Skip to main content
Log in

Aspartate aminotransferase, malate dehydrogenase, and pyruvate carboxylase activities in rat cerebral synaptic and nonsynaptic mitochondria: Effects ofin vitro treatment with ammonia, hyperammonemia and hepatic encephalopathy

  • Original Contributions
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

The effects of in vitro treatment with ammonium chloride, hepatic encephalopathy (HE) due to thioacetamide (TAA) induced liver failure and chronic hyperammonemia produced by i. p. administration of ammonium acetate on the activity of the two malate-aspartate shuttle enzymes: aspartate aminotransferase (AAT), malate dehydrogenase (MDH), and on the pyruvate carboxylase (PC) activity were examined in synaptic and nonsynaptic mitochondria from rat brain. With regard to the shuttle enzymes the response to ammonium ions in vitro (3mM NH4Cl) was observed in nonsynaptic mitochondria only, and was manifested by a 27% decrease of AAT activity and a 16% decrease of MDH activity. By contrast, both in vivo conditions primarily affected the synaptic mitochondrial enzymes: TAA-induced HE produced a 26% decrease of synaptic mitochondrial AAT and a 50% decrease of synaptic mitochondrial MDH. Hyperammonemia inhibited synaptic mitochondrial AAT by 30% and synaptic mitochondrial MDH by 45%. HE produced no effect at all in nonsynaptic mitochondria while hyperammonemia produced a 30% increase in the AAT activity, but no changes in MDH. All the experimental conditions affected the nonsynaptic mitochondrial PC: ammonium chloride in vitro produced a 20% decrease, TAA-induced HE — a 30% decrease, whereas hyperammonemia inhibited the enzyme by 53%. The PC activity in synaptic mitochondria was very low (about 2% of that measured in nonsynaptic mitochondria), which is consistent with the primarily astrocytic localization of the enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albrecht, J., and Hilgier, W. (1984). Brain carbonic anhydrase activity in rats in experimental hepatogenic encephalopathy.Neurosci. Lett. 45: 7–10.

    Google Scholar 

  • Albrecht, J., Hilgier, W., Lazarewicz, J. W., Rafalowska, U., and Wysmyk-Cybula, U. (1988). Astrocytes in acute hepatic encephalopathy: Metabolic properties,and transport function. In Norenberg, M. D., Hertz, L., and Schousboe, A. (eds),The Biochemical Pathology of Astrocytes, Alan R. Liss, New York, pp. 465–476.

    Google Scholar 

  • Baraldi, M., and Zeneroli, M. L. (1982). Experimental hepatic encephalopathy: Changes in the binding of g-aminobutyric acid in rats.Science Wash. DC 216: 427–429.

    Google Scholar 

  • Benjamin, A. M. (1982). Ammonia. In Lajtha, A. (ed),Handbook of Neurochemistry, 2nd Ed., Plenum Press, New York, pp. 117–137.

    Google Scholar 

  • Bradford, H. F., Ward, H. K., and Foley, P. (1989). Glutaminase inhibition and the release of neurotransmitter glutamate from synaptosomes.Brain Res. 476: 29–34.

    Google Scholar 

  • Bradford, H. F., and Ward, H. C. (1975). Glutamine aFs a metabolic substrate for isolated nerve-endings: Inhibition by ammonium ions.Biochem. Soc. Trans. 3: 1223–1226.

    Google Scholar 

  • Bradford, H. F., and Ward, H. K. (1976). On glutaminase activity in mammalian synaptosomes.Brain. Res. 110: 115–125.

    Google Scholar 

  • Butterworth, R. F., and Giguere, J. F. (1986). Cerebral amino acids in portal-systemic encephalopathy: lack of evidence for altered g-aminobutyric acid (GABA) function.Metab. Brain Dis. 1: 221–228.

    Google Scholar 

  • Butterworth, R. F., Giguere, J. F., Michaud, J., Lavoie, J., and Pomier-Layrargues. (1987). Ammonia: Key factor in the pathogenesis of hepatic encephalopathy.Neurochem. Pathol. 6: 1–12.

    Google Scholar 

  • Butterworth, R. F., Lavoie, J., Peterson, C., Cotman, C. W., and Szerb, J. C. (1989). Excitatory amino acids and hepatic encephalopathy. In Butterworth, R. F., and Pomier-Layrargues (eds),Hepatic Encephalopathy. Pathogenesis and Treatment, Humana Press, Clifton, NJ, pp. 417–433.

