Skip to main content
Log in

Organic osmolytes in hyponatremia and ammonia toxicity

  • Original Paper
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Hyperammonemia (HA) is a major and commonly observed feature of hepatic encephalopathy. Furthermore, hyponatremia is an important pathogenetic factor in patients with hepatic encephalopathy. Both conditions have some features in common, such as the release of organic osmolytes, which might be an adaptive mechanism against cell swelling. However, the consequence of a possible relationship between osmoregulatory response in hyperammonemia and hyponatremia is not completely understood. This review gives a short introduction into the pathogenesis of hepatic encephalopathy and hyponatremia. For a comparison of both pathological events, some basics on cellular osmo- and volume regulation are explained, in particular as the mechanisms involved in the adaption of the cell to volume changes can be different under both pathological conditions. The role of brain glutamine and organic osmolytes in hyponatremia and hyperammonemia and their combination are discussed based on findings in experimental animal models, and finally on data obtained from primary astrocytes in culture. The observations that the decrease of brain organic osmolytes in astrocytes not adequately compensate for an increased intracellular osmolarity caused by glutamine are consistent with results obtained after chronic hyponatremia in rats, in which the release of osmolytes does not protect from ammonia-induced brain edema. Furthermore, a decrease in intracellular osmolarity is attributed both to the release and a reduced de novo synthesis of amino acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams RD, Foley JM (1953) The neurological disorders associated with liver disease. Annu Rev Nerv Ment Dis Proc 132:198

    Google Scholar 

  • Adrogué HJ, Madias NE (2000) Hyponatremia. N Engl J Med 342:1581–1589

    Article  PubMed  Google Scholar 

  • Alam AN, Wilkinson SP, Poston L, Moodie H, Williams R (1977) Intracellular electrolyte abnormalities in fulminant hepatic failure. Gastroenterology 72:914–917

    CAS  PubMed  Google Scholar 

  • Allen JW, Mutkus LA, Aschner M (2002) Chronic ethanol produces increased taurine transport and efflux in cultured astrocytes. Neurotoxicology 23:693–700

    Article  CAS  PubMed  Google Scholar 

  • Albrecht J, Jones EA (1999) Hepatic encephalopathy: molecular mechanisms underlying the clinical syndrome. J Neurol Sci 170:138–146

    Article  CAS  PubMed  Google Scholar 

  • Arieff AI (1986) Cerebral edema complicating nonketotic hyperosmolar coma. Miner Electrolyte Metab 12:383–389

    CAS  PubMed  Google Scholar 

  • Arieff AI, Ayus JC, Fraser CL (1992) Hyponatraemia and death or permanent brain damage in healthy children. BMJ 304:1218–1222

    Article  CAS  PubMed  Google Scholar 

  • Ayus JC, Wheeler JM, Arieff AI (1992) Postoperative hyponatremic encephalopathy in menstruant women. Ann Intern Med 117:891–897

    CAS  PubMed  Google Scholar 

  • Ayus JC, Arieff AI (1996) Abnormalities of water metabolism in the elderly. Semin Nephrol 16:277–288

    CAS  PubMed  Google Scholar 

  • Bartoli E, Castello L, Sainaghi PP (2003) Diagnosis and therapy of hyponatremia. Ann Ital Med Int 18:193–203

    PubMed  Google Scholar 

  • Bedford JJ, Leader JP (1993) Response of tissues of the rat to anisosmolality in vivo. Am J Physiol 264:R1164–R1179

    CAS  PubMed  Google Scholar 

  • Bessman SP, Bessman AN (1955) The cerebral and peripheral uptake of ammonia in liver disease with an hypothesis for the mechanism of hepatic coma. J Clin Invest 34:622–628

    Article  CAS  PubMed  Google Scholar 

  • Blei AT, Olafsson S, Therrien G, Butterworth RF (1994) Ammonia-induced brain edema and intracranial hypertension in rats after portacaval anastomosis. Hepatology 19:1437–1444

