Skip to main content
Log in

Effect of histidine administration to female rats during pregnancy and lactation on enzymes activity of phosphoryltransfer network in cerebral cortex and hippocampus of the offspring

  • Original Paper
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Histidinemia is an inborn error of metabolism of amino acids caused by deficiency of histidase activity in liver and skin with consequent accumulation of histidine in plasma and tissues. Histidinemia is an autosomal recessive trait usually considered harmless to patients and their offspring, but some patients and children born from histidinemic mothers have mild neurologic alterations. Considering that histidinemia is one of the most frequently identified metabolic conditions, in the present study we investigated the effect of L-histidine load to female rats during pregnancy and lactation on some parameters of phosphoryltransfer network in cerebral cortex and hippocampus of the offspring. Pyruvate kinase, cytosolic and mitochondrial creatine kinase activities decreased in cerebral cortex and in hippocampus of rats at 21 days of age and this pattern remained in the cerebral cortex and in hippocampus at 60 days of age. Moreover, adenylate kinase activity was reduced in the cerebral cortex and in hippocampus of the offspring at 21 days of age, whereas the activity was increased in the two tissues at 60 days of age. These results suggest that administration of L-histidine to female rats in the course of pregnancy and lactation could impair energy homeostasis in the cerebral cortex and hippocampus of the offspring. Considering that histidinemia is usually a benign condition and little attention has been given to maternal histidinemia, it seems important to perform more studies in the children born from histidinemic mothers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aksenov MY, Aksenova MV, Payne RM, Smith CD, Markerbery WR, Carney JM (1997) The expression of creatine kinase isoenzymes in neocortex of patients with neurodegenerative disorders: Alzheimer’s and Pick’s disease. Experm Neurol 146:458–465

    Article  CAS  Google Scholar 

  • Araki T, Sasaki Y, Milbrandt J (2004) Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science 305:1010–1013

    Article  PubMed  CAS  Google Scholar 

  • Arstall MA, Bailey C, Gross WL, Bak M, Balligand JL, Klely RA (1998) Reversible S-nitrosation of creatine kinase by nitric oxide in adult rat ventricular myocytes. J Mol Cell Cardiol 30:979–988

    Article  PubMed  CAS  Google Scholar 

  • Auerbach VH, Digeorge AM, Baldridge RC, Tourtellotte CD, Brigham MP (1962) Histidinemia. A deficiency in histidase resulting in the urinary excretion of histidine and of imidazolepyruvic acid. J Pediatr 60:487–497

    Article  PubMed  CAS  Google Scholar 

  • Beal MF (1995) Aging, energy and oxidative stress in neurodegenerative diseases. Ann Neurol 38:357–366

    Article  PubMed  CAS  Google Scholar 

  • Beal MF, Hyman BT, Koroshetz W (1993) Do defects in mitochondrial energy metabolism underlie the pathology of neurodegenerative diseases? Trends Neurosci 16:125–131

    Article  PubMed  CAS  Google Scholar 

  • Berry EV, Toms NJ (2006) Pyruvate and oxaloacetate limit zinc-induced oxidative HT-22 neuronal cell injury. Neurotoxicology 27:1043–1051

    Article  PubMed  CAS  Google Scholar 

  • Brustovetsky N, Brustovetsky T, Dubinsky JM (2001) On the mechanisms of neuroprotection by creatine and phosphorcreatine. J Neurochem 76:425–434

    Article  PubMed  CAS  Google Scholar 

  • Burmistrov SO, Mashek OP, Kotin AM (1992) The action of acute alcoholic intoxication on the antioxidant system and creatine kinase activity in the brain of rat embryos. Eksp Klin Farmakol 55:54–56

    PubMed  CAS  Google Scholar 

  • Chung S, Arrell DK, Faustino RS, Terzic A, Dzeja PP (2010) Glycolytic network restructuring integral to the energetics of embryonic stem cell cardiac differentiation. J Mol Cell Cardiol 48:725–734