    Google Scholar 

  • Butterworth, R. F., Le, O., Lavoie, J., and Szerb, J. C. (1991). Effect of portacaval anastomosis on electrically-stimulated release of glutamate from rat hippocampal slices.J. Neurochem.,56: 1481–1484.

    Google Scholar 

  • Carter, C. J., Savasta, M., Fage, D., and Scatton, B. (1986). 2-oxo [14C]glutarate is taken up by glutamatergic nerve terminals in the rat striatum.Neurosci. Lett. 72: 227–231.

    Google Scholar 

  • Cooper, A. J. L., and Plum, F. (1987). Biochemistry and physiology of brain ammonia.Physiol. Rev. 67: 440–519.

    Google Scholar 

  • Cremer, J. E., Heath, D. F., Teal, H. M., Woods, M. S., and Cavanagh, J. B. (1975). Some dynamic aspects of brain metabolism in rats given a portacaval anastomosis.Neuropathol. Appl. Neuroobiol. 3: 293–311.

    Google Scholar 

  • Engelsen, B. A., Fosse, V. M., Fonnum, F. (1987). The acute effect of ammonium acetate on levels of amino acids in the intact and decorticated rat neostriatum.J. Neurochem. 48: 741–744.

    Google Scholar 

  • Faff-Michalak, L., Wysmyk-Cybula, U., and Albrecht, J. (1991). Different responses of rat cerebral mitochondrial 2-oxoglutarate activity to ammonia and hepatic encephalopathy in synaptic and nonsynaptic mitochondria.Neurochem. Int., in press.

  • Ferenci, P., Pappas, S. C., Munson, P. J., and Jones, E. A. (1984b). Changes in glutamate receptors on synaptic membranes associated with hepatic encephalopathy or hyperammonemia in the rabbit.Hepatology 4: 25–29.

    Google Scholar 

  • Hamberger, A., Hedquist, B., and Nystrom, B. (1979). Ammonium ion inhibition of evoked release of endogenous glutamate from hippocampal slices.J. Neurochem. 33: 1295–1302.

    Google Scholar 

  • Hamberger, A., Lindroth, P., and Nystrom, B. (1982). Regulation of glutamate biosynthesis and releasein vitro by low levels of ammonium ions.Brain Res. 237: 339–350.

    Google Scholar 

  • Hawkins, R. A. (1984). Brain energy metabolism and function during hepatic encephalopathy.Eur. J. Clin. Invest. 14: 313–314.

    Google Scholar 

  • Hawkins, R. A., Miller, A. L., and Nielsen, R. C. (1973). The acute action of ammonia on rat brain metabolismin vivo.Biochem. J. 134:1001–1008.

    Google Scholar 

  • Hilgier, W., Albrecht, J., Lisy, V., Stastny, F. (1990). The effect of acute and repeated hyperammonemia on g-glutamyl-transpeptidase in homogenates and capillaries of various rat brain regions.Mol. Chem. Neuropathol. 13: 47–55.

    Google Scholar 

  • Hindfelt, B. (1983). Ammonia intoxication and brain energy metabolism. In Kleinberger, G., and Deutsch, E. (eds),New Aspects of Clinical Nutrition, Karger, Basel, pp. 474–484.

    Google Scholar 

  • Hindfelt, B. (1975). On mechanism of hyperammonemic coma with special reference to hepatic encephalopathy.Ann. N. Y. Acad. Sci. 252: 116–124.

    Google Scholar 

  • Hindfelt, B., Plum, F., and Duffy, T. E. (1977). Effect of acute ammonia intoxication on cerebral metabolism of rats wit portacaval shunts.J. Clin. Invest. 59: 386–396.

    Google Scholar 

  • Hindfelt, B., and Siesjo, B. K. (1971). Cerebral effects of acute ammonia intoxication. 1. The influence on intracellular and extracellular acid-base parameters.Scand. J. Clin. Lab. Invest. 28: 353–364.

    Google Scholar 

  • Holmin, T., Agardh, C. D., Alinder, G., Herlin, P., and Hultberg, B. (1983). The influence of total hepatectomy on cerebral energy state, ammonia-related amino acids of the brain and plasma amino acids in the rat.Eur. J. Clin. Invest. 13: 215–22O.