    Article  CAS  PubMed  Google Scholar 

  • Brand A, Richter-Landsberg C, Leibfritz D (1993) Multinuclear NMR studies on the energy metabolism of glial and neuronal cells. Dev Neurosci 15:289–298

    Article  CAS  PubMed  Google Scholar 

  • Butterworth RF, Giguere JF, Michaud J, Lavoie J, Layrargues GP (1987) Ammonia: key factor in the pathogenesis of hepatic encephalopathy. Neurochem Pathol 6:1–12

    Article  CAS  PubMed  Google Scholar 

  • Butterworth RF (1997) Hepatic encephalopathy and brain edema in acute hepatic failure: does glutamate play a role? Hepatology 25:820–827

    Article  Google Scholar 

  • Butterworth RF (2000) Hepatic encephalopathy: a neuropsychiatric disorder involving multiple neurotransmitter systems. Curr Opin Neurol 13:721–727

    Article  CAS  PubMed  Google Scholar 

  • Conn HO, Lieberthal ML (1978) The hepatic coma syndromes and lactulose. Willimas & Wilkins, Baltimore

    Google Scholar 

  • Cooper AJ, Plum F (1987) Biochemistry and physiology of brain ammonia. Physiol Rev 67:440–519

    CAS  PubMed  Google Scholar 

  • Cordoba J, Gottstein J, Blei AT (1996) Glutamine, myo-inositol and other organic osmolytes after portacaval anastomosis in the rat. Implications for ammonia-induced brain edema. Hepatology 24:919–923

    CAS  PubMed  Google Scholar 

  • Cordoba J, Gottstein J, Blei AT (1998) Chronic hyponatremia exacerbates ammonia- induced brain edema in rats after portacaval anastomosis. J Hepatol 29:589–594

    Article  CAS  PubMed  Google Scholar 

  • Cordoba J, Alonso J, Rovira A, Jacas C, Sanpedro F, Castells L, Vargas V et al (2001) The development of low-grade cerebral edema in cirrhosis is supported by the evolution of (1)H-magnetic resonance abnormalities after liver transplantation. J Hepatol 35:598–604

    Article  CAS  PubMed  Google Scholar 

  • Cordoba J, Raguer N, Flavia M, Vargas V, Jacas C, Alonso J, Rovira A (2003) T2 hyperintensity along the cortico-spinal tract in cirrhosis relates to functional abnormalities. Hepatology 38:1026–1033

    Article  PubMed  Google Scholar 

  • Decaux G, Soupart A (2003) Treatment of symptomatic hyponatremia. Am J Med Sci 326:25–30

    Article  PubMed  Google Scholar 

  • DeVita MV, Gardenswartz MH, Konecky A, Zabetakis PM (1990) Incidence and etiology of hyponatremia in an intensive care unit. Clin Nephrol 34:163–166

    CAS  PubMed  Google Scholar 

  • Ellis SJ (1995) Severe hyponatremia: complications and treatment. QJM 88:905–909

    CAS  PubMed  Google Scholar 

  • Flögel U, Niendorf T, Serkowa N, Brand A, Henke J, Leibfritz D (1995) Changes in organic solutes, volume, energy state, and metabolism associated with osmotic stress in a glial cell line: a multinuclear NMR study. Neurochem Res 20:793–802

    Article  PubMed  Google Scholar 

  • Goh KP (2004) Management of hyponatremia. Am Fam Physician 69:2387–2394

    PubMed  Google Scholar 

  • Gupta RK, Saraswat VA, Poptani H, Dhiman RK, Kohli A, Gujral RB, Naik SR (1993) Magnetic resonance imaging and localized in vivo proton spectroscopy in patients with fulminant hepatic failure. Am J Gastroenterol 88:670–574

