Skip to main content
Log in

Evaluation of brain and kidney energy metabolism in an animal model of contrast-induced nephropathy

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Contrast-induced nephropathy is a common cause of acute renal failure in hospitalized patients, occurring from 24 to 48 h and up to 5 days after the administration of iodinated contrast media. Encephalopathy may accompany acute renal failure and presents with a complex of symptoms progressing from mild sensorial clouding to delirium and coma. The mechanisms responsible for neurological complications in patients with acute renal failure are still poorly known, but several studies suggest that mitochondrial dysfunction plays a crucial role in the pathogenesis of uremic encephalopathy. Thus, we measured mitochondrial respiratory chain complexes and creatine kinase activities in rat brain and kidney after administration of contrast media. Wistar rats were submitted to 6.0 ml/kg meglumine/sodium diatrizoate administration via the tail vein (acute renal failure induced by contrast media) and saline in an equal volume with the radiocontrast material (control group); 6 days after, the animals were killed and kidney and brain were obtained. The results showed that contrast media administration decreased complexes I and IV activities in cerebral cortex; in prefrontal cortex, complex I activity was inhibited. On the other hand, contrast media administration increased complexes I and II-III activities in hippocampus and striatum and complex IV activity in hippocampus. Moreover, that administration of contrast media also decreased creatine kinase activity in the cerebral cortex. The present findings suggest that the inhibition of mitochondrial respiratory chain complexes and creatine kinase caused by the acute renal failure induced by contrast media administration may be involved in the neurological complications reported in patients and might play a role in the pathogenesis of the encephalopathy caused by acute renal failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aksenov M, Butterfield DA, Markesbery WR (2000) Oxidative modification of creatine kinase BB in Alzheimer’s disease brain. J Neurochem 74:2520–2527

    Article  PubMed  CAS  Google Scholar 

  • Amini M, Salarifar M, Amirbaigloo A, Masoudkabir F, Esfahani F (2009) N-acetylcysteine does not prevent contrast-induced nephropathy after cardiac catheterization in patients with diabetes mellitus and chronic kidney disease: a randomized clinical trial. Trials 10:1–6

    Article  Google Scholar 

  • Anarat A, Duman N, Noyan A, Kibar M, Anarat R (1997) The role of endothelin in radiocontrast nephropathy. Int Urol Nephrol 29:609–613

    Article  PubMed  CAS  Google Scholar 

  • Arduíno DM, Esteves AR, Cardoso SM, Oliveira CR (2009) Endoplasmic reticulum and mitochondria interplay mediates apoptotic cell death: relevance to Parkinson's disease. Neurochem Int 55:341–348

    Article  PubMed  Google Scholar 

  • Arend LJ, Burnett JC Jr, Megerian C, Spielman WS (1987) Role for intrarenal adenosine in the renal hemodynamic response to contrast media. J Lab Clin Med 110:406–411

    PubMed  CAS  Google Scholar 

  • Bakris GL, Lass N, Gaber AO, Jones JD, Burnett JC Jr (1990) Radiocontrast medium-induced declines in renal function: a role for oxygen free radicals. Am J Physiol 258:115–120

    Google Scholar 

  • Bakris GL, Lass NA, Glock D (1999) Renal hemodynamics in radiocontrast medium-induced renal dysfunction. Kidney Int 56:206–210

    Article  PubMed  CAS  Google Scholar 

  • Barbosa PR, Cardoso MR, Daufenbach JF, Goncalves CL, Machado RA, Roza CA, Scaini G, Rezin GT, Schuck PF, Dal-Pizzol F, Streck EL (2010) Inhibition of mitochondrial respiratory chain in the brain of rats after renal ischemia is prevented by N-acetylcysteine and deferoxamine. Metab Brain Dis 25:219–225

    Article  PubMed  CAS  Google Scholar 

  • Barja G, Herrero A (1998) Localization at complex I and mechanism of the higher free radical production of brain nonsynaptic mitochondria in the short-lived rat than in the longevous pigeon. J Bioenerg Biomembr 30:235–243

    Article  PubMed  CAS  Google Scholar 

  • Barrett BJ (1993) Metaanalysis of the relative nephrotoxicity of high- and low-osmolality lodinated contrast media. Radiology 188:171–178

    PubMed  CAS  Google Scholar 

  • Beckman KB, Ames BN (1998) The free radical theory of aging matures. Physiol Ver 78:547–581