    Google Scholar 

  • Kvamme, E. (1983a). Ammonia metabolism in the CNS.Progr. Neurobiol. 20: 109–132.

    Google Scholar 

  • Lai, J. C. K., and Clark, J. B. (1979). Preparation of synaptic and nonsynaptic mitochondria from mammalian brain. In Fleisher, S., and Packer, L. (eds),Methods in Enzymology, Academic Press, New York, Vol.55, pp.51–60.

    Google Scholar 

  • Lai, J. C. K., Walsh, J. M., Dennis, S. C., and Clark, J. B. (1975). Compartmentation of citric acid cycle and related enzymes in distinct populations of rat brain mitochondria. In Berl, S., Clarke, D. D., and Schneider, D. (eds), Metabolic Compartmentation and Neurotransmission.Relation to the Brain Structure and Function, Plenum Press, New York, pp. 487–496.

    Google Scholar 

  • Lai, J. C. K., Walsh, J. M., Dennis, S. C., and Clark, J. B. (1977). Synaptic and nonsynaptic mitochondria from rat brain: Isolation and characterization.J. Neurochem. 28: 625–631.

    Google Scholar 

  • Lavoie, J., Giguere, J. F., Pomier-Layrargues, G., and Butterworth, R. F. (1987). Amino acid changes in autopsied brain tissue from cirrhotic patiens with hepatic encephalopathy.J. Neurochem. 49: 692–697.

    Google Scholar 

  • Leong, S. F., Lai, J. C. K., Lim, L., and Clark, J. B. (1984). The activities of some energy-metabolising enzymes in nonsynaptic and synaptic mitochondria derived from selected brains regions.J. Neurochem. 42: 1306–1312.

    Google Scholar 

  • Lin, S., and Raabe, W. (1985). Ammonia intoxication: Effects on cerebral cortex and spinal cord.J. Neurochem. 44: 1525–1528.

    Google Scholar 

  • Lockwood, A. H. (1985). Ammonia-induced encephalopathy. In McCandless, D. W. (ed),Cerebral Energy Metabolism and Metabolic Encephalopathy, Plenum Press, New York, pp. 203–228.

    Google Scholar 

  • Lowry, 0. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951). Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193: 265–275.

    Google Scholar 

  • Moroni, F., Lombardi, G., Moneti, G., and Cortesini, C. (1983). The release and neosynthesis of glutamic acid are increased In experimental models of hepatic encephalopathy.J. Neurochem. 40: 850–854.

    Google Scholar 

  • Norenberg, M. D. (1986). Hepatic encephalopathy: A disorder of astrocytes. In Fedoroff, S., Vernadakis, A. (eds),Astrocytes: Cell Biology and Pathology of Astrocytes, Academic Press, New York, Vol.3, pp. 425–460.

    Google Scholar 

  • Norenberg, M. D. (1981). The astrocyte In liver disease.Adv. Cell. Neurobiol. 2: 303–305.

    Google Scholar 

  • Palaiologos, G., Hertz, L., and Schousboe, A. (1988). Evidence that aspartate aminotransferase activity and ketodicarboxylate carrier function are essential for biosynthesis of transmitter glutamate.J. Neurochem. 51: 317–320.

    Google Scholar 

  • Palaiologos, G., Hertz, L., and Schousboe, A. (1989). Role of aspartate aminotransferase and mitochondrial dicarboxylate transport for release of endogenously and exogenously supplied neurotransmitter In glutamatergic neurons.Neurochem. Res. 14: 359–366.

    Google Scholar 

  • Peng, L., Schousboe, A., and Hertz, L. (1991). Utilization of alpha-ketoglutarate as a precursor for transmitter glutamate In cultured cerebellar granule cells.Neurochem. Res. 16: 29–34.

    Google Scholar 

  • Peterson, Ch., Giguere, J. F., Cotman, C. W., and Butterworth, R. F. (1990). Selective loss of N-methyl-D-aspartate-sensitive L-[H]Glutamate binding sites In rat brain following portacaval anastomosis.J. Neurochem. 55: 386–390.

    Google Scholar 

  • Ratnakumari, L., and Murthy, Ch. R. K. (1989). Activities of pyruvate dehydrogenase, enzymes of citric acid cycle and aminotransferases in the subcellular fractions of cerebral cortex in normal and hyperammonemic rats.Neurochem. Res. 14: 221–228.