    CAS  PubMed  Google Scholar 

  • Haussinger D, Kircheis G, Fischer R, Schliess F, vom Dahl S (2000) Hepatic encephalopathy in chronic liver disease: a clinical manifestation of astrocyte swelling and low-grade cerebral edema? J Hepatol 32:1035–1038

    Article  CAS  PubMed  Google Scholar 

  • Hawkins RA, Jessy J, Mans AM, De Joseph MR (1993) Effect of reducing brain glutamine synthesis on metabolic symptoms of hepatic encephalopathy. J Neurochem 60:1000–1006

    Article  CAS  PubMed  Google Scholar 

  • Hilgier W, Olson JE (1994) Brain ion and amino acid contents during edema development in hepatic encephalopathy. J Neurochem 62:197–204

    CAS  PubMed  Google Scholar 

  • Hourani BT, Hamlin EM, Reynolds TB (1971) Cerebrospinal fluid glutamine as a measure of hepatic encephalopathy. Arch Intern Med 127:1033–1036

    Article  CAS  PubMed  Google Scholar 

  • Isaacks RE, Bender AS, Kim CY, Prieto NM, Norenberg MD (1994) Osmotic regulation of myo-inositol uptake in primary astrocyte cultures. Neurochem Res 19:331–338

    Article  CAS  PubMed  Google Scholar 

  • Isaacks RE, Bender AS, Kim CY, Shi YF, Norenberg MD (1999) Effect of osmolality and anion channel inhibitors on myo-inositol efflux in cultured astrocytes. J Neurosci Res 57:866–871

    Article  CAS  PubMed  Google Scholar 

  • Jalan R, Elton RA, Redhead DN, Simpson KJ, Finlayson NDC, Hayes PC et al (1995) Analysis of prognostic variables in the prediction of shunt failure, variceal rebleeding, early mortality and encephalopathy following the transjugular intrahepatic portosystemic stentshunt (TI-PSS). J Hepatol 23:123–128

    Article  CAS  PubMed  Google Scholar 

  • Kato M, Hughes RD, Keays RT, Williams R (1992) Electron microscopic study of brain capillaries in cerebral edema from fulminant hepatic failure. Hepatology 15:1060–1066

    Article  CAS  PubMed  Google Scholar 

  • Kleinfeld M, Casimir M, Borra S (1979) Hyponatremia as observed in a chronic disease facility. J Am Geriatr Soc 27:156–161

    CAS  PubMed  Google Scholar 

  • Kramer L, Tribl B, Gendo A, Zauner C, Schneider B, Ferenci P, Madl C (2000) Partial pressure of ammonia versus ammonia in hepatic encephalopathy. Hepatology 31:30–34

    Article  CAS  PubMed  Google Scholar 

  • Kreis R, Farrow N, Ross BD (1991) Localized 1H NMR spectroscopy in patients with chronic hepatic encephalopathy. Analysis of changes in cerebral glutamine, choline and inositols. NMR Biomed 4:109–116

    Article  CAS  PubMed  Google Scholar 

  • Lang F, Busch GL, Völkl H (1998) The diversity of volume regulatory mechanisms. Cell Physiol Biochem 8:1–45

    Article  CAS  PubMed  Google Scholar 

  • Law RO, Zielinska M, Albrecht J (2003) Taurine counteracts cell swelling in rat cerebrocortical slices exposed to ammonia in vitro and in vivo. Adv Exp Med Biol 526:123–129

    CAS  PubMed  Google Scholar 

  • Lodi R, Tonon C, Stracciari A, Weiger M, Camaggi V, Iotti S, Donati G, Guarino M, Bolondi L, Barbiroli B (2004) Diffusion MRI shows increased water apparent diffusion coefficient in the brains of cirrhotics. Neurology 62:762–766

    CAS  PubMed  Google Scholar 

  • Massieu L, Montiel T, Robles G, Quesada O (2004) Brain amino acids during hyponatremia in vivo: clinical observations and experimental studies. Neurochem Res 29:73–81