    CAS  Google Scholar 

  • Bessman SP, Carpenter CL (1985) The creatine-creatine phosphate energy shuttle. Annu Rev Biochem 54:831–865

    Article  PubMed  CAS  Google Scholar 

  • Blass JP (2001) Brain metabolism and brain disease: is metabolic deficiency the proximate cause of Alzheimer dementia? J Neurosci Res 66:851–856

    Article  PubMed  CAS  Google Scholar 

  • Boekema EJ, Braun HP (2007) Supramolecular structure of the mitochondrial oxidative phosphorylation system. J Biol Chem 282:1–4

    Article  PubMed  CAS  Google Scholar 

  • Bour’e T, Vanholder R (2004) Biochemical and clinical evidence for uremic toxicity. Artif Organs 28:248–253

    Article  Google Scholar 

  • Brouns R, De Deyn PP (2004) Neurological complications in renal failure: a review. Clin Neurol Neurosurg 107:1–16

    Article  PubMed  CAS  Google Scholar 

  • Burn DJ, Bates D (1998) Neurology and the kidney. J Neurol Neurosurg Psychiatry 65:810–821

    Article  PubMed  CAS  Google Scholar 

  • Carbonell T, Rama R (2007) Iron, oxidative stress and early neurological deterioration in ischemic stroke. Curr Med Chem 14:857–874

    Article  PubMed  CAS  Google Scholar 

  • Cassina A, Radi R (1996) Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport. Arch Biochem Biophys 328:309–316

    Article  PubMed  CAS  Google Scholar 

  • Clay VJ, Ragan CI (1988) Evidence for the existence of tissue specific isoenzymes of mitochondrial NADH dehydrogenase. Biochem Biophys Res Commun 157:1423–1428

    Article  PubMed  CAS  Google Scholar 

  • Coyle LC, Rodriguez A, Jeschke RE, Simon-Lee A, Abbott KC, Taylor AJ (2006) Acetylcysteine In Diabetes (AID): a randomized study of acetylcysteine for the prevention of contrast nephropathy in diabetics. Am Heart J 151:1032

    Article  PubMed  CAS  Google Scholar 

  • David S, Shoemaker M, Haley BE (1998) Abnormal properties of creatine kinase in alzheimer’s disease brain: correlation of reduced enzyme activity and active site photolabeling with aberrant cytosol-membrane partitioning. Mol Brain Res 54:276–287

    Article  PubMed  CAS  Google Scholar 

  • Deray G, Cacoub P, Baumelou B, Baumelou B, Baumelou A, Jacobs C (1990) A role for adenosine and calcium and ischemia in radiocontrast-induced intrarenal vasoconstriction. Am J Nephrol 10:316–322

    Article  PubMed  CAS  Google Scholar 

  • Di-Pietro PB, Dias ML, Scaini G, Burigo M, Constantino L, Machado RA, Dal-Pizzol F, Streck EL (2008) Inhibition of brain creatine kinase activity after renal ischemia is attenuated by N-acetylcysteine and deferoxamine administration. Neurosci Lett 434:139–143

    Article  PubMed  CAS  Google Scholar 

  • Evenepoel P (2004) Acute toxic renal failure. Best Pract Res Clin Anaesthesiol 18(1):37–52

    Article  PubMed  CAS  Google Scholar 

  • Fischer JC, Ruitenbeek W, Berden JA, Trijbels JM, Veerkamp JH, Stadhouders MS, Engers RC, Jansen AJ (1985) Differential investigation of the capacity of succinate oxidation in human skeletal muscle. Clin Chim Acta 153:23–36

    Article  PubMed  CAS  Google Scholar 

  • Fishbane S (2008) N-acetylcysteine in the prevention of contrast-induced nephropathy. Clin J Am Soc Nephrol 3:281–287

    Article  PubMed  CAS  Google Scholar 

  • Gassner B, Wuthrich A, Scholtysik G, Solioz M (1997) The pyrethroids permethrin and cyhalothrin are potent inhibitors of the mitochondrial complex I. J Pharmacol Exp Ther 281:855–860

    PubMed  CAS  Google Scholar 

  • Gonzalez-Flecha B, Cutrin JC, Boveris A (1993) Time course and mechanism of oxidative stress and tissue damage in rat liver subjected to in vivo ischemia-reperfusion. J Clin Invest 91:456–464

