Skip to main content
Log in

Effects of fulminant hepatic encephalopathy on the adult rat brain antioxidant status and the activities of acetylcholinesterase, (Na+,K+)- and Mg2+-ATPase: comparison of the enzymes’ response to in vitro treatment with ammonia

  • Original Paper
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Hepatic encephalopathy can be a life-threatening complication of fulminant hepatic failure. By understanding the pathophysiology involved in the induction of this neuropsychiatric disorder, future therapeutic and/or preventive attempts could be considered. In this study, an attempt has been made in order to shed more light on the mechanisms involved in the effects of thioacetamide (TAA)-induced fulminant hepatic encephalopathy on: (a) the adult rat brain total antioxidant status (TAS) and (b) the activities of acetylcholinesterase (AChE), (Na+,K+)-ATPase and Mg2+-ATPase. Moreover, in vitro experiments were conducted in order to evaluate the possible role of ammonia (incubated as NH4Cl, in a toxic concentration of 3mM) in the observed effects of TAA-induced fulminant hepatic encephalopathy on the examined adult rat brain enzyme activities. Fulminant hepatic encephalopathy caused a significant decrease in TAS (−22%, p < 0.001) and the activity of Na+,K+-ATPase (−26%, p < 0.001), but had non-significant effects on the whole brain AChE and Mg2+-ATPase activities. The in vitro experiments (conducted through a 3h incubation with ammonia), showed no significant alterations in any of the examined parameters. Our in vitro and in vivo findings suggest that alterations in AChE and Mg2+-ATPase activities are not involved in the pathophysiology of the adult-onset fulminant hepatic encephalopathy, while the observed Na+,K+-ATPase inhibition could be a result of the oxidative stress, neurotransmission deregulation, and/or of the presence of other toxic substances (that appear to act as direct or indirect inhibitors of the enzyme) and not due to the excess accumulation of ammonia in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Albrecht J, Jones EA (1999) Hepatic encephalopathy: molecular mechanisms underlying the clinical syndrome. J Neurol Sci 170:138–146

    Article  PubMed  CAS  Google Scholar 

  • Albrecht J, Wysmyk-Cybula U, Rafalowska U (1985) Na+/K+-ATPase activity and GABA uptake in astroglial cell-enriched fractions and synaptosomes derived from rats in the early stage of experimental hepatogenic encephalopathy. Acta Neurol Scand 72:317–320

    Article  PubMed  CAS  Google Scholar 

  • Bogdanski DF, Tissari A, Brodie BB (1968) Role of sodium, potassium, ouabain and reserpine in uptake, storage and metabolism of biogenic amines in synaptosomes. Life Sci 7:419–428

    Article  PubMed  CAS  Google Scholar 

  • Bowler K, Tirri R (1974) The temperature characteristics of synaptic membrane ATPases from immature and adult rat brain. J Neurochem 23:611–613

    Article  PubMed  CAS  Google Scholar 

  • Butterworth RF (2002) Pathophysiology of hepatic encephalopathy: a new look at ammonia. Metab Brain Dis 17:221–227

    Article  PubMed  CAS  Google Scholar 

  • Carageorgiou H, Zarros A, Tsakiris S (2003) Selegiline long-term effects on brain acetylcholinesterase, (Na+,K+)-ATPase activities, antioxidant status and learning performance of aged rats. Pharmacol Res 48:245–251

    Article  PubMed  CAS  Google Scholar 

  • Carageorgiou H, Pantos C, Zarros A, Mourouzis I, Varonos D, Cokkinos DD, Tsakiris S (2005) Changes in antioxidant status, protein concentration, acetylcholinesterase, (Na+,K+)- and Mg2+-ATPase activities in the brain of hyper- and hypothyroid adult rats. Metab Brain Dis 20:129–139

    Article  PubMed  CAS  Google Scholar 

  • Chilakapati J, Korrapati MC, Hill RA, Warbritton A, Latendresse JR, Mehendale HM (2007) Toxicokinetics and toxicity of thioacetamide sulfoxide: a metabolite of thioacetamide. Toxicology 230:105–116

    Article  PubMed  CAS  Google Scholar 

  • Committee on Care and Use of Laboratory Animals (1985) Guide for the care and use of laboratory animals. Institute of Laboratory Animal Resources, National Research Council, Washington, DC, p 83

    Google Scholar 

  • Cooper AJ, Plum F (1987) Biochemistry and physiology of brain ammonia. Physiol Rev 67:440–519