    Article  PubMed  CAS  Google Scholar 

  • Cornelio AR, Rodrigues V Jr, de Souza Wyse AT, Dutra-Filho CS, Wajner M, Wannmacher CM (2004) Tryptophan reduces creatine kinase activity in the brain cortex of rats. Int J Dev Neurosci 22:95–101

    Article  PubMed  CAS  Google Scholar 

  • Costabeber E, Kessler A, Severo Dutra-Filho C, de Souza Wyse AT, Wajner M, Wannmacher CM (2003) Hyperphenylalaninemia reduces creatine kinase activity in the cerebral cortex of rats. Int J Dev Neurosci 21:111–116

    Article  PubMed  CAS  Google Scholar 

  • Dutra-Filho CS, Wannmacher CM, Pires RF, Gus G, Kalil AM, Wajner M (1989) Reduced locomotor activity of rats made histidinemic by injection of histidine. J Nutr 119:1223–1227

    PubMed  CAS  Google Scholar 

  • Dzeja PP, Terzic A (2003) Phosphotransfer networks and cellular energetics. J Exp Biol 206:2039–2047

    Article  PubMed  CAS  Google Scholar 

  • Dzeja PP, Terzic A (2009) Adenylate kinase and AMP signaling networks: metabolic monitoring, signal communication and body energy sensing. Int J Mol Sci 10:1729–1772

    Article  PubMed  CAS  Google Scholar 

  • Dzeja PP, Zeleznikar RJ, Goldberg ND (1998) Adenylate kinase: kinetic behavior intact cells indicates it is integral to multiple cellular processes. Mol Cell Biochem 184:169–182

    Article  PubMed  CAS  Google Scholar 

  • Dzeja PP, Vitkevicius KT, Redfied MM, Burnett JC, Terzic A (1999) Adenylate kinase-catalyzed phosphotransfer in the myocardium: increased contribution in heart failure. Circ Res 84:1137–1143

    Article  PubMed  CAS  Google Scholar 

  • Dzeja PP, Redfield MM, Burnett JC, Terzic A (2000) Failing energetics in failing hearts. Curr Cardiol Rep 2:212–217

    Article  PubMed  CAS  Google Scholar 

  • Dzeja PP, Bortolon R, Perez-Terzic C, Holmuhamedov EL, Terzic A (2002) Energetic communication between mitochondria and nucleus directed by catalyzed phosphotransfer. Proc Natl Acad Sci U S A 99:10156–10161

    Article  PubMed  CAS  Google Scholar 

  • Feksa LR, Cornelio AR, Vargas CR, de Souza Wyse AT, Dutra-Filho CS, Wajner M, Wannmacher CM (2003) Alanine prevents the inhibition of pyruvate kinase activity caused by tryptophan in cerebral cortex of rats. Metab Brain Dis 18:129–137

    Article  PubMed  CAS  Google Scholar 

  • Feksa LR, Latini A, Rech VC, Feksa PB, Koch GD, Amaral MF, Leipnitz G, Dutra-Filho CS, Wajner M, Wannmacher CM (2008) Tryptophan administration induces oxidative stress in brain cortex of rats. Metab Brain Dis 23:221–233

    Article  PubMed  CAS  Google Scholar 

  • Figueiredo VC, Feksa LR, Wannmacher CM (2009) Cysteamine prevents inhibition of adenylate kinase caused by cystine in rat brain cortex. Metab Brain Dis 24:373–381

    Article  PubMed  CAS  Google Scholar 

  • Ghadimi H, Partington MW, Hunter A (1961) A familial disturbance of histidine metabolism. N Engl J Med 265:221–224

    Article  PubMed  CAS  Google Scholar 

  • Gilbert HF (1984) Redox control of enzyme activities by thiol/disulfide exchange. Methods Enzymol 107:330–351

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B (2011) Free radicals and antioxidants – quo vadis? Trends Pharmacol Sci 32:125–130

