Skip to main content
Log in

Increased hippocampal nitric oxide synthase activity and stress responsiveness after imipramine discontinuation: Role of 5HT 2A/C -receptors

  • Original Paper
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Chronic depressive illness may cause shrinkage of the hippocampus with stress-induced release of glutamate and nitric oxide possibly causally linked to this pathology. Poor antidepressant compliance may contribute to this pathology as well as to long term morbidity. However, antidepressant withdrawal-associated symptoms in depressed patients often reflect hyperserotonergia. The effect of chronic imipramine (IMI; 15 mg/kg/d ip × 3wks) treatment and withdrawal on swim stress responsiveness was studied in Sprague-Dawley rats together with assay of hippocampal NO synthase (NOS) activity. The dependence of any biobehavioral changes following IMI withdrawal on 5HT2A/C receptor-mediated events was studied using the 5HT2A/C receptor antagonist, ritanserin (RIT; 4 mg/kg/day ip × 7 days), administered alone or during IMI withdrawal. IMI significantly inhibited the situational stress response to forced swimming while also significantly decreasing NOS activity. IMI withdrawal was associated with a significant increase in swim immobility together with a significant increase in NOS activity compared to both control and IMI-treated groups. RIT re-established the anti-immobility effects and reversed NOS hyper-function during IMI withdrawal, although alone it increased NOS activity. Antidepressant discontinuation therefore increases stress responsiveness together with disinhibition of hippocampal NOS through a mechanism involving 5HT2A/C receptor activation. The resulting increased nitrergic activity may have significant implications for depressive illness and its treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Basco MR, Rush AJ (1995) Compliance of pharmacotherapy in mood disorder. Psychiatr Ann 25:269–279

    Google Scholar 

  • Berk M, Plein H, Ferreira D (2001) Platelet glutamate receptor supersensitivity in major depressive disorder. Clin Neuropharmacol 24:129–132

    Article  PubMed  CAS  Google Scholar 

  • Borsini F (1995) Role of the serotonergic system in the forced swimming test. Neurosci Biobehav Rev 19:377–395

    Article  PubMed  CAS  Google Scholar 

  • Coupland NJ, Bell CJ, Potokar JP (1996) Serotonin reuptake inhibitor withdrawal. J Clin Psychopharmacol 16:356–362

    Article  PubMed  CAS  Google Scholar 

  • Cremers TI, Giorgetti M, Bosker FJ, Hogg S, Arnt J, Mork A, Honig G, Bogeso KP, Westerink BH, den Boer H, Wikstrom HV, Tecott LH (2004) Inactivation of 5-HT(2C) receptors potentiates consequences of serotonin reuptake blockade. Neuropsychopharmacology 29:1782–1789

    Article  PubMed  CAS  Google Scholar 

  • Czeh B, Michaelis T, Watanabe T, Frahm J, de Biurrun G, van Kampen M, Bartolomucci A, Fuchs E (2001) Stress-induced changes in cerebral metabolites, hippocampal volume, and cell proliferation are prevented by antidepressant treatment with tianeptine. Proc Natl Acad Sci USA 98:12796–12801

    Article  PubMed  CAS  Google Scholar 

  • D'Sa C, Duman RS (2002) Antidepressants and neuroplasticity. Bipolar Disorders 4:184–194

    Article  Google Scholar 

  • Einat H, Clenet F, Shaldubina A, Belmaker RH, Bourin M (2001) The antidepressant activity of inositol in the forced swim test involves 5-HT(2) receptors. Behav Brain Res 118:77–83

    Article  PubMed  CAS  Google Scholar 

  • Finkel MS, Laghrissi-Thode F, Pollock BG, Rong J (1996) Paroxetine is a novel nitric oxide synthase inhibitor. Psychopharmacol Bull 32:653–658

    PubMed  CAS  Google Scholar 

  • Harvey BH (1997) The neurobiology and pharmacology of depression: a comparative overview of the serotonin-selective antidepressants. S Afr Med J 87:540–552