    PubMed  CAS  Google Scholar 

  • Devi RP, Murthy CR (1993) Ammonia-induced alterations in the activities of synaptosomal cholinesterases of rat brain under in vitro and in vivo conditions. Neurosci Lett 159:131–134

    Article  PubMed  CAS  Google Scholar 

  • Dwivedi Y, Rastogi R, Garg NK, Dhawan BN (1993) Perfusion with picroliv reverses biochemical changes induced in livers of rats toxicated with galactosamine or thioacetamide. Planta Med 59:418–420

    Article  PubMed  CAS  Google Scholar 

  • Ede RJ, Gove CD, Hughes RD, Marshall W, Williams R (1987) Reduced brain Na+,K+-ATPase activity in rats with galactosamine-induced hepatic failure: relationship to encephalopathy and cerebral oedema. Clin Sci (Lond) 72:365–371

    CAS  Google Scholar 

  • Ellman GL, Courtney KD, Andres V Jr, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  PubMed  CAS  Google Scholar 

  • Faff-Michalak L, Albrecht J (1991) Aspartate aminotransferase, malate dehydrogenase, and pyruvate carboxylase activities in rat cerebral synaptic and nonsynaptic mitochondria: effects of in vitro treatment with ammonia, hyperammonemia and hepatic encephalopathy. Metab Brain Dis 6:187–197

    Article  PubMed  CAS  Google Scholar 

  • Faff-Michalak L, Albrecht J (1993a) Changes in the cytoplasmic (lactate dehydrogenase) and plasma membrane (acetylcholinesterase) marker enzymes in the synaptic and nonsynaptic mitochondria derived from rats with moderate hyperammonemia. Mol Chem Neuropathol 18:257–265

    Article  PubMed  CAS  Google Scholar 

  • Faff-Michalak L, Albrecht J (1993b) The two catalytic components of the 2-oxoglutarate dehydrogenase complex in rat cerebral synaptic and nonsynaptic mitochondria: comparison of the response to in vitro treatment with ammonia, hyperammonemia, and hepatic encephalopathy. Neurochem Res 18:119–123

    Article  PubMed  CAS  Google Scholar 

  • Felipo V, Butterworth RF (2002) Neurobiology of ammonia. Prog Neurobiol 67:259–279

    Article  PubMed  CAS  Google Scholar 

  • Garcia JJ, Reiter RJ, Guerrero JM, Escames G, Yu BP, Oh CS, Munoz-Hoyoz A (1997) Melatonin prevents changes in microsomal membrane fluidity during induced lipid peroxidation. FEBS Lett 408:297–300

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B (1992) Reactive oxygen species and the central nervous system. J Neurochem 59:1609–1623

    Article  PubMed  CAS  Google Scholar 

  • Hazell AS, Butterworth RF (1999) Hepatic encephalopathy: an update of pathophysiological mechanisms. Proc Soc Exp Biol Med 222:99–112

    Article  PubMed  CAS  Google Scholar 

  • Hernandez J (1987) Brain Na+,K+-ATPase activity possibly regulated by a specific serotonin receptor. Brain Res 408:399–402

    Article  PubMed  CAS  Google Scholar 

  • Hilgier W, Olson JE (1994) Brain ion and amino acid contents during edema development in hepatic encephalopathy. J Neurochem 62:197–204

    Article  PubMed  CAS  Google Scholar 

  • Kosenko E, Kaminsky Y, Minana MD, Grisolia S, Felipo V (1994) High ammonia levels decrease brain acetylcholinesterase activity both in vivo and in vitro. Mol Chem Neuropathol 22:177–184

    Article  PubMed  CAS  Google Scholar 

  • Kouniniotou-Krontiri P, Tsakiris S (1989) Time dependence of Li+ action on acetylcholinesterase activity in correlation with spontaneous quantal release of acetylcholine in rat diaphragm. Jpn J Physiol 39:429–440

    Article  PubMed  CAS  Google Scholar 

  • Larsen FS, Knudsen GM, Paulson OB, Vilstrup H (1994) Cerebral blood flow autoregulation is absent in rats with thioacetamide-induced hepatic failure. J Hepatol 21:491–495

    Article  PubMed  CAS  Google Scholar 

  • Lee WM (1993) Acute liver failure. N Engl J Med 329:1867–1872

    Google Scholar 

  • Lees GJ, Lehmann A, Sandberg M, Hamberger A (1990) The neurotoxicity of ouabain, a sodium–potassium ATPase inhibitor, in the rat hippocampus. Neurosci Lett 120:159–162