    Article  CAS  PubMed  Google Scholar 

  • McManus ML, Churchwell KB, Strange K (1995) Regulation of cell volume in health and disease. N Engl J Med 333:1260–1266

    Article  CAS  PubMed  Google Scholar 

  • Murphy N, Auzinger G, Bernel W, Wendon J (2004) The effect of hypertonic sodium chloride on intracranial pressure in patients with acute liver failure. Hepatology 39:464–470

    Article  CAS  PubMed  Google Scholar 

  • Norenberg MD (1977) A light and electron microscopic study of experimental portal- systemic (ammonia) encephalopathy. Progression and reversal of the disorder. Lab Invest 36:618–627

    CAS  PubMed  Google Scholar 

  • Norenberg MD, Martinez-Hernandez A (1979) Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res 161:303–310

    Article  CAS  PubMed  Google Scholar 

  • Norenberg MD, Bender AS (1994) Astrocyte swelling in liver failure: role of glutamine and benzodiazepines. Acta Neurochir Suppl (Wien) 60:24–27

    CAS  Google Scholar 

  • Norenberg MD (1998) Astroglial dysfunction in hepatic encephalopathy. Metab Brain Dis 13:319–335

    Article  CAS  PubMed  Google Scholar 

  • Oei LT, Kuys J, Lombarts AJP (1979) Cerebrospinal fluid glutamine levels and EEG findings in patients with hepatic encephalopathy. Clin Neurol Neurosurg 81:59–63

    Article  CAS  PubMed  Google Scholar 

  • Pasantes-Morales H, Quesada O, Moran J (1998) Taurine: an osmolyte in mammalian tissues. Adv Exp Med Biol 442:209–217

    CAS  PubMed  Google Scholar 

  • Restuccia T, Gomez-Anson B, Guevara M, Alessandria C, Torre A, Alayrach ME, Terra C, Martín M, Castellví M, Rami L, Sainz A, Ginès P, Arroyo V (2004) Effects of dilutional hyponatremia on brain organic osmolytes and water content in patients with cirrhosis. Hepatology 39:1613–1622

    Article  CAS  PubMed  Google Scholar 

  • Rovira A, Cordoba J, Raguer N, Alonso J (2002) Magnetic resonance imaging measurement of brain edema in patients with liver disease: resolution after transplantation. Curr Opin Neurol 15:731–737

    Article  PubMed  Google Scholar 

  • Shawcross DD, Balata S, Olde Damink SWM, Hayes PC, Wardlaw J, Marshall I, Deutz NEP, Williams R, Jalan R (2004) Low myo-inositol and high glutamine levels in the brain are associated with neuropsychological deterioration following induced hyperammonemia. Am J Phys Gastr Liver Phys 287:G503–G509

    CAS  Google Scholar 

  • Soupart A, Decaux G (1996) Therapeutic recommendations for management of severe hyponatremia: current concepts on pathogenesis and prevention of neurologic complications. Clin Nephrol 46:149–169

    CAS  PubMed  Google Scholar 

  • Stahl J (1963) Studies of the blood ammonia in disease. Ann Intern Med 58:1–24

    CAS  PubMed  Google Scholar 

  • Sterns RH, Riggs JE, Schochet SS Jr (1986) Osmotic demyelination syndrome following correction of hyponatremia. N Engl J Med 314:1535–1542

    Article  CAS  PubMed  Google Scholar 

  • Sterns RH, Cappuccio JD, Silver SM, Cohen EP (1994) Neurologic sequelae after treatment of severe hyponatremia: a multicenter perspective. J Am Soc Nephrol 4:1522–1530

