Skip to main content
Log in

Molecular Mechanisms of the Alterations in NMDA Receptor-Dependent Long-Term Potentiation in Hyperammonemia

  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Long-term potentiation (LTP) is a long-lasting enhancement of synaptic transmission efficacy and is considered the base for some forms of learning and memory. Hyperammonemia impairs LTP in hippocampus. Proper LTP induction in hippocampal slices requires activation of the soluble guanylate cyclase (sGC)-protein kinase G (PKG)-cyclic guanosine monophosphate (cGMP)-degrading phosphodiesterase pathway. Hyperammonemia impairs LTP by impairing the tetanus-induced activation of this pathway. The tetanus induces a rapid cGMP rise, reaching a maximum at 10 s, both in the absence or in the presence of ammonia. The increase in cGMP is followed, in control slices, by a sustained decrease in cGMP because of PKG-mediated activation of cGMP-degrading phosphodiesterase, which is required for maintenance of LTP. Hyperammonemia prevents completely tetanus-induced decrease in cGMP by impairing PKG-mediated activation of cGMP-degrading phosphodiesterase. Addition of 8Br-cGMP to slices treated with ammonia restores both phosphodiesterase activation and maintenance of LTP. Impairment of LTP in hyperammonemia may be involved in the impairment of the cognitive function in patients with hepatic encephalopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akers, R.F., Lovinger, D.M., Colley, P.A., Linden, D.J., and Routtenberg, A. (1986). Translocation of protein kinase C activity may mediate hippocampal long-term potentiation. Science 231:587–589.

    PubMed  CAS  Google Scholar 

  • Blitzer, R.D., Wong, T., Nouranifar, R., Iyengar, R., and Landau, E.M. (1995). Postsynapyic cAMP pathway gates early LTP in hippocampal CA1 region. Neuron 15:1403–1414.

    Article  PubMed  CAS  Google Scholar 

  • Böhme, G.A., Bon, C., Stutzmann, J.M., Doble, A., and Blanchard, J.C. (1991). Possible involvement of nitric oxide in long-term potentiation. Eur. J. Pharmacol. 199:379–381.

    PubMed  Google Scholar 

  • Boulton, C.L., Southam, E., and Garthwaite, J. (1995). Nitric oxide-dependent long-term potentiation is blocked by a specific inhibitor of soluble guanylyl cyclase. Neuroscience 69:699–703.

    Article  PubMed  CAS  Google Scholar 

  • Chetkovich, D.M., Klann, E., and Sweatt, J.D. (1993). Nitric oxide synthase-independent long-term potentiation in area CA1 of hippocampus. NeuroReport 4:919–922.

    PubMed  CAS  Google Scholar 

  • Corbin, J.D., Turko, I.V., Beasley, A., and Francis, S.H. (2000). Phosphorylation of phosphodiesterase-5 by cyclic nucleotide-dependent protein kinase alters its catalytic and allosteric cGMP-binding activities. Eur. J. Biochem. 267:2760–2767.

    Article  PubMed  CAS  Google Scholar 

  • Doyle, C., Hölscher, C., Rowan, M.J., and Anwyl, R. (1996). The selective neuronal NO synthase inhibitor 7-nitroindazole blocks both long-term potentiation and depotentiation of field EPSPs in rat hippocampal CA1 in vivo. J. Neurosci. 16:418–424.

    PubMed  CAS  Google Scholar 

  • Felipo, V., and Butterworth, R.F. (2002). Neurobiology of ammonia. Prog. Neurobiol. 67:259–279.

    Article  PubMed  CAS  Google Scholar 

  • Hawkins, R.D. (1996). NO honey, I don't remember. Neuron 16:465–467.

    Article  PubMed  CAS  Google Scholar 

  • Hermenegildo, C., Montoliu, C., Llansola, M., Muñoz, M.D., Gaztelu, J.M., Miñana, M.D., and Felipo, V. (1998). Chronic hyperammonemia impairs the glutamate-nitricoxide-cyclic GMP pathway in cerebellar neurons in culture and in the rat in vivo. Eur. J. Neurosci. 10:3201–3209.

    Article  PubMed  CAS  Google Scholar 

  • Hu, G.Y., Hvalby, O., Walaas, S.I., Albert, K.A., Skjeflo, P., Andersen, P., and Greengard, P. (1987). Protein kinase C injection into hippocampal pyramidal cells elicits features of long term potentiation. Nature 328:426–429.

    PubMed  CAS  Google Scholar 

  • Lombardi, G., Mannaioni, P., Leonardi, P., Cherici, G., Carlà, V., and Moroni, F. (1994). Ammonium acetate inhibits ionotropic receptors and differentially affects metabotropic receptors for glutamate. J. Neural Transm. Gen. Sect. 97:187–196.

    PubMed  CAS  Google Scholar 

  • Louis, J.C., Revel, M.O., and Zwiller, J. (1993). Activation of soluble guanylate cyclase through phosphorylation by protein kinase C in intact PC12 cells. Biochim. Biophys. Acta 1177: 299–306.

    PubMed  CAS  Google Scholar 

  • Lovinger, D.M., Wong, K.L., Murakami, K., and Routtenberg, A. (1987). Protein kinase C inhibitors eliminate hippocampal long-term potentiation. Brain Res. 436:177–183.

    Article  PubMed  CAS  Google Scholar 

  • Lu, Y., Kandel, E.R., and Hawkins, R.D. (1999). Nitric oxide signaling contributes to late-phase LTP and CREB phosphorylation in the hippocampus. J. Neurosci. 19: 10250–10261.