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Margeli AP, Papadimitriou L, Ninos S, Manolis E, Mykoniatis MG, Theocharis SE (2003) Hepatic stimulator substance administration ameliorates liver regeneration in an animal model of fulminant hepatic failure and encephalopathy. Liver Int 23:171–178

    Article  PubMed  CAS  Google Scholar 

  • Mata M, Fink DJ, Gainer H, Smith CB, Davidsen L, Savakis H, Schwartz WJ, Sokoloff L (1980) Activity-dependent energy metabolism in rat posterior pituitary primarily reflects sodium pump activity. J Neurochem 34:213–215

    Article  PubMed  CAS  Google Scholar 

  • Mullen KD (1988) Evaluation of the suitability of galactosamine-induced fulminant hepatic failure as a model of hepatic encephalopathy in the rat and rabbit. In: Soeters PB, Wilson JHP, Meijer AJ, Holm E (eds) Advances in ammonia metabolism and hepatic encephalopathy. Elsevier Science Publishers, Amsterdam, pp 205–211

    Google Scholar 

  • Nikolaev V, Kerimova M, Naydenova E, Ivanov E, Adjarov D (1988) Biochemical changes in the rat after chronic thioacetamide intoxication. Toxicology 48:81–85

    Article  PubMed  CAS  Google Scholar 

  • O’Grady JG, Schalm SW, Williams R (1993) Acute liver failure: redefining the syndrome. Lancet 342:273–275

    Article  PubMed  Google Scholar 

  • Parker TH, Roberts RK, Vorhees CV, Schmidt DE, Schenker S (1977) The effect of acute and subacute ammonia intoxication on regional cerebral acetylcholine levels in rats. Biochem Med 18:235–244

    Article  PubMed  CAS  Google Scholar 

  • Pilbeam CM, Anderson RM, Bhathal PS (1983) The brain in experimental portal-systemic encephalopathy. II. Water and electrolyte changes. J Pathol 140:347–355

    Article  PubMed  CAS  Google Scholar 

  • Porter WR, Neal RA (1978) Metabolism of thioacetamide and thioacetamide-S oxide by rat liver microsomes. Drug Metab Dispos 6:379–388

    PubMed  CAS  Google Scholar 

  • Rao VL, Therrien G, Butterworth RF (1994) Choline acetyltransferase and acetylcholinesterase activities are unchanged in brain in human and experimental portal-systemic encephalopathy. Metab Brain Dis 9:401–407

    Article  PubMed  CAS  Google Scholar 

  • Reddy PV, Murthy CR, Reddanna P (2004) Fulminant hepatic failure induced oxidative stress in nonsynaptic mitochondria of cerebral cortex in rats. Neurosci Lett 368:15–20

    Article  PubMed  CAS  Google Scholar 

  • Rozhanets VV, Promyslov MS, Gabrielian NI, Shcherbaneva OI (1979) Inhibitory effect of cerebrospinal fluid on the activity of sodium-, potassium-ATPase in animal brain synaptic membranes. Vopr Med Khim 25:71–74

    PubMed  CAS  Google Scholar 

  • Sadasivudu B, Murthy CR, Rao GN, Swamy M (1983) Studies on acetylcholinesterase and gamma-glutamyltranspeptidase in mouse brain in ammonia toxicity. J Neurosci Res 9:127–134

    Article  PubMed  CAS  Google Scholar 

  • Sanui H, Rubin H (1982) The role of magnesium in cell proliferation and transformation. In: Boynton AL, McKochan WL, Whitfield JP (eds) Ions, cell proliferation and cancer. Academic, New York, pp 517–537

    Google Scholar 

  • Sastry BS, Phillis JW (1977) Antagonism of biogenic amine-induced depression of cerebral cortical neurones by Na+,K+-ATPase in inhibitors. Can J Physiol Pharmacol 55:170–179

    Article  PubMed  CAS  Google Scholar 

  • Sathyasaikumar KV, Swapna I, Reddy PV, Murthy CR, Roy KR, Dutta Gupta A, Senthilkumaran B, Reddanna P (2007) Co-administration of C-phycocyanin ameliorates thioacetamide-induced hepatic encephalopathy in Wistar rats. J Neurol Sci 252:67–75