    Google Scholar 

  • Ratnakumari, L., and Murthy, Ch. R. K. (1990). Glucose oxidation in synaptosomes and isolated cell types in brain in hyperammonemia.J. Hepatology suppl. 1:10:521.

    Google Scholar 

  • Ratnakumari, L., Subbalakshmi, G. Y. C. V., Murthy, Ch. R. C. (1986). Acute effects of ammonia on the enzymes of citric acid cycle in rat brain.Neurochem. Int. 8: 115–120.

    Google Scholar 

  • Record, C. A., Buxton, B., Chase, R. A., Curzon, G., Murray-Lyon, I. M., and Williams, R. (1976). Plasma and brain amino acids in fulminant hepatic failure and their relationship to hepatic encephalopathy.Eur. J. Clin. Invest. 6: 387–394.

    Google Scholar 

  • Shank, R. P., Campbell, G. L., Freytag, S. 0., and Utter, M. F. (1981). Evidence that pyruvate carboxylase is an astrocyte specific enzyme.Soc. Neurosci. Abstr. 7: 936.

    Google Scholar 

  • Shank, R. P., Bennett, G. S., Freytag, S. O., and Campbell, G. L. (1985). Pyruvate caiboxylase: An astrocyte-specific enzyme implicated in the replenishment of amino acid neurotransmitter pools.Brain Res. 329: 364–367.

    Google Scholar 

  • Schafer, D. F., and Jones, E. A. (1982). Hepatic encephalopathy and the g-aminobutyric acid neurotransmitter system.Lancet 1: 18–20.

    Google Scholar 

  • Subbalakshmi, G. Y. C. V., and Murthy, Ch. R. C. (1983). Acute metabolic effects of ammonia on the enzymes of glutamate metabolism in isolated astroglial cells.Neurochem. Int. 5: 593–597.

    Google Scholar 

  • Subbalakshmi, G. Y. C. V., and Murthy, Ch. R. C. (1985). Differential response of enzymes of glutamate metabolism in neuronal perikarya and synaptosomes in acute hyperammonemia in rat.Neurosci. Lett. 59: 121–126.

    Google Scholar 

  • Theoret, Y., and Bossu, J. L. (1985). Effects of ammonium salts on synaptic transmission to hippocampal CA1 and CA3 pyramidal cellsin vivo.Neuroscience 14: 807–821.

    Google Scholar 

  • Theoret, Y., Davies, M. F., Esplin, B., and Capek, R. (1985). Effects of ammonium chloride on synaptic transmission in the rat hippocampal slice.Neuroscience 14: 798–806.

    Google Scholar 

  • Tyce, G. M., Flock, E. V., and Owen, C. A. (1971). Metabolism of glucose in brain after hepatectomy.Exp. B101. Med. 4: 92–103.

    Google Scholar 

  • Tyce, G. M., Flock, E. V. Owen, C. A., Stobie, G. H., and David, C. (1967). Hydroxyindole metabolism in the brain after hepatectomy.Biochem. Pharmacol. 16: 979–992.

    Google Scholar 

  • Yoshida, A. (1969). L-Malate dehydrogenase from Bacillus Subtilis. In Lowenstein, J. M. (ed),Methods in Enzymology, Academic Press, New York, Vol. 13, pp. 141–145.

    Google Scholar 

  • Yu, A. C. H., Drejer, J., Hertz, L., and Schousboe, A. (1983). Pyruvate carboxylase activity in primary cultures of astrocytes and neurons.J. Neurochem. 41: 1484–1487.

    Google Scholar 

  • Zimmermann, Ch., Ferenci, P., Pifi, Ch., Yurdaydin, C., Ebner, J., Lassmann, H., Roth, E., and Hotrgnagl, H. (1989). Hepatic encephalopathy in thioacetamide induced acute liver failure in rats: Characterization of an improved model and study of amino acid-ergic neurotransmission.Hepatology 9: 594–601.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faff-Michalak, L., Albrecht, J. Aspartate aminotransferase, malate dehydrogenase, and pyruvate carboxylase activities in rat cerebral synaptic and nonsynaptic mitochondria: Effects ofin vitro treatment with ammonia, hyperammonemia and hepatic encephalopathy. Metab Brain Dis 6, 187–197 (1991). https://doi.org/10.1007/BF00996918

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00996918

Key words

Navigation