    Article  PubMed  CAS  Google Scholar 

  • Gross WL, Bak MI, Ingwall JS, Arstall MA, Smith TW, Balligand JL, Kelly RA (1996) Nitric oxide inhibits creatine kinase and regulates rat heart contractile reserve. Proc Natl Acad Sci USA 93:5604–5609

    Article  PubMed  CAS  Google Scholar 

  • Gruno M, Peet N, Tein A, Salupere R, Sirotkina M, Valle J, Peetsalu A, Seppet EK (2008) Atrophic gastritis: deficient complex I of the respiratory chain in the mitochondria of corpus mucosal cells. J Gastroenterol 43:780–788

    Article  PubMed  CAS  Google Scholar 

  • Hamman BL, Bittl JA, Jacobus WE, Allen PD, Spencer RS, Tian R, Ingwall JS (1995) Inhibition of the creatine kinase reaction decreases the contractile reserve of isolated rat hearts. Am J Physiol 269:1030–1036

    Google Scholar 

  • Heales SJ, Bolaños JP, Stewart VC, Brookes PS, Land JM, Clark JB (1999) Nitric oxide, mitochondria and neurological disease. Biochim Biophys Acta 1410:215–228

    Article  PubMed  CAS  Google Scholar 

  • Heyman SN, Kaiser N, Spokes K, Rosen S, Brezis M, Epstein FH (1992) Radiocontrast agents induce endothelin release in vivo and in vitro. J Am Soc Nephrol 3:58–65

    PubMed  CAS  Google Scholar 

  • Heyman SN, Clark BA, Cantley L, Spokes K, Rosen S, Brezis M, Epstein FH (1993) Effects of ioversol versus iothalamate on endothelin release and radiocontrast nephropathy. Invest Radio 28:313–318

    Article  CAS  Google Scholar 

  • Heyman SN, Reichman J, Brezis M (1999) Pathophysiology of radiocontrast nephropathy: a role for medullary hypoxia. Invest Radiol 34:685–691

    Article  PubMed  CAS  Google Scholar 

  • Hughes BP (1961) A method for estimation of serum creatine kinase and its use in comparing creatine kinase and aldolase activity in normal and pathologic sera. Clin Chim Acta 7:597–604

    Article  Google Scholar 

  • Katzberg RW (1997) Urography into the 21st century: new contrast media, renal handling, imaging characteristics, and nephrotoxicity. Radiology 204:297–312

    PubMed  CAS  Google Scholar 

  • Kishore BK, Gejyo F, Arakawa M (1983) Malondialdehyde: a putative uremic toxin IRCS. Med Sci 11:750–751

    CAS  Google Scholar 

  • Konarski M, Stewart RE, McCarty R (1990) Predictability of chronic intermittent stress: effects on sympathetic-adrenal medullary responses of laboratory rats. Behav Neural Biol 53:231–243

    Article  Google Scholar 

  • Lee JM, Grabb MC, Zipfel GJ, Choi DW (2000) Brain tissue responses to ischemia. J Clin Invest 106:723–731

    Article  PubMed  CAS  Google Scholar 

  • Liss P, Hansell P, Lagerqvist B (2006) Renal failure in 57,925 patients undergoing coronary procedures using iso-osmolar or low-osmolar contrast media. Kid Int 70:1811–1817

    Article  CAS  Google Scholar 

  • Liu R, Nair D, Ix J, Moore DH, Bent S (2005) N-acetylcysteine for the prevention of contrast-induced nephropathy. A systematic review and meta-analysis. J Gen Intern Med 20:193–200

    Article  PubMed  Google Scholar 

  • Lou H (1996) Etiology and pathogenesis of attention-deficit hyperactivity disorder (ADHD); significance of prematurity and perinatal hypoxic-haemodynamic encephalopathy. Acta Paediatr 85:1266–1271

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebough NG, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Madrigal JL, Olivenza R, Moro MA, Lizasoain I, Lorenzo P, Rodrigo J, Leza JC (2001) Glutathione depletion, lipid peroxidation and mitochondrial dysfunction are induced by chronic stress in rat brain. Neuropsychopharmacology 24:420–429

    Article  PubMed  CAS  Google Scholar 

  • Mahoney CA, Arieff AI (1982) Uremic encephalopathies: clinical, biochemical, and experimental features. Am J Kidney Dis 2:324–336