    Article  PubMed  CAS  Google Scholar 

  • Seda HW, Gove CD, Hughes RD, Williams R (1984a) Inhibition of partially purified rat brain Na+,K+-dependent ATPase by bile acids, phenolic acids and endotoxin. Clin Sci (Lond) 66:415–420

    CAS  Google Scholar 

  • Seda HW, Hughes RD, Gove CD, Williams R (1984b) Inhibition of rat brain Na+,K+-ATPase activity by serum from patients with fulminant hepatic failure. Hepatology 4:74–79

    Article  PubMed  CAS  Google Scholar 

  • Seda HW, Hughes RD, Gove CD, Williams R (1984c) Removal of inhibitors of brain Na+,K+-ATPase by hemoperfusion in fulminant hepatic failure. Artif Organs 8:174–178

    Article  PubMed  CAS  Google Scholar 

  • Slater TF (1984) Free-radical mechanisms in tissue injury. Biochem J 222:1–15

    PubMed  CAS  Google Scholar 

  • Swann AC (1984) (Na+,K+)-adenosine triphosphatase regulation by the sympathetic nervous system: effects of noradrenergic stimulation and lesion in vivo. J Pharmacol Exp Ther 228:304–311

    PubMed  CAS  Google Scholar 

  • Swapna I, SathyaSaikumar KV, Murthy CR, Gupta AD, Senthilkumaran B (2007) Alterations in kinetic and thermotropic properties of cerebral membrane-bound acetylcholinesterase during thioacetamide-induced hepatic encephalopathy: correlation with membrane lipid changes. Brain Res 1153:188–195

    Article  PubMed  CAS  Google Scholar 

  • Szerb JC, Butterworth RF (1992) Effect of ammonium ions on synaptic transmission in the mammalian central nervous system. Prog Neurobiol 39:135–153

    Article  PubMed  CAS  Google Scholar 

  • Takahashi R, Nasu T, Tamura T, Kariya T (1961) Relationship of ammonia and acetylcholine level (ACh) to brain excitability. J Neurochem 7:103–112

    Article  CAS  Google Scholar 

  • Tsakiris S (2001) Effects of l-phenylalanine on acetylcholinesterase and Na+,K+-ATPase activities in adult and aged rat brain. Mech Ageing Dev 122:491–501

    Article  PubMed  CAS  Google Scholar 

  • Tsakiris S, Angelogianni P, Schulpis KH, Behrakis P (2000) Protective effect of l-cysteine and glutathione on rat brain Na+,K+-ATPase inhibition induced by free radicals. Z Naturforsch [C] 55:271–277

    CAS  Google Scholar 

  • Ulshafer TR (1958) The measurement of changes in acetylcholine levels in rat brain following ammonium ion intoxication and its possible bearing on the problem of hepatic coma. J Lab Clin Med 52:718–723

    PubMed  CAS  Google Scholar 

  • Walker CO, Speeg KV Jr, Levinson JD, Schenker S (1971) Cerebral acetylcholine, serotonin, and norepinephrine in acute ammonia intoxication. Proc Soc Exp Biol Med 136:668–671

    PubMed  CAS  Google Scholar 

  • Wall SM, Koger LM (1994) NH4 + transport mediated by Na+,K+-ATPase in rat inner medullary collecting duct. Am J Physiol 267:F660–F670

    PubMed  CAS  Google Scholar 

  • Zielinska M, Hilgier W, Law RO, Gorynski P, Albrecht J (2002) Effects of ammonia and hepatic failure on the net efflux of endogenous glutamate, aspartate and taurine from rat cerebrocortical slices: modulation by elevated K+ concentrations. Neurochem Int 41:87–93

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann C, Ferenci P, Pifl C, Yurdaydin C, Ebner J, Lassmann H, Roth E, Hortnagl H (1989) Hepatic encephalopathy in thioacetamide-induced acute liver failure in rats: characterization of an improved model and study of amino acid-ergic neurotransmission. Hepatology 9:594–601

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the University of Athens. The authors wish to acknowledge their appreciation to the medical students Marios Margaritis and Anastasios Pantazopoulos for their assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stylianos Tsakiris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zarros, A., Theocharis, S., Skandali, N. et al. Effects of fulminant hepatic encephalopathy on the adult rat brain antioxidant status and the activities of acetylcholinesterase, (Na+,K+)- and Mg2+-ATPase: comparison of the enzymes’ response to in vitro treatment with ammonia. Metab Brain Dis 23, 255–264 (2008). https://doi.org/10.1007/s11011-008-9091-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-008-9091-8

Keywords

Navigation