Skip to main content
Log in

STAT3 mediates ECM stiffness-dependent progression in ovarian cancer

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The treatment of ovarian cancer remains a medical challenge and its malignant progression is connected with obvious changes in both tissue and cell stiffness. However, the accurate mechanical-responsive molecules and mechanism remains unclear in ovarian cancer. Based on our previous results combined with the crucial regulatory role of STAT3 in the malignant progression of various cancer types, we want to investigate the relationship between STAT3 and matrix stiffness in ovarian cancer and further explore the potential mechanisms. Collagen-coated polyacrylamide gels (1, 6, and 60 kPa) were prepared to mimic soft or hard matrix stiffness. Western blotting, qRT-PCR, flow cytometry, IHC, EdU assays, and TEM were used to evaluate the effect of STAT3 in vitro under different matrix stiffnesses. Furthermore, a BALB/c nude mouse model was established to assess the relationship in vivo. Our results confirmed the differential expression of STAT3/p-STAT3 not only in normal and malignant ovarian tissues but also under different matrix stiffnesses. Furthermore, we verified that STAT3 was a mechanically responsive gene both in vitro and in vivo, and the mechanical response was carried out by altering the migration-related molecules (TNFAIP1) and adhesion-related molecules (LPXN, CNN3). The novel findings suggest that STAT3, a potential therapeutic target for clinical diagnosis and treatment, is a mechanically responsive gene that responds to matrix stiffness, particularly regulation in migration and adhesion in the progression of ovarian cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

EOC:

Epithelial ovarian cancer

KDST3:

Knockdown of STAT3

FBS:

Fetal bovine serum

PA gels:

Polyacrylamide gels

FCM:

Flow cytometry

TEM:

Transmission electron microscope

GFP:

Green fluorescent protein

Cytc:

Cytochrome C

MMP2:

Matrix metalloproteinases 2

LOX:

Lysyl oxidase

VEGF:

Vascular endothelial growth factor

HIF-1α:

Hypoxia-inducible factor-1α

IL-6:

Interleukin-6

References

  1. Xia C, Dong X, Li H, Cao M, Sun D, He S, Yang F, Yan X, Zhang S, Li N et al (2022) Cancer statistics in China and United States, 2022: profiles, trends, and determinants. Chin Med J 135(5):584–590

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J Clin 71(3):209–249

    Article  Google Scholar 

  3. Siegel RL, Miller KD, Jemal A (2018) Cancer statistics, 2018. CA A Cancer J Clin 68(1):7–30

    Article  Google Scholar 

  4. Wei X, Lou H, Zhou D, Jia Y, Li H, Huang Q, Ma J, Yang Z, Sun C, Meng Y et al (2021) TAGLN mediated stiffness-regulated ovarian cancer progression via RhoA/ROCK pathway. J Exp Clin Cancer Res 40(1):292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Choi JI, Park SB, Han BH, Kim YH, Lee YH, Park HJ, Lee ES (2016) Imaging features of complex solid and multicystic ovarian lesions: proposed algorithm for differential diagnosis. Clin Imaging 40(1):46–56

    Article  PubMed  Google Scholar 

  6. Xie M, Zhang X, Jia Z, Ren Y, Wang W (2014) Elastography, a sensitive tool for the evaluation of neoadjuvant chemotherapy in patients with high-grade serous ovarian carcinoma. Oncol Lett 8(4):1652–1656

    Article  PubMed  PubMed Central  Google Scholar 

  7. Xie M, Zhang X, Zhan J, Hua K (2013) Application of real-time ultrasound elastography for discrimination of low- and high-grade serous ovarian carcinoma. J Ultrasound Med 32(2):257–262

    Article  CAS  PubMed  Google Scholar 

  8. Xu W, Mezencev R, Kim B, Wang L, McDonald J, Sulchek T (2012) Cell stiffness is a biomarker of the metastatic potential of ovarian cancer cells. PLoS ONE 7(10):e46609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhou ZL, Sun XX, Ma J, Tong MH, To SKY, Wong AST, Ngan AHW (2017) Actin cytoskeleton stiffness grades metastatic potential of ovarian carcinoma Hey A8 cells via nanoindentation mapping. J Biomech 60:219–226

    Article  CAS  PubMed  Google Scholar 

  10. Sun J, Luo Q, Liu L, Yang X, Zhu S, Song G (2017) Salinomycin attenuates liver cancer stem cell motility by enhancing cell stiffness and increasing F-actin formation via the FAK-ERK1/2 signalling pathway. Toxicology 384:1–10

