Skip to main content
Log in

A crazy trio in Parkinson's disease: metabolism alteration, α-synuclein aggregation, and oxidative stress

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Parkinson's disease (PD) is an aging-associated neurodegenerative disorder, characterized by the progressive loss of dopaminergic neurons in the pars compacta of the substantia nigra and the presence of Lewy bodies containing α-synuclein within these neurons. Oligomeric α-synuclein exerts neurotoxic effects through mitochondrial dysfunction, glial cell inflammatory response, lysosomal dysfunction and so on. α-synuclein aggregation, often accompanied by oxidative stress, is generally considered to be a key factor in PD pathology. At present, emerging evidences suggest that metabolism alteration is closely associated with α-synuclein aggregation and PD progression, and improvement of key molecules in metabolism might be potentially beneficial in PD treatment. In this review, we highlight the tripartite relationship among metabolic changes, α-synuclein aggregation, and oxidative stress in PD, and offer updated insights into the treatments of PD, aiming to deepen our understanding of PD pathogenesis and explore new therapeutic strategies for the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

No applicable.

References

  1. Prajjwal P, Flores Sanga HS, Acharya K, Tango T, John J, Rodriguez RSC, Dheyaa Marsool Marsool M, Sulaimanov M, Ahmed A, Hussin OA (2023) Parkinson’s disease updates: addressing the pathophysiology, risk factors, genetics, diagnosis, along with the medical and surgical treatment. Ann Med Surg (Lond) 85:4887–4902. https://doi.org/10.1097/MS9.0000000000001142

    Article  PubMed  Google Scholar 

  2. Collaborators GBDPsD (2018) Global, regional, and national burden of Parkinson’s disease, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 17:939–953. https://doi.org/10.1016/S1474-4422(18)30295-3

    Article  Google Scholar 

  3. Dorsey ER, Bloem BR (2018) The Parkinson Pandemic-A Call to Action. JAMA Neurol 75:9–10. https://doi.org/10.1001/jamaneurol.2017.3299

    Article  PubMed  Google Scholar 

  4. Rademacher DJ (2023) Potential for therapeutic-loaded exosomes to ameliorate the pathogenic effects of alpha-synuclein in Parkinson’s disease. Biomedicines. https://doi.org/10.3390/biomedicines11041187

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kalia LV, Lang AE (2015) Parkinson’s disease. Lancet 386:896–912. https://doi.org/10.1016/S0140-6736(14)61393-3

    Article  CAS  PubMed  Google Scholar 

  6. Yeo GEC, Ng MH, Nordin FB, Law JX (2021) Potential of mesenchymal stem cells in the rejuvenation of the aging immune system. Int J Mol Sci. https://doi.org/10.3390/ijms22115749

    Article  PubMed  PubMed Central  Google Scholar 

  7. Tansey MG, Wallings RL, Houser MC, Herrick MK, Keating CE, Joers V (2022) Inflammation and immune dysfunction in Parkinson disease. Nat Rev Immunol 22:657–673. https://doi.org/10.1038/s41577-022-00684-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gautam N, Das S, Kar Mahapatra S, Chakraborty SP, Kundu PK, Roy S (2010) Age associated oxidative damage in lymphocytes. Oxid Med Cell Longev 3:275–282. https://doi.org/10.4161/oxim.3.4.12860

    Article  PubMed  PubMed Central  Google Scholar 

  9. Spaggiari GM, Capobianco A, Abdelrazik H, Becchetti F, Mingari MC, Moretta L (2008) Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood 111:1327–1333. https://doi.org/10.1182/blood-2007-02-074997

    Article  CAS  PubMed  Google Scholar 

  10. Alecu I, Bennett SAL (2019) Dysregulated lipid metabolism and its role in alpha-synucleinopathy in Parkinson’s disease. Front Neurosci 13:328. https://doi.org/10.3389/fnins.2019.00328

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zhang Y, Xu XJ, Lian TY, Huang LF, Zeng JM, Liang DM, Yin MJ, Huang JX, Xiu LC, Yu ZW, Li YL, Mao C, Ni JD (2020) Development of frailty subtypes and their associated risk factors among the community-dwelling elderly population. Aging (Albany NY) 12:1128–1140. https://doi.org/10.18632/aging.102671