    CAS  PubMed  Google Scholar 

  • Strange K (2004) Cellular volume homeostasis. Adv Physiol Educ 28:155–159

    Article  PubMed  Google Scholar 

  • Swain MS, Blei AT, Butterworth RF, Kraig RP (1991) Intracellular pH rises and astrocytes swell after portacaval anastomosis in rats. Am J Physiol 261:R1491–R1496

    CAS  PubMed  Google Scholar 

  • Swain M, Butterworth RF, Blei AT (1992) Ammonia and related amino acids in the pathogenesis of brain edema in acute ischemic liver failure in rats. Hepatology 15:449–453

    Article  CAS  PubMed  Google Scholar 

  • Torre A, Uriz J, Guevara M, Terra C, Ruiz del Arbol L, Planas R et al (2005) Severe Hyponatremia as a major risk factor of hepatic encephalopathy in cirrhosis (abstract). J Hepatol 42:87A

    Google Scholar 

  • Traber PG, DalCanto M, Ganger D, Blei AT (1987) Electron microscopic evaluation of brain edema in rabbits with galactosamine-induced fulminant hepatic failure: ultrastructure and integrity of the blood-brain barrier. Hepatology 7:1272–1277

    Article  CAS  PubMed  Google Scholar 

  • Verbalis JG, Gullans SR (1991) Hyponatremia causes large sustained reductions in brain content of multiple organic osmolytes in rats. Brain Res 567:274–282

    Article  CAS  PubMed  Google Scholar 

  • Vidden JS, Michaelis T, Pinto P, Ross BD (1995) Human cerebral osmolytes during chronic hyponatremia. J Clin Invest 95:788–793

    Article  Google Scholar 

  • Wade JV, Olson JP, Samson FE, Nelson SR, Pazdernik TL (1988) A possible role for taurine in osmoregulation within the brain. J Neurochem 51:740–745

    Article  CAS  PubMed  Google Scholar 

  • Wright CE, Tallan HH, Lin YY, Gaull GE (1986) Taurine: biological update. Annu Rev Biochem 55:427–453

    Article  CAS  PubMed  Google Scholar 

  • Zielinska M, Hilgier W, Law RO, Gorynski P, Albrecht J (1999) Effects of ammonia in vitro on endogenous taurine efflux and cell volume in rat cerebrocortical minislices: influence of inhibitors of volume-sensitive amino acid transport. Neuroscience 91:631–638

    Article  CAS  PubMed  Google Scholar 

  • Zieve L (1979) Hepatic encephalopathy: summary of present knowledge with an elaboration on recent developments. Prog Liver Dis 6:327–341

    CAS  PubMed  Google Scholar 

  • Zwingmann C, Richter-Landsberg C, Brand A, Leibfritz D (2000a) NMR spectroscopic study on the metabolic fate of [3–(13)C]alanine in astrocytes, neurons, and cocultures: implications for glia-neuron interactions in neurotransmitter metabolism. Glia 32:286–303

    Article  CAS  PubMed  Google Scholar 

  • Zwingmann C, Flögel U, Pfeuffer J, Leibfritz D (2000b) Effects of ammonia exposition on glioma cells: changes in cell volume and organic osmolytes studied by diffusion-weighted and high-resolution NMR spectroscopy. Dev Neurosci 22:463–471

    Article  CAS  PubMed  Google Scholar 

  • Zwingmann C, Chatauret N, Leibfritz D, Butterworth RF (2004) Changes of brain organic osmolytes in experimental acute liver failure. Brain Res 999:118–123

    Article  CAS  PubMed  Google Scholar 

  • Zwingmann C, Leibfritz D (2005) Ammonia toxicity under hyponatremic conditions in astrocytes: de novo synthesis of amino acids for the osmoregulatory response. Neurochem Int 47:39–50

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Zwingmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heins, J., Zwingmann, C. Organic osmolytes in hyponatremia and ammonia toxicity. Metab Brain Dis 25, 81–89 (2010). https://doi.org/10.1007/s11011-010-9170-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-010-9170-5

Keywords

Navigation