    Article  CAS  PubMed  Google Scholar 

  11. Han Y, Wu J, Yang W, Wang D, Zhang T, Cheng M (2019) New STAT3-FOXL2 pathway and its function in cancer cells. BMC Mol Cell Biol 20(1):17

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zou S, Tong Q, Liu B, Huang W, Tian Y, Fu X (2020) Targeting STAT3 in cancer immunotherapy. Mol Cancer 19(1):145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yang X, Wang G, Huang X, Cheng M, Han Y (2020) RNA-seq reveals the diverse effects of substrate stiffness on epidermal ovarian cancer cells. Aging 12(20):20493–20511

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sadrkhanloo M, Paskeh MDA, Hashemi M, Raesi R, Motahhary M, Saghari S, Sharifi L, Bokaie S, Mirzaei S, Entezari M et al (2023) STAT3 signaling in prostate cancer progression and therapy resistance: An oncogenic pathway with diverse functions. Biomed Pharmacother 158:114168

    Article  CAS  PubMed  Google Scholar 

  15. Ma JH, Qin L, Li X (2020) Role of STAT3 signaling pathway in breast cancer. Cell Commun Signal 18(1):33

    Article  PubMed  PubMed Central  Google Scholar 

  16. He G, Karin M (2011) NF-κB and STAT3—key players in liver inflammation and cancer. Cell Res 21(1):159–168

    Article  CAS  PubMed  Google Scholar 

  17. Hu XM, Li ZX, Lin RH, Shan JQ, Yu QW, Wang RX, Liao LS, Yan WT, Wang Z, Shang L et al (2021) Guidelines for regulated cell death assays: a systematic summary, a categorical comparison, a prospective. Front Cell Dev Biol 9:634690

    Article  PubMed  PubMed Central  Google Scholar 

  18. Burke PJ (2017) Mitochondria, bioenergetics and apoptosis in cancer. Trends Cancer 3(12):857–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hall A (2009) The cytoskeleton and cancer. Cancer Metastasis Rev 28(1–2):5–14

    Article  PubMed  Google Scholar 

  20. Hasan R, Zhou GL (2019) The cytoskeletal protein Cyclase-Associated Protein 1 (CAP1) in breast cancer: context-dependent roles in both the invasiveness and proliferation of cancer cells and underlying cell signals. Int J Mol Sci 20(11):2653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kalli M, Li R, Mills GB, Stylianopoulos T, Zervantonakis IK (2022) Mechanical stress signaling in pancreatic cancer cells triggers p38 MAPK- and JNK-dependent cytoskeleton remodeling and promotes cell migration via Rac1/cdc42/Myosin II. Mol Cancer Res 20(3):485–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang S, Basson MD (2009) Integrin-linked kinase: a multi-functional regulator modulating extracellular pressure-stimulated cancer cell adhesion through focal adhesion kinase and AKT. Cell Oncol 31(4):273–289

    PubMed  PubMed Central  Google Scholar 

  23. Yilmaz M, Christofori G (2010) Mechanisms of motility in metastasizing cells. Mol Cancer Res 8(5):629–642

    Article  CAS  PubMed  Google Scholar 

  24. Sasikumar S, Chameettachal S, Cromer B, Pati F, Kingshott P (2019) Decellularized extracellular matrix hydrogels-cell behavior as a function of matrix stiffness. Curr Opin Biomed Eng 10:123–133

    Article  Google Scholar 

  25. Bregenzer ME, Horst EN, Mehta P, Novak CM, Repetto T, Mehta G (2019) The role of cancer stem cells and mechanical forces in ovarian cancer metastasis. Cancers 11(7):1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Novak C, Horst E, Mehta G (2018) Review: Mechanotransduction in ovarian cancer: shearing into the unknown. APL Bioeng 2(3):031701

    Article  PubMed  PubMed Central  Google Scholar 

  27. Laklai H, Miroshnikova YA, Pickup MW, Collisson EA, Kim GE, Barrett AS, Hill RC, Lakins JN, Schlaepfer DD, Mouw JK et al (2016) Genotype tunes pancreatic ductal adenocarcinoma tissue tension to induce matricellular fibrosis and tumor progression. Nat Med 22(5):497–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Huang B, Lang X, Li X (2022) The role of IL-6/JAK2/STAT3 signaling pathway in cancers. Front Oncol 12:1023177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li H, Qi Z, Niu Y, Yang Y, Li M, Pang Y, Liu M, Cheng X, Xu M, Wang Z (2021) FBP1 regulates proliferation, metastasis, and chemoresistance by participating in C-MYC/STAT3 signaling axis in ovarian cancer. Oncogene 40(40):5938–5949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shodeinde AL, Barton BE (2012) Potential use of STAT3 inhibitors in targeted prostate cancer therapy: future prospects. Onco Targets Ther 5:119–125