    Article  PubMed  CAS  Google Scholar 

  • Hodgkins PS, Schwarcz R (1998) Interference with cellular energy metabolism reduces kynurenic acid formation in rat brain slices: reversal by lactate and pyruvate. Eur J Neurosci 10:1986–1994

    Article  PubMed  CAS  Google Scholar 

  • Hughes BP (1962) A method for estimation of serum creatine kinase and its use in comparing creatine kinase and aldolase activity in normal and pathological sera. Clinica Chimica Acta 7:597–603

    Article  CAS  Google Scholar 

  • Ishikawa M (1987) Developmental disorders in histidinemia—follow-up study of language development in histidinemia. Acta Paediatr Jpn 29:224–228

    Article  PubMed  CAS  Google Scholar 

  • Kacser H, Mya KM, Bulfield G (1979) Endogenous teratogenesis in maternal histidinemia. In: Hommes FA (ed) Models for the study of inborn errors of metabolism. Elsevier/North Holland Biomedical Press, Amsterdam, pp 43–53

    Google Scholar 

  • Kessler A, Costabeber E, Dutra-Filho CS, Wyse AT, Wajner M, Wannmacher CM (2003) Proline reduces creatine kinase activity in the brain cortex of rats. Neurochem Res 28:1175–1180

    Article  PubMed  CAS  Google Scholar 

  • Kessler A, Biasibetti M, da Silva Melo DA, Wajner M, Dutra-Filho CS, de Souza Wyse AT, Wannmacher CM (2008) Antioxidant effect of cysteamine in brain cortex of young rats. Neurochem Res 33:737–744

    Article  PubMed  CAS  Google Scholar 

  • Konorev EA, Hogg N, Kalyanaraman B (1998) Rapid and irreversible inhibition of creatine kinase by peroxynitrite. FEBS Lett 427:171–174

    Article  PubMed  CAS  Google Scholar 

  • La Du BN (1978) Histidinemia. In: Stanbury JB, Wyngaarden JB, Fredrickson DS, Golgstein IL, Brown MS (eds) The metabolic basis of inherited disease. McGraw-Hill, New York, NY, pp 317–327

    Google Scholar 

  • La Du BN, Howell RR, Jacoby GA, Seegmiller JE, Zannoni G (1962) The enzymatic defect in histidinemia. Biochem Biophys Res Commun 7:398–402

    Article  Google Scholar 

  • Lam WK, Cleary MA, Wraith JE, Walter JH (1996) Histidinaemia: a benign metabolic disorder. Arch Dis Childhood 74:343–346

    Article  CAS  Google Scholar 

  • Lawler JM, Barnes WS, Wu G, Song W, Demaree S (2002) Direct antioxidant properties of creatine. Biochem Biophys Res Commun 290:47–52

    Article  PubMed  CAS  Google Scholar 

  • Leong SF, Lai JCK, Lim L, Clark JB (1981) Energy-metabolising enzymes in brain regions of adult and aging rats. J Neurochem 37:1548–1556

    Article  PubMed  CAS  Google Scholar 

  • Levy HL, Taylor RG, McInnes RR (2001) Disorders of histidine metabolism. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited diseases, 8th edn. McGraw-Hill, New York, pp 1807–1820

    Google Scholar 

  • Levy HL, Yu JJ, Waisbren SE (2004) Maternal histidinaemia: pregnancies and offspring outcomes. J Inherit Metab Dis 27:197–204

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough N, Farr AL, Randal RJ (1951) Protein measurement with a folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Mallet RT, Bunger R (1993) Metabolic protection of postischemic phosphorylation potential and ventricular performance. Adv Exp Med Biol 346:233–241

    Article  PubMed  CAS  Google Scholar 

  • Mallet RT, Sun J, Knott EM, Sharma AB, Olivencia-Yurvati AH (2005) Metabolic cardioprotection by pyruvate. Exp Biol Med 230:435–443