    PubMed  CAS  Google Scholar 

  • Harvey BH, Jonker LP, Brand L, Heenop M, Stein DJ (2002) NMDA receptor involvement in imipramine withdrawal-associated effects on swim stress, GABA levels and NMDA receptor binding in rat hippocampus. Life Sci 71:45–57

    Article  Google Scholar 

  • Harvey BH, McEwen BS, Stein DJ (2003) Neurobiology of antidepressant withdrawal: Implications for the longitudinal outcome of depression. Biol Psychiatry 54:1105–1117

    Article  PubMed  CAS  Google Scholar 

  • Harvey BH, Naciti C, Brand L, Stein DJ (2004) Serotonin and stress: Protective or malevolent actions in the biobehavioural response to repeated trauma. Annal NY Acad Sci 1032:267–272

    Article  CAS  Google Scholar 

  • Harvey JA, Welsh SE, Hood H, Romano AG (1999) Effect of 5-HT2 receptor antagonists on a cranial nerve reflex in the rabbit: evidence for inverse agonism. Psychopharmacology (Berl) 141:162–168

    Article  CAS  Google Scholar 

  • Ilgen MA, Hutchison KE (2005) A history of major depressive disorder and response to stress. J Affec Disorders 86:143–150

    Article  Google Scholar 

  • Judd LL, Akiskal HS, Maser JD, Zeller PJ, Endicott J, Coryell W, Paulus MP, Kunovac JL, Leon AC, Mueller TI, Rice JA, Keller MB (1998) Major depressive disorder: a prospective study of residual subthreshold depressive symptoms as predictor of rapid relapse. J Affect Disorders 50:97–108

    Article  PubMed  CAS  Google Scholar 

  • Kendler KS, Thornton LM, Gardner CO (2001) Genetic risk, number of previous depressive episodes, and stressful life events in predicting onset of major depression. Am J Psychiatry 158:582–586

    Article  PubMed  CAS  Google Scholar 

  • Krukoff TL, Khalili P (1997) Stress-induced activation of nitric oxide-producing neurons in the rat brain. J Comp Neurol 377:509–519

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:65–275

    Google Scholar 

  • Lowy MT, Gault L, Yamamoto BK (1993) Adrenalectomy attenuates stress-induced elevations in extracellular glutamate concentrations in the hippocampus. J Neurochem 61:957–1960

    Article  Google Scholar 

  • MacQueen GM, Campbell S, McEwen BS, MacDonald K, Amano S, Joffe RT, Nahmias C, Young LT (2003) Course of illness, hippocampal function, and hippocampal volume in major depression. Proc Natl Acad Sci USA 100:1387–1392

    Article  PubMed  CAS  Google Scholar 

  • Maura G, Guadagnin A, Raiteri M (1995) Low nanomolar serotonin inhibits the glutamate receptor/nitric oxide/cyclic GMP pathway in slices from adult rat cerebellum. Neurosci 68:455–461

    Article  CAS  Google Scholar 

  • McEwen BS (1997) Possible mechanisms for atrophy of the human hippocampus. Mol Psychiatry 2:255–262

    Article  PubMed  CAS  Google Scholar 

  • McEwen BS (1999) Stress and hippocampal plasticity. Annu Rev Neurosci 22:105–122

    Article  PubMed  CAS  Google Scholar 

  • Michelson D, Amsterdam J, Apter J, Fava M, Londborg P, Tamura R, Pagh L (2000) Hormonal markers of stress response following interruption of selective serotonin reupake inhibitor treatment. Psychoneuroendocrinology 25:169–177

    Article  PubMed  CAS  Google Scholar 

  • Moreira FA, Guimaraes FS (2004) Benzodiazepine receptor and serotonin 2A receptor modulate the aversive-like effects of nitric oxide in the dorsolateral periaqueductal grey of rats. Psychopharmacology (Berl) 176:362–368