    Article  PubMed  Google Scholar 

  12. Ng TP, Feng L, Nyunt MS, Feng L, Niti M, Tan BY, Chan G, Khoo SA, Chan SM, Yap P, Yap KB (2015) Nutritional, physical, cognitive, and combination interventions and frailty reversal among older adults: a randomized controlled trial. Am J Med 128(1225–1236):e1. https://doi.org/10.1016/j.amjmed.2015.06.017

    Article  Google Scholar 

  13. Payne T, Burgess T, Bradley S, Roscoe S, Sassani M, Dunning MJ, Hernandez D, Scholz S, McNeill A, Taylor R, Su L, Wilkinson I, Jenkins T, Mortiboys H, Bandmann O (2024) Multimodal assessment of mitochondrial function in Parkinson’s disease. Brain 147:267–280. https://doi.org/10.1093/brain/awad364

    Article  PubMed  Google Scholar 

  14. Wang L, Yang L, Cheng XL, Qin XM, Chai Z, Li ZY (2024) The beneficial effects of dietary astragali radix are related to the regulation of gut microbiota and its metabolites. J Med Food 27:22–34. https://doi.org/10.1089/jmf.2023.K.0091

    Article  CAS  PubMed  Google Scholar 

  15. Neto A, Fernandes A, Barateiro A (2023) The complex relationship between obesity and neurodegenerative diseases: an updated review. Front Cell Neurosci 17:1294420. https://doi.org/10.3389/fncel.2023.1294420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bregonzio C (2023) Metabolic syndrome as a risk for Parkinson’s disease: a new therapeutic opportunity. Brain Behav Immun 111:125–126. https://doi.org/10.1016/j.bbi.2023.03.030

    Article  CAS  PubMed  Google Scholar 

  17. Lv YQ, Yuan L, Sun Y, Dou HW, Su JH, Hou ZP, Li JY, Li W (2022) Long-term hyperglycemia aggravates alpha-synuclein aggregation and dopaminergic neuronal loss in a Parkinson’s disease mouse model. Transl Neurodegener 11:14. https://doi.org/10.1186/s40035-022-00288-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Devi L, Raghavendran V, Prabhu BM, Avadhani NG, Anandatheerthavarada HK (2008) Mitochondrial import and accumulation of alpha-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J Biol Chem 283:9089–9100. https://doi.org/10.1074/jbc.M710012200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stichel CC, Zhu XR, Bader V, Linnartz B, Schmidt S, Lubbert H (2007) Mono- and double-mutant mouse models of Parkinson’s disease display severe mitochondrial damage. Hum Mol Genet 16:2377–2393. https://doi.org/10.1093/hmg/ddm083

    Article  CAS  PubMed  Google Scholar 

  20. De Lazzari F, Bubacco L, Whitworth AJ, Bisaglia M (2018) Superoxide radical dismutation as new therapeutic strategy in Parkinson’s disease. Aging Dis 9:716–728. https://doi.org/10.14336/AD.2017.1018

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chen C, Turnbull DM, Reeve AK (2019) Mitochondrial dysfunction in Parkinson’s disease-cause or consequence? Biology (Basel). https://doi.org/10.3390/biology8020038

    Article  PubMed  PubMed Central  Google Scholar 

  22. Park GH, Park JH, Chung KC (2021) Precise control of mitophagy through ubiquitin proteasome system and deubiquitin proteases and their dysfunction in Parkinson’s disease. BMB Rep 54:592–600. https://doi.org/10.5483/BMBRep.2021.54.12.107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Huang M, Lou D, Charli A, Kong D, Jin H, Zenitsky G, Anantharam V, Kanthasamy A, Wang Z, Kanthasamy AG (2021) Mitochondrial dysfunction-induced H3K27 hyperacetylation perturbs enhancers in Parkinson’s disease. JCI Insight. https://doi.org/10.1172/jci.insight.138088

    Article  PubMed  PubMed Central  Google Scholar 

  24. Guo JD, Zhao X, Li Y, Li GR, Liu XL (2018) Damage to dopaminergic neurons by oxidative stress in Parkinson’s disease (Review). Int J Mol Med 41:1817–1825. https://doi.org/10.3892/ijmm.2018.3406