    CAS  Google Scholar 

  • Moraes TB, Zanin F, da Rosa A, de Oliveira A, Coelho J, Petrillo F, Wajner M, Dutra-Filho CS (2010) Lipoic acid prevents oxidative stress in vitro and in vivo by an acute hyperphenylalaninemia chemically-induced in rat brain. J Neurol Sci 292:89–95

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee SK, Klaidman LK, Yasharel R, Adams JD (1997) Increased brain NAD prevents neuronal apoptosis in vivo. Eur J Pharmacol 330:27–34

    Article  PubMed  CAS  Google Scholar 

  • Nicholls DG, Johnson-Cadwell L, Vesce S, Jekabson M, Yadav N (2007) Bioenergetics of mitochondria in cultured neurons and their role in glutamate excitotoxicity. J Neurosci Res 85:3206–3212

    Article  PubMed  CAS  Google Scholar 

  • Noda LH (1973) Adenylate kinase. In: Boyer PD (ed) The enzymes, vol. 8, 3rd edn. Academic, New York, pp 279–305

    Google Scholar 

  • Oliver IT (1955) A spectrophotometric method for the determination of creatine phosphokinase and myokinase. Biochem J 61:116–122

    PubMed  CAS  Google Scholar 

  • Pilla C, de Oliveira Cardozo RF, Dutra-Filho CS, Wyse AT, Wajner M, Wannmacher CM (2003) Effect of leucine administration on creatine kinase activity in rat brain. Metab Brain Dis 18:17–25

    Article  PubMed  CAS  Google Scholar 

  • Price NC, Cohn M, Schirmer RH (1975) Fluorescent and spin label probes of the environments of the sulfhydryl groups of porcine muscle adenylate kinase. J Biol Chem 250:644–652

    PubMed  CAS  Google Scholar 

  • Rech VC, Feksa LR, Fleck RM, Athaydes GA, Dornelles PK, Rodrigues-Junior V, Wannmacher CM (2008) Cysteamine prevents inhibition of thiol-containing enzymes caused by cystine or cystine dimethylester loading in rat brain cortex. Metab Brain Dis 23:133–145

    Article  PubMed  CAS  Google Scholar 

  • Rojas DB, Gemelli T, Andrade RB, Campos AG, Dutra-Filho CS, Wannmacher CMD (2012) Administration of histidine to female rats induces changes in oxidative status in cortex and hippocampus of the offspring. Neurochem Res 37:1031–1036

    Article  PubMed  CAS  Google Scholar 

  • Saks VA, Khuchua ZA, Vasilyeva EV, Belikova O, Kuznetsov AV (1994) Metabolic compartmentation and substrate channelling in muscle cells. Role of coupled creatine kinases in in vivo regulation of cellular respiration–a synthesis. Mol Cell Biochem 133–134:155–192

    Article  PubMed  Google Scholar 

  • Skvorak KJ (2009) Animal models of maple syrup urine disease. J Inherit Metab Dis 32:229–246

    Article  PubMed  CAS  Google Scholar 

  • Stachowiak O, Dolder M, Wallimann T, Richter C (1998) Mitochondrial creatine kinase is a prime target of peroxynitrite-induced modification and inactivation. J Biol Chem 273:16694–16699

    Article  PubMed  CAS  Google Scholar 

  • Tada K, Tateda H, Arashima S, Sakai K, Kitagawa T, Aoki K, Suwa S, Kawamura M, Oura T, Takesada M, Kuroda Y, Yamashita F, Matsuda I, Naruse H (1982) Intellectual development in patients with untreated histidinemia. J Pediatr 101:562–563

    Article  PubMed  CAS  Google Scholar 

  • Tansini CM, Durigon K, Testa CG, Belló-Klein A, Wajner M, Wannmacher CMD, Wyse ATS, Dutra-Filho CS (2004) Effects of histidine and imidazolelactic acid on various parameters of the oxidative stress in cerebral cortex of young rats. Int J Devel Neuroscience 22:67–72