    Article  CAS  Google Scholar 

  • Nel A, Harvey BH (2003) Haloperidol-induced dyskinesia is associated with striatal NO synthase suppression: Reversal with olanzapine. Behav Pharmacology 14:251–255

    CAS  Google Scholar 

  • Nowak G, Ordway GA, Paul IA (1995) Alterations in the N-methyl-D-aspartate (NMDA) receptor complex in the frontal cortex of suicide victims. Brain Res 675:157–164

    Article  PubMed  CAS  Google Scholar 

  • Porsolt RD, Bertin A, Blavet N, Deniel M, Jalfre M (1979) Immobility induced by forced swimming in rats: effects of agents which modify central catecholamine and serotonin activity. Eur J Pharmacol 57:201–210

    Article  PubMed  CAS  Google Scholar 

  • Robbins TW (2005) Controlling stress: How the brain protects itself from depression. Nat Neurosci 8:261–262

    Article  PubMed  CAS  Google Scholar 

  • Schatzberg AF, Haddad P, Kaplan EM, Lejoyeux M, Rosenbaum JF, Young AH, Zajecka J (1997) Possible biological mechanisms of the serotonin reuptake inhibitor discontinu ation syndrome. J Clin Psychiatry 58(S7):23–27

    PubMed  CAS  Google Scholar 

  • Segieth J, Pearce B, Fowler L, Whitton PS (2001) Regulatory role of nitric oxide over hippocampal 5-HT release in vivo. Naunyn Schmiedebergs Arch Pharmacol 363:302–306

    Article  PubMed  CAS  Google Scholar 

  • Skolnick P, Layer RT, Popik P, Nowak G, Paul IA, Trullas R, Rupniak NM (1996) Adaptation of N-methyl-D-aspartate receptors following antidepressant treatment: implications for the pharmacotherapy of depression. Pharmacopsychiatry 29:23–26

    Article  PubMed  CAS  Google Scholar 

  • Stewart CA, Reid IC (2002) Antidepressant mechanisms: functional and molecular correlates of excitatory amino acid neurotransmission. Mol Psychiatry 7(suppl 1):S15–S22

    Article  PubMed  CAS  Google Scholar 

  • Suzuki E, Yagi G, Nakaki T, Kanba S, Asai M (2001) Elevated plasma nitrate levels in depressive states. J Affect Disorders 63;221–224

    Article  PubMed  CAS  Google Scholar 

  • Tagliaferro P, Ramos AJ, Lopez-Costa JJ, Lopez EM, Saavedra JP, Brusco A (2001) Increased nitric oxide synthase activity in a model of serotonin depletion. Brain Res Bull 54:199–205

    Article  PubMed  CAS  Google Scholar 

  • Vaidya VA, Rewilliger RMZ, Duman RS (1999) Role of 5HT2A receptors in the stress-induced down-regulation of brain-derived neurotrophic factor expression in rat hippocampus. Neurosci Lett 262:1–4

    Article  PubMed  CAS  Google Scholar 

  • Wegener G, Volke V, Harvey BH, Rosenberg R (2003) Local, but not systemic, administration of serotonergic antidepressants decreases hippocampal nitric oxide synthase activity. Brain Res 959:128–134

    Article  PubMed  CAS  Google Scholar 

  • Yamada J, Sugimoto Y (2001) Effects of 5-HT(2) receptor antagonists on the anti-immobility effects of imipramine in the forced swimming test with mice. Eur J Pharmacol 427:221–225

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The South African Medical Research Council and the National Research Foundation (Grant 2053203) for funding. Cor Bester, Antoinette Fick and Dr Douw van der Nest for assistance in the behavioural experiments and the welfare of the animals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian H. Harvey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harvey, B.H., Retief, R., Korff, A. et al. Increased hippocampal nitric oxide synthase activity and stress responsiveness after imipramine discontinuation: Role of 5HT 2A/C -receptors. Metab Brain Dis 21, 201–210 (2006). https://doi.org/10.1007/s11011-006-9018-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-006-9018-1

Keywords

Navigation