    Article  CAS  PubMed  Google Scholar 

  25. Melzer TR, Watts R, MacAskill MR, Pitcher TL, Livingston L, Keenan RJ, Dalrymple-Alford JC, Anderson TJ (2012) Grey matter atrophy in cognitively impaired Parkinson’s disease. J Neurol Neurosurg Psychiatry 83:188–194. https://doi.org/10.1136/jnnp-2011-300828

    Article  PubMed  Google Scholar 

  26. Garcia-Garcia D, Clavero P, Gasca Salas C, Lamet I, Arbizu J, Gonzalez-Redondo R, Obeso JA, Rodriguez-Oroz MC (2012) Posterior parietooccipital hypometabolism may differentiate mild cognitive impairment from dementia in Parkinson’s disease. Eur J Nucl Med Mol Imaging 39:1767–1777. https://doi.org/10.1007/s00259-012-2198-5

    Article  PubMed  Google Scholar 

  27. Firbank MJ, Yarnall AJ, Lawson RA, Duncan GW, Khoo TK, Petrides GS, O’Brien JT, Barker RA, Maxwell RJ, Brooks DJ, Burn DJ (2017) Cerebral glucose metabolism and cognition in newly diagnosed Parkinson’s disease: ICICLE-PD study. J Neurol Neurosurg Psychiatry 88:310–316. https://doi.org/10.1136/jnnp-2016-313918

    Article  CAS  PubMed  Google Scholar 

  28. Wang R, Xu B, Guo Z, Chen T, Zhang J, Chen Y, Zhu H (2017) Suite PET/CT neuroimaging for the diagnosis of Parkinson’s disease: statistical parametric mapping analysis. Nucl Med Commun 38:164–169. https://doi.org/10.1097/MNM.0000000000000622

    Article  PubMed  Google Scholar 

  29. Apostolova I, Lange C, Frings L, Klutmann S, Meyer PT, Buchert R (2020) Nigrostriatal degeneration in the cognitive part of the striatum in parkinson disease is associated with frontomedial hypometabolism. Clin Nucl Med 45:95–99. https://doi.org/10.1097/RLU.0000000000002869

    Article  PubMed  Google Scholar 

  30. Morris JK, Vidoni ED, Perea RD, Rada R, Johnson DK, Lyons K, Pahwa R, Burns JM, Honea RA (2014) Insulin resistance and gray matter volume in neurodegenerative disease. Neuroscience 270:139–147. https://doi.org/10.1016/j.neuroscience.2014.04.006

    Article  CAS  PubMed  Google Scholar 

  31. Duarte AI, Moreira PI, Oliveira CR (2012) Insulin in central nervous system: more than just a peripheral hormone. J Aging Res 2012:384017. https://doi.org/10.1155/2012/384017

    Article  PubMed  PubMed Central  Google Scholar 

  32. Takahashi M, Yamada T, Tooyama I, Moroo I, Kimura H, Yamamoto T, Okada H (1996) Insulin receptor mRNA in the substantia nigra in Parkinson’s disease. Neurosci Lett 204:201–204. https://doi.org/10.1016/0304-3940(96)12357-0

    Article  CAS  PubMed  Google Scholar 

  33. Fernandes HJR, Patikas N, Foskolou S, Field SF, Park JE, Byrne ML, Bassett AR, Metzakopian E (2020) Single-cell transcriptomics of Parkinson’s disease human in vitro models reveals dopamine neuron-specific stress responses. Cell Rep 33:108263. https://doi.org/10.1016/j.celrep.2020.108263

    Article  CAS  PubMed  Google Scholar 

  34. Lee JH, Han JH, Kim H, Park SM, Joe EH, Jou I (2019) Parkinson’s disease-associated LRRK2-G2019S mutant acts through regulation of SERCA activity to control ER stress in astrocytes. Acta Neuropathol Commun 7:68. https://doi.org/10.1186/s40478-019-0716-4

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ramos-Gonzalez P, Mato S, Chara JC, Verkhratsky A, Matute C, Cavaliere F (2021) Astrocytic atrophy as a pathological feature of Parkinson’s disease with LRRK2 mutation. NPJ Parkinsons Dis 7:31. https://doi.org/10.1038/s41531-021-00175-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gao L, Liu YX, Zhou YZ, Qin XM (2023) Baicalein attenuates neuroinflammation in LPS-treated BV-2 cells by inhibiting glycolysis via STAT3/c-Myc pathway. Neurochem Res 48:3363–3377. https://doi.org/10.1007/s11064-023-03961-5