    PubMed  CAS  Google Scholar 

  • Marcaida, G., Miñana, M.D., Burgal, M., Grisolia, S., and Felipo, V.(1995). Ammonia prevents activation of NMDA receptors by glutamate in rat cerebellar neuronal cultures Eur. J. Neurosci. 7:2389–2396.

    PubMed  CAS  Google Scholar 

  • Michalak, A., Knecht, K., and Butterworth, R.F. (1997). Hepatic encephalopathy in acute liver failure: role of the glutamate system. Adv. Exp. Med. Biol. 420:35–44.

    PubMed  CAS  Google Scholar 

  • Miñana, M.D., Llansola, M., Hermenegildo, C., Cucarella, C., Montoliu, C., Grisolía, S., and Felipo, V. (1997). Glutamate and muscarinic receptors in the molecular mechanism of acute ammonia toxicity and of its prevention. Adv. Exp. Med. Biol. 420:45–56.

    PubMed  Google Scholar 

  • Monfort, P., Muñoz, D., and Felipo, V. (2004). Hyperammonemia impairs long-term potentiation in hippocampus by alterating the modulation of cGMP-degrading phosphodiesterase by protein kinase G. Neurobiol. Dis. 15:1–10.

    Article  PubMed  CAS  Google Scholar 

  • Monfort, P., Muñoz, D., Kosenko, E., and Felipo, V. (2002). Long- Term potentiation in hippocampus involves sequential activation of soluble guanylate cyclase, cGMP-dependent protein kinase, and cGMP-degrading phosphodiesterase. J. Neurosci. 22:10116–10122.

    PubMed  CAS  Google Scholar 

  • Moroni, F., Lombardi, G., Moneti, G., and Cortesini, C. (1983). The release and neosynthesis of glutamic acid are increased in experimental models of hepatic encephalopathy. J. Neurochem. 40:850–854.

    PubMed  CAS  Google Scholar 

  • Muñoz, D., Monfort, P., and Felipo, V. (2000). Hyperammonemia impairs NMDA receptor-dependent long-term-potentiation in the CA1 of rat hippocampus in vitro. Neurochem. Res. 25:437–441.

    PubMed  Google Scholar 

  • O'Dell, T.J., Hawkins, R.D., Kandel, E.R., and Arancio, O. (1991). Tests of the roles of two diffusible substances in long-term potentiation: evidence for nitric oxide as a possible early retrograde messenger. Proc. Natl. Acad. Sci. 88:11285–11289.

    PubMed  Google Scholar 

  • Schuman, E.M., and Madison, D.V. (1991). A requirement for the intercellular messenger nitric oxide in long-term potentiation. Science 254:503–1506.

    Google Scholar 

  • Schuman, E.M., Meffert, M.K., Schulman, H., and Madison, D.V. (1994). An ADP-ribosyl transferase as a potential target for nitric oxide action in hippocampal long-term potentiation. Proc. Natl. Acad. Sci. 91:11958–11962.

    PubMed  CAS  Google Scholar 

  • Selig, D.K., Segal, M.R., Liao, D., Malenka, R., Malinow, R., Nicoll, R.A., and Lisman, J.E. (1996). Examination of the role of cGMP in long-term potentiation in the CA1 region of the hippocampus. Learn. Memory 3:42–48.

    CAS  Google Scholar 

  • Thomas, M.K., Francis, S.H., and Corbin, J.D. (1990). Substrate- and kinase-directed regulation of phosphorylation of a cGMP-binding phosphodiesterase by cGMP. J. Biol. Chem. 265:14971–14978.

    PubMed  CAS  Google Scholar 

  • Wu, J., Wang, Y., Rowan, M.J., and Anwy, L.R. (1998). Evidence for involvement of the cGMP-protein kinase G signaling system in the induction of long term depression, but not long-term potentiation, in the dentate gyrus in vitro. J. Neurosci. 18:3589–3596.

    PubMed  CAS  Google Scholar 

  • Wyatt, T.A., Naftilan, A.J., Francis, S.H., and Corbin, J.D. (1998). ANF elicits phosphorylation of the cGMP phosphodiesterase in vascular smooth muscle cells. Am. J. Physiol. 274:448–455.

    Google Scholar 

  • Zhuo, M., Hu, Y., Schultz, C., Kandel, E.R., and Hawkins, R.D. (1994). Role of guanylyl cyclase and cGMP-dependent protein kinase in long-term potentiation. Nature 368:635–639.

    Article  PubMed  CAS  Google Scholar 

  • Zwiller, J., Revel, M.O., and Basset, P. (1981). Evidence for phosphorylation of rat brain guanylate cyclase by cyclic-AMP-dependent protein kinase. Biochem. Biophys. Res. Commun. 101:1381–1387.

    Article  PubMed  CAS  Google Scholar 

  • Zwiller, J., Revel, M.O., and Malviya, A.N. (1985). Protein kinase C catalyzes phosphorylation of guanylate cyclase in vitro. J. Biol. Chem. 260:1350–1353.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicente Felipo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monfort, P., Muñoz, MD. & Felipo, V. Molecular Mechanisms of the Alterations in NMDA Receptor-Dependent Long-Term Potentiation in Hyperammonemia. Metab Brain Dis 20, 265–274 (2005). https://doi.org/10.1007/s11011-005-7905-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-005-7905-5

Keywords

Navigation