaging applications to inborn errors of metabolism. Mol Genet Metab 104:195–205

    Article  PubMed  CAS  Google Scholar 

  • Ratnakumari L, Qureshi IA, Maysinger D, Butterworth RF (1995) Developmental deficiency of the cholinergic system in congenitally hyperammonemicspf mice: effect of acetyl-L-carnitine. J Pharmacol Exp Ther 274:437–443

    PubMed  CAS  Google Scholar 

  • Ribas GS, Scherer EB, Ferreira AG, Schmitz F, Wyse AT, Rodrigues D, Nascimento S, Garcia SC, Wajner M, Vargas CR (2012) Reduction of butyrylcholinesterase activity in plasma from patients with disorders of propionate metabolism is prevented by treatment with L-carnitine and protein restriction. Clin Biochem 45:77–81

    Google Scholar 

  • Salgado H, Santos-Zavaleta A, Gama-Castro S, Millan-Zarate D, Diaz-Peredo E, Sanchez-Solano F, Perez-Rueda E, Bonavides-Martinez C, Collado-Vides J (2001) Regulon DB (version 3.2): transcriptional regulation and operon organization in Escherichia coli K-12. Nucl Acids Res 29:72–74

    Article  PubMed  CAS  Google Scholar 

  • Savini L, Gaeta A, Fattorusso C, Catalanotti B, Campiani G, Chiasserini L, Pellerano C, Novellino E, McKissic D, Saxena A (2003) Specific targeting of acetylcholinesterase and butyrylcholinesterase recognition sites. Rational design of novel, selective, and highly potent cholinesterase inhibitors. J Med Chem 46:1–4

    Article  PubMed  CAS  Google Scholar 

  • Schuck PF, Rosa RB, Pettenuzzo LF, Sitta A, Wannmacher CM, Wyse AT, Wajner M (2004) Inhibition of mitochondrial creatine kinase activity from rat cerebral cortex by methylmalonic acid. Neurochem Int 45:661–667

    Article  PubMed  CAS  Google Scholar 

  • Schuck PF, Alves L, Pettenuzzo LF, Felisberto F, Rodrigues LB, Freitas BW, Petronilho F, Dal-Pizzol F, Streck EL, Ferreira GC (2013a) Acute renal failure potentiates methylmalonate-induced oxidative stress in brain and kidney of rats. Free Rad Res 47:233–240

    Article  CAS  Google Scholar 

  • Schuck PF, Januário SB, Simon KR, Scaini G, Mafioleti RL, Malgarin F, Pettenuzzo LF, Streck EL, Ferreira GC (2013b) Acute renal failure potentiates brain energy dysfunction elicited by methylmalonic acid. Int J Dev Neurosci in press

  • Schulpis KH, Kalimeris K, Bakogiannis C, Tsakiris T, Tsakiris S (2006) The effect of in vitro homocystinuria on the suckling rat hippocampal acetylcholinesterase. Metab Brain Dis 21:21–28

    Article  PubMed  CAS  Google Scholar 

  • Soreq H, Seidman S (2001) Acetylcholinesterase new roles for and old actor. Nat Rev Neurosci 2:294–302

    Article  PubMed  CAS  Google Scholar 

  • Srinivas KV, Want MA, Freigoun OS, Balkrishna N (2001) Methylmalonic acidemia with renal involvement: a case report and review of literature. Saudi J Kidney Dis Trasnplant 12:49–53

    CAS  Google Scholar 

  • Strada O, Vyas S, Hirsch EC, Ruberg M, Brice A, Agid Y, Javoy-Agid F (1992) Decreased choline acetyltransferase mRNA expression in the nucleus basalis of Meynert in Alzheimer disease: an in situ hybridization study. Proc Natl Acad Sci USA 89:9549–9553

    Article  PubMed  CAS  Google Scholar 

  • Sussman JL, Harel M, Frolow F, Oefner C, Goldman A, Toker L, Silman I (1991) Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science 253:872–879

    Article  PubMed  CAS  Google Scholar 

  • Toyoshima S, Watanabe F, Saido H, Miyatake K, Nakano Y (1995) Excretion from rats of ketone bodies and methylmalonic acid in urine resulting from dietary vitamin B12 deficiency. Biosci Biotechnol Biochem 59:1598–1599

    Article  PubMed  CAS  Google Scholar 

  • Trinh BC, Melhem ER, Barker PB (2001) Multi-slice proton MR spectroscopy and diffusion-weighted imaging in methylmalonic acidemia: report of two cases and review of the literature. AJNR Am J Neuroradiol 22:831–833

    PubMed  CAS  Google Scholar 

  • Tsakiris S, Deliconstantinos G (1984) Influence of phosphatidylserine on (Na++K+)-stimulated ATPase and acetylcholinesterase activities of dog brain synaptosomal plasma membranes. Biochem J 220:301–307

    PubMed  CAS  Google Scholar 

  • Van Calcar SC, Harding CO, Lyne P, Hogan K, Banerjee R, Sollinger H, Rieselbach RE, Wolff JA (1998) Renal transplantation in a patient with methylmalonic acidemia. J Inherit Metab Dis 21:729–737

    Article  PubMed  Google Scholar 

  • Wajner M, Barschak AG, Luft AP, Pires R, Grillo E, Lohr A, Funayama C, Sanseverino MT, Giugliani R, Vargas CR (2001) Acidúrias orgânicas: diagnóstico em pacientes de alto risco no Brasil. J Pediatr (Rio J) 77:401–406

    Article  Google Scholar 

  • Wiley RG, Berbos TG, Deckwerth TL, Johnson EM, Lappi DA Jr (1995) Destruction of the cholinergic basal forebrain using immunotoxin to rat NGF receptor: modeling the cholinergic degeneration of Alzheimer’s disease. J Neurol Sci 128:157–166

    Article  PubMed  CAS  Google Scholar 

  • Wyse AT, Streck EL, Barros SV, Brusque AM, Zugno AI, Wajner M (2000) Methylmalonic administration decreases Na+, K + -ATPase activity in cerebral cortex of rats. Neuro Report 11:2331–2334

    CAS  Google Scholar 

  • Zugno AI, Pereira LO, Mattos C, Scherer EBS, Netto CA, Wyse ATS (2008) Guanadinoacetato administration increases acetylcholinesterase activity in striatum of rats and impairs retention of an inhibitory avoidance task. Metab Brain Dis 23:189–198

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from CNPq, FAPESC and PROPEX/UNESC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo C. Ferreira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Affonso, A.C., Machado, D.G., Malgarin, F. et al. Increased susceptibility of brain acetylcholinesterase activity to methylmalonate in young rats with renal failure. Metab Brain Dis 28, 493–500 (2013). https://doi.org/10.1007/s11011-013-9396-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-013-9396-0

Keywords

Navigation