    Article  CAS  PubMed  Google Scholar 

  37. Cheng J, Zhang R, Xu Z, Ke Y, Sun R, Yang H, Zhang X, Zhen X, Zheng LT (2021) Early glycolytic reprogramming controls microglial inflammatory activation. J Neuroinflammation 18:129. https://doi.org/10.1186/s12974-021-02187-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Brekk OR, Honey JR, Lee S, Hallett PJ, Isacson O (2020) Cell type-specific lipid storage changes in Parkinson’s disease patient brains are recapitulated by experimental glycolipid disturbance. Proc Natl Acad Sci U S A 117:27646–27654. https://doi.org/10.1073/pnas.2003021117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Luan H, Liu LF, Tang Z, Zhang M, Chua KK, Song JX, Mok VC, Li M, Cai Z (2015) Comprehensive urinary metabolomic profiling and identification of potential noninvasive marker for idiopathic Parkinson’s disease. Sci Rep 5:13888. https://doi.org/10.1038/srep13888

    Article  PubMed  PubMed Central  Google Scholar 

  40. Havelund JF, Heegaard NHH, Faergeman NJK, Gramsbergen JB (2017) Biomarker research in Parkinson’s disease using metabolite profiling. Metabolites. https://doi.org/10.3390/metabo7030042

    Article  PubMed  PubMed Central  Google Scholar 

  41. Willkommen D, Lucio M, Moritz F, Forcisi S, Kanawati B, Smirnov KS, Schroeter M, Sigaroudi A, Schmitt-Kopplin P, Michalke B (2018) Metabolomic investigations in cerebrospinal fluid of Parkinson’s disease. PLoS ONE 13:e0208752. https://doi.org/10.1371/journal.pone.0208752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Saiki S, Hatano T, Fujimaki M, Ishikawa KI, Mori A, Oji Y, Okuzumi A, Fukuhara T, Koinuma T, Imamichi Y, Nagumo M, Furuya N, Nojiri S, Amo T, Yamashiro K, Hattori N (2017) Decreased long-chain acylcarnitines from insufficient beta-oxidation as potential early diagnostic markers for Parkinson’s disease. Sci Rep 7:7328. https://doi.org/10.1038/s41598-017-06767-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hasuike Y, Endo T, Koroyasu M, Matsui M, Mori C, Yamadera M, Fujimura H, Sakoda S (2020) Bile acid abnormality induced by intestinal dysbiosis might explain lipid metabolism in Parkinson’s disease. Med Hypotheses 134:109436. https://doi.org/10.1016/j.mehy.2019.109436

    Article  CAS  PubMed  Google Scholar 

  44. Glaab E, Trezzi JP, Greuel A, Jager C, Hodak Z, Drzezga A, Timmermann L, Tittgemeyer M, Diederich NJ, Eggers C (2019) Integrative analysis of blood metabolomics and PET brain neuroimaging data for Parkinson’s disease. Neurobiol Dis 124:555–562. https://doi.org/10.1016/j.nbd.2019.01.003

    Article  CAS  PubMed  Google Scholar 

  45. Ruiperez V, Darios F, Davletov B (2010) Alpha-synuclein, lipids and Parkinson’s disease. Prog Lipid Res 49:420–428. https://doi.org/10.1016/j.plipres.2010.05.004

    Article  CAS  PubMed  Google Scholar 

  46. Galper J, Dean NJ, Pickford R, Lewis SJG, Halliday GM, Kim WS, Dzamko N (2022) Lipid pathway dysfunction is prevalent in patients with Parkinson’s disease. Brain 145:3472–3487. https://doi.org/10.1093/brain/awac176

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zhang N, Tang C, Ma Q, Wang W, Shi M, Zhou X, Chen F, Ma C, Li X, Chen G, Gao D (2021) Comprehensive serum metabolic and proteomic characterization on cognitive dysfunction in Parkinson’s disease. Ann Transl Med 9:559. https://doi.org/10.21037/atm-20-4583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Trupp M, Jonsson P, Ohrfelt A, Zetterberg H, Obudulu O, Malm L, Wuolikainen A, Linder J, Moritz T, Blennow K, Antti H, Forsgren L (2014) Metabolite and peptide levels in plasma and CSF differentiating healthy controls from patients with newly diagnosed Parkinson’s disease. J Parkinsons Dis 4:549–560. https://doi.org/10.3233/JPD-140389