    PubMed  PubMed Central  Google Scholar 

  31. Li S, Bai H, Chen X, Gong S, Xiao J, Li D, Li L, Jiang Y, Li T, Qin X et al (2020) Soft substrate promotes osteosarcoma cell self-renewal, differentiation, and drug resistance through miR-29b and Its target protein spin 1. ACS Biomater Sci Eng 6(10):5588–5598

    Article  CAS  PubMed  Google Scholar 

  32. Yang Y, Zheng H, Zhan Y, Fan S (2019) An emerging tumor invasion mechanism about the collective cell migration. Am J Transl Res 11(9):5301–5312

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang CL, Wang C, Yan WJ, Gao R, Li YH, Zhou XH (2014) Knockdown of TNFAIP1 inhibits growth and induces apoptosis in osteosarcoma cells through inhibition of the nuclear factor-κB pathway. Oncol Rep 32(3):1149–1155

    Article  CAS  PubMed  Google Scholar 

  34. Liu D, Wang X, Chen Z (2016) Tumor necrosis factor-α, a regulator and therapeutic agent on breast cancer. Curr Pharm Biotechnol 17(6):486–494

    Article  CAS  PubMed  Google Scholar 

  35. Wu Y, Zhou BP (2010) TNF-alpha/NF-kappaB/snail pathway in cancer cell migration and invasion. Br J Cancer 102(4):639–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tilghman RW, Parsons JT (2008) Focal adhesion kinase as a regulator of cell tension in the progression of cancer. Semin Cancer Biol 18(1):45–52

    Article  CAS  PubMed  Google Scholar 

  37. Schmidmaier R, Baumann P (2008) Anti-adhesion evolves to a promising therapeutic concept in oncology. Curr Med Chem 15(10):978–990

    Article  CAS  PubMed  Google Scholar 

  38. Gupta A, Lee BS, Khadeer MA, Tang Z, Chellaiah M, Abu-Amer Y, Goldknopf J, Hruska KA (2003) Leupaxin is a critical adaptor protein in the adhesion zone of the osteoclast. J Bone Miner Res 18(4):669–685

    Article  CAS  PubMed  Google Scholar 

  39. Sahu SN, Nunez S, Bai G, Gupta A (2007) Interaction of Pyk2 and PTP-PEST with leupaxin in prostate cancer cells. Am J Physiol Cell Physiol 292(6):C2288-2296

    Article  CAS  PubMed  Google Scholar 

  40. Hou T, Zhou L, Wang L, Kazobinka G, Chen Y, Zhang X, Chen Z (2018) Leupaxin promotes bladder cancer proliferation, metastasis, and angiogenesis through the PI3K/AKT pathway. Cell Physiol Biochem 47(6):2250–2260

    Article  CAS  PubMed  Google Scholar 

  41. Dai F, Luo F, Zhou R, Zhou Q, Xu J, Zhang Z, Xiao J, Song L (2020) Calponin 3 is associated with poor prognosis and regulates proliferation and metastasis in osteosarcoma. Aging 12(14):14037–14049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the lab members for their in-depth discussions and careful reading of this manuscript.

Funding

The present study was supported by Youth Innovation Team of Shandong Province (2022KJ261), the Natural Science Foundation of Shandong Province (grant No. ZR2023MH193, ZR2019MH047, ZR2015HL057), and the National Natural Science Foundation of China (Grant number 81501683).

Author information

Authors and Affiliations

Authors

Contributions

Sun Chenchen performed the experiments and wrote the materials and results section. Zhang Hui and Bai Lanning helped Sun Chenchen finished some of experiments. Lu Yahui, Qian Xueqian, and Yuan Yi analyzed some of the data, and Qian Xueqian also made some revisions in the revised manuscript. Cheng Min provided the experimental instruments. Han Yang-yang designed all of the experiments and wrote the introduction and discussion section.

Corresponding author

Correspondence to Han Yangyang.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethical approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 395 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chenchen, S., Xueqian, Q., Yahui, L. et al. STAT3 mediates ECM stiffness-dependent progression in ovarian cancer. Mol Cell Biochem (2024). https://doi.org/10.1007/s11010-024-04991-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11010-024-04991-5

Keywords

Navigation