    PubMed  CAS  Google Scholar 

  • Massicotte C, Knight K, Van der Schyf CJ, Jortner BS, Ehrich M (2005) Effects of organophosphorus compounds on ATP production, mitochondrial integrity in cultured cells. Neurotox Res 7:203–221

    Article  PubMed  CAS  Google Scholar 

  • McCullough PA, Wolyn R, Rocher LL, Levin RN, O’Neill WW (1997) Acute renal failure after coronary intervention: incidence, risk factors, and relationship to mortality. Am J Med 103:368–374

    Article  PubMed  CAS  Google Scholar 

  • Merle P, Kadenbach B (1980) On the heterogeneity of vertebrate cytochrome c oxidase polypeptide chain composition. Hoppe Seylers Z Physiol Chem 361:1257–1259

    Article  PubMed  CAS  Google Scholar 

  • Monsalve M, Borniquel S, Valle I, Lamas S (2007) Mitochondrial dysfunction in human pathologies. Front Biosci 12:1131–1153

    Article  PubMed  CAS  Google Scholar 

  • Navarro A, Boveris A (2004) Rat brain and liver mitochondria develop oxidative stress and lose enzymatic activities on aging. Am J Physiol Regul Integr Comp Physiol 287:R1244–R1249

    Article  PubMed  CAS  Google Scholar 

  • Navarro A, Gomez C, Sanchez-Pino MJ, González H, Bández MJ, Boveris AD, Boveris A (2005) Vitamin E at high doses improves survival, neurological performance, and brain mitochondrial function in aging male mice. Am J Physiol Regul Integr Comp Physiol 289:R1392–R1399

    Article  PubMed  CAS  Google Scholar 

  • Parfrey PS, Griffiths SM, Barrett BJ, Paul MD, Genge M, Withers J, Farid N, McManamon PJ (1989) Contrast material-induced renal failure in patients with diabetes mellitus, renal insufficiency, or both. N Engl J Med 320:143–153

    Article  PubMed  CAS  Google Scholar 

  • Pizzolatti RC, Petronilho F, Constantino L, Vuolo F, Cardoso F, Felisberto F, Dal-Pizzol F, Ritter C (2011) Differential effects of N-acetylcysteine and desferoxamine in diabetic and non-diabetic rats subjected to contrastinduced nephropathy. Submitted manuscript.

  • Rudnick MRGS, Wexler L, Ludbrook PA, Murphy MJ, HalpernR EF, Hill JA, Winniford M, Cohen MB, VanFossen DB (1995) Nephrotoxicity of ionic and nonionic contrast media in 1196 patients: a randomized trial. Kidney Int 47:254–261

    Article  PubMed  CAS  Google Scholar 

  • Rudnick MR, Cohen RM, Goldfarb S (1996) Contrast media-associated nephrotoxicity. Curr Opin Nephrol Hypertens 5:127–133

    Article  PubMed  CAS  Google Scholar 

  • Rustin P, Chretien D, Bourgeron GB, Rötig A, Saudubray JM, Munnich A (1994) Biochemical and molecular investigations in respiratory chain deficiencies. Clin Chim Acta 228:35–51

    Article  PubMed  CAS  Google Scholar 

  • Schnyder T, Gross H, Winkler H, Eppenberger HM, Wallimann T (1991) Crystallization of mitochondrial creatine kinase. Growing of large protein crystals and electron microscopic investigation of microcrystals consisting of octamers. J Biol Chem 266:5318–5322

    PubMed  CAS  Google Scholar 

  • Schurr A (2002) Energy metabolism, stress hormones and neural recovery from cerebral ischemia/hypoxia. Neurochem Int 41:1–8

    Article  PubMed  CAS  Google Scholar 

  • Sener G, Sakarcan A, Sehirli O, Ekşioğlu-Demiralp E, Sener E, Ercan F, Gedik N, Yeğen BC (2007) Chronic renal failure-induced multiple-organ injury in rats is alleviated by the selective CysLT1 receptor antagonist montelukast. Prostaglandins Other Lipid Mediat 83:257–267

    Article  PubMed  CAS  Google Scholar 

  • Sherer TB, Betarbet R, Kim JH, Greenamyre JT (2003) Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and alpha-synuclein aggregation. Exp Neurol 179:9–16