    Article  CAS  Google Scholar 

  • Taylor RG, Levy HL, McInnes RR (1991) Histidase and histidinemia. Clinical and molecular considerations. Mol Biol Med 8:101–116

    Google Scholar 

  • Tomimoto H, Yamamoto K, Homburger HA, Yanagihara T (1993) Immunoelectron microscopic investigation of creatine kinase BB-isoenzyme after cerebral ischemia in gerbils. Acta Neuropathol 86:447–455

    PubMed  CAS  Google Scholar 

  • Tonin AM, Ferreira GC, Schuck PF, Viegas CM, Zanatta A, Leipnitz G, Seminotti B, Duvall Wannmacher CM, Wajner M (2009) Inhibition of creatine kinase activity by lysine in rat cerebral cortex. Metab Brain Dis 24:349–360

    Article  PubMed  CAS  Google Scholar 

  • Valentini G, Chiarelli LR, Fortin R, Speranza ML, Galizzi A, Mattevi A (2000) The allosteric regulation of pyruvate kinase. J Biol Chem 275:18145–18152

    Article  PubMed  CAS  Google Scholar 

  • Vlassenko AG, Rundle MM, Raichle ME, Mintun MA (2006) Regulation of blood flow in activated human brain by cytosolic NADH/NAD ratio. Proc Natl Acad Sci U S A 103:1964–1969

    Article  PubMed  CAS  Google Scholar 

  • Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM (1992) Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the 'phosphocreatine circuit' for cellular energy homeostasis. Biochem J 281:21–40

    PubMed  CAS  Google Scholar 

  • Wallimann T, Dolder M, Schlattner U, Eder M, Hornemann T, O'Gorman E, Rück A, Brdiczka D (1998) Some new aspects of creatine kinase (CK): compartmentation, structure, function and regulation for cellular and mitochondrial bioenergetics and physiology. Biofactors 8:229–234

    Article  PubMed  CAS  Google Scholar 

  • Wallimann T, Tokarska-Schlattner M, Schlattner U (2011) The creatine kinase system and pleiotropic effects of creatine. Amino Acids 40:1271–1296

    Article  PubMed  CAS  Google Scholar 

  • Weeds AG, Noda L (1968) Amino acid sequences around the thiol groups of myokinase. Biochem J 107:311–312

    PubMed  CAS  Google Scholar 

  • Whitman RD, Maher BA, Abeles R (1977) Deficits in discrimination and maze learning resulting from maternal histidinemia in rats. J Abnorm Psychol 86:662–664

    Article  PubMed  CAS  Google Scholar 

  • Wolosker H, Panizzutti R, Engelender S (1996) Inhibition of creatine kinase by S-nitrosoglutathione. FEBS Lett 392:274–276

    Article  PubMed  CAS  Google Scholar 

  • Wyss M, Braissant O, Pischel I, Salomons GS, Schulze A, Stockler S, Wallimann T (2007) Creatine and creatine kinase in health and disease–a bright future ahead? Subcell Biochem 46:309–334

    Article  PubMed  Google Scholar 

  • Zeng J, Yang GY, Ying W, Kelly M, Hira K, James TL, Swanson RA, Litt L (2007) Pyruvate improves recovery after PARP-1-associated energy failure induced by oxidative stress in neonatal rat cerebro cortical slices. J Cereb Blood Flow Metab 27:304–315

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the research grants from Programa de Núcleos de Excelência (PRONEX), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS) and FINEP Rede Instituto Brasileiro de Neurociência.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clóvis Milton Duval Wannmacher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rojas, D.B., de Andrade, R.B., Gemelli, T. et al. Effect of histidine administration to female rats during pregnancy and lactation on enzymes activity of phosphoryltransfer network in cerebral cortex and hippocampus of the offspring. Metab Brain Dis 27, 595–603 (2012). https://doi.org/10.1007/s11011-012-9319-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-012-9319-5

Keywords

Navigation