    Article  CAS  PubMed  Google Scholar 

  49. Vesga-Jimenez DJ, Martin C, Barreto GE, Aristizabal-Pachon AF, Pinzon A, Gonzalez J (2022) Fatty acids: an insight into the pathogenesis of neurodegenerative diseases and therapeutic potential. Int J Mol Sci. https://doi.org/10.3390/ijms23052577

    Article  PubMed  PubMed Central  Google Scholar 

  50. Joniec-Maciejak I, Wawer A, Turzynska D, Sobolewska A, Maciejak P, Szyndler J, Mirowska-Guzel D, Plaznik A (2018) Octanoic acid prevents reduction of striatal dopamine in the MPTP mouse model of Parkinson’s disease. Pharmacol Rep 70:988–992. https://doi.org/10.1016/j.pharep.2018.04.008

    Article  CAS  PubMed  Google Scholar 

  51. Chen SJ, Chen CC, Liao HY, Lin YT, Wu YW, Liou JM, Wu MS, Kuo CH, Lin CH (2022) Association of fecal and plasma levels of short-chain fatty acids with gut microbiota and clinical severity in patients with Parkinson disease. Neurology 98:e848–e858. https://doi.org/10.1212/WNL.0000000000013225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Qi A, Liu L, Zhang J, Chen S, Xu S, Chen Y, Zhang L, Cai C (2023) Plasma metabolic analysis reveals the dysregulation of short-chain fatty acid metabolism in Parkinson’s disease. Mol Neurobiol 60:2619–2631. https://doi.org/10.1007/s12035-022-03157-y

    Article  CAS  PubMed  Google Scholar 

  53. Hatton SL, Pandey MK (2022) Fat and protein combat triggers immunological weapons of innate and adaptive immune systems to launch neuroinflammation in Parkinson’s disease. Int J Mol Sci. https://doi.org/10.3390/ijms23031089

    Article  PubMed  PubMed Central  Google Scholar 

  54. Calzada E, Onguka O, Claypool SM (2016) Phosphatidylethanolamine metabolism in health and disease. Int Rev Cell Mol Biol 321:29–88. https://doi.org/10.1016/bs.ircmb.2015.10.001

    Article  CAS  PubMed  Google Scholar 

  55. Lee YJ, Wang S, Slone SR, Yacoubian TA, Witt SN (2011) Defects in very long chain fatty acid synthesis enhance alpha-synuclein toxicity in a yeast model of Parkinson’s disease. PLoS ONE 6:e15946. https://doi.org/10.1371/journal.pone.0015946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hu L, Dong MX, Huang YL, Lu CQ, Qian Q, Zhang CC, Xu XM, Liu Y, Chen GH, Wei YD (2020) Integrated metabolomics and proteomics analysis reveals plasma lipid metabolic disturbance in patients with Parkinson’s disease. Front Mol Neurosci 13:80. https://doi.org/10.3389/fnmol.2020.00080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dong MX, Wei YD, Hu L (2021) Lipid metabolic dysregulation is involved in Parkinson’s disease dementia. Metab Brain Dis 36:463–470. https://doi.org/10.1007/s11011-020-00665-5

    Article  CAS  PubMed  Google Scholar 

  58. Dong MX, Hu L, Wei YD, Chen GH (2021) Metabolomics profiling reveals altered lipid metabolism and identifies a panel of lipid metabolites as biomarkers for Parkinson’s disease related anxiety disorder. Neurosci Lett 745:135626. https://doi.org/10.1016/j.neulet.2021.135626

    Article  CAS  PubMed  Google Scholar 

  59. Zambon F, Cherubini M, Fernandes HJR, Lang C, Ryan BJ, Volpato V, Bengoa-Vergniory N, Vingill S, Attar M, Booth HDE, Haenseler W, Vowles J, Bowden R, Webber C, Cowley SA, Wade-Martins R (2019) Cellular alpha-synuclein pathology is associated with bioenergetic dysfunction in Parkinson’s iPSC-derived dopamine neurons. Hum Mol Genet 28:2001–2013. https://doi.org/10.1093/hmg/ddz038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hsiao JT, Halliday GM, Kim WS (2017) Alpha-synuclein regulates neuronal cholesterol efflux. Molecules. https://doi.org/10.3390/molecules22101769