    Article  PubMed  CAS  Google Scholar 

  • Singri N, Ahya SN, Levin ML (2003) Acute renal failure. JAMA 289:747–751

    Article  PubMed  Google Scholar 

  • Solomon R (1998) Contrast-medium-induced acute renal failure. Kidney Int 53:230–242

    Article  PubMed  CAS  Google Scholar 

  • Streck EL, Feier G, Búrigo M, Franzon R, Dal-Pizzol F, Quevedo J, Wyse AT (2006) Effects of electroconvulsive seizures on Na+, K+-ATPase activity in the rat hippocampus. Neurosci Lett 404:254–257

    Article  PubMed  CAS  Google Scholar 

  • Streck EL, Amboni G, Scaini G, Di-Pietro PB, Rezin GT, Valvassori SS, Luz G, Kapczinski F, Quevedo J (2008) Brain creatine kinase activity in an animal model of mania. Life Sci 82:424–429

    Article  PubMed  CAS  Google Scholar 

  • Taylor RW, Birch-Machin MA, Bartlett K, Turnbull DM (1993) Succinate-cytochrome c reductase: assessment of its value in the investigation of defects of the respiratory chain. Biochim Biophys Acta 1181:261–265

    PubMed  CAS  Google Scholar 

  • Thadhani R, Pascual M, Bonventre JV (1996) Acute renal failure. N Engl J Med 334:1448–1460

    Article  PubMed  CAS  Google Scholar 

  • Thomsen HS, Morcos SK (2005) Members of Contrast Media Safety Committee of European Society of Urogenital Radiology (ESUR). In which patients should serum creatinine be measured before iodinated contrast medium administration? Eur Radiol 15:749–754

    Article  PubMed  Google Scholar 

  • Tomimoto H, Ymamoto K, Homburger HA, Yanagihara T (1993) Immunoelectron microscopic investigation of creatine kinase BB-isoenzyme after cerebral ischemia in gerbils. Acta Neuropathol 86:447–455

    PubMed  CAS  Google Scholar 

  • Toprak O, Cirit M, Tanrisev M, Yazici C, Canoz O, Sipahioglu M, Uzum A, Ersoy R, Sozmen EY (2008) Preventive effect of nebivolol on contrast-induced nephropathy in rats. Nephrol Dial Transplant 23:853–859

    Article  PubMed  CAS  Google Scholar 

  • Torres RL, Torres IL, Gamaro GD, Fontella FU, Silveira PP, Moreira JS, Lacerda M, Amoretti JR, Rech D, Dalmaz C, Belló AA (2004) Lipid peroxidation and total radical-trapping potential of the lungs of rats submitted to chronic and sub-chronic stress. Braz J Med Biol Res 37:185–192

    Article  PubMed  CAS  Google Scholar 

  • Trznadel K, Pawlicki L, Kedziora J, Luciak M, Blaszczyk J, Buczynski A (1989) Superoxide anion generation, erythrocytes superoxide dismutase activity, and lipid peroxidation during hemoperfusion and hemodialysis in chronic uremic patients. Free Radic Biol Med 6:393–397

    Article  PubMed  CAS  Google Scholar 

  • Tumlin J, Wang A, Murray P, Mathur V (2002) Fenoldopam mesylate blocks reductions in renal plasma fl ow after radiocontrast dye infusion: a pilot trial in the prevention of contrast nephropathy. Am Heart J 143:894–903

    Article  PubMed  CAS  Google Scholar 

  • Vaziri ND, Oveisi F, Ding Y (1998) Role of increased oxygen free radical activity in the pathogenesis of uremic hypertension. Kidney Int 53:1748–1754

    Article  PubMed  CAS  Google Scholar 

  • Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM (1992) Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochem J 281:21–40

    PubMed  CAS  Google Scholar 

  • Yen HW, Lee HC, Lai WT, Sheu SH (2007) Effects of acetylcysteine and probucol on contrast medium-induced depression of intrinsic renal glutathione peroxidase activity in diabetic rats. Arch Med Res 38:291–296

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from Programa de Pós-graduação em Ciências da Saúde—Universidade do Extremo Sul Catarinense (UNESC) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio L. Streck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roza, C.A., Scaini, G., Jeremias, I.C. et al. Evaluation of brain and kidney energy metabolism in an animal model of contrast-induced nephropathy. Metab Brain Dis 26, 115–122 (2011). https://doi.org/10.1007/s11011-011-9240-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-011-9240-3

Keywords

Navigation