    Article  PubMed  PubMed Central  Google Scholar 

  61. Trabjerg MS, Andersen DC, Huntjens P, Mork K, Warming N, Kullab UB, Skjonnemand MN, Oklinski MK, Oklinski KE, Bolther L, Kroese LJ, Pritchard CEJ, Huijbers IJ, Corthals A, Sondergaard MT, Kjeldal HB, Pedersen CFM, Nieland JDV (2023) Inhibition of carnitine palmitoyl-transferase 1 is a potential target in a mouse model of Parkinson’s disease. NPJ Parkinsons Dis 9:6. https://doi.org/10.1038/s41531-023-00450-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Suzuki M, Sango K, Wada K, Nagai Y (2018) Pathological role of lipid interaction with alpha-synuclein in Parkinson’s disease. Neurochem Int 119:97–106. https://doi.org/10.1016/j.neuint.2017.12.014

    Article  CAS  PubMed  Google Scholar 

  63. Plewa S, Poplawska-Domaszewicz K, Florczak-Wyspianska J, Klupczynska-Gabryszak A, Sokol B, Miltyk W, Jankowski R, Kozubski W, Kokot ZJ, Matysiak J (2021) The metabolomic approach reveals the alteration in human serum and cerebrospinal fluid composition in Parkinson’s disease patients. Pharmaceuticals (Basel). https://doi.org/10.3390/ph14090935

    Article  PubMed  Google Scholar 

  64. Picca A, Calvani R, Landi G, Marini F, Biancolillo A, Gervasoni J, Persichilli S, Primiano A, Urbani A, Bossola M, Bentivoglio AR, Cesari M, Landi F, Bernabei R, Marzetti E, Lo Monaco MR (2019) Circulating amino acid signature in older people with Parkinson’s disease: a metabolic complement to the EXosomes in PArkiNson Disease (EXPAND) study. Exp Gerontol 128:110766. https://doi.org/10.1016/j.exger.2019.110766

    Article  CAS  PubMed  Google Scholar 

  65. Greuel A, Trezzi JP, Glaab E, Ruppert MC, Maier F, Jager C, Hodak Z, Lohmann K, Ma Y, Eidelberg D, Timmermann L, Hiller K, Tittgemeyer M, Drzezga A, Diederich N, Eggers C (2020) GBA variants in parkinson’s disease: clinical, metabolomic, and multimodal neuroimaging phenotypes. Mov Disord 35:2201–2210. https://doi.org/10.1002/mds.28225

    Article  CAS  PubMed  Google Scholar 

  66. Antony T, Hoyer W, Cherny D, Heim G, Jovin TM, Subramaniam V (2003) Cellular polyamines promote the aggregation of alpha-synuclein. J Biol Chem 278:3235–3240. https://doi.org/10.1074/jbc.M208249200

    Article  CAS  PubMed  Google Scholar 

  67. Chang KH, Cheng ML, Tang HY, Huang CY, Wu YR, Chen CM (2018) Alternations of metabolic profile and kynurenine metabolism in the plasma of Parkinson’s disease. Mol Neurobiol 55:6319–6328. https://doi.org/10.1007/s12035-017-0845-3

    Article  CAS  PubMed  Google Scholar 

  68. Shao Y, Le W (2019) Recent advances and perspectives of metabolomics-based investigations in Parkinson’s disease. Mol Neurodegen 14:3. https://doi.org/10.1186/s13024-018-0304-2

    Article  Google Scholar 

  69. Han W, Sapkota S, Camicioli R, Dixon RA, Li L (2017) Profiling novel metabolic biomarkers for Parkinson’s disease using in-depth metabolomic analysis. Mov Disord 32:1720–1728. https://doi.org/10.1002/mds.27173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Oxenkrug G, van der Hart M, Roeser J, Summergrad P (2017) Peripheral tryptophan - kynurenine metabolism associated with metabolic syndrome is different in Parkinson’s and Alzheimer’s diseases. Endocrinol Diabetes Metab J 1:1

    Google Scholar 

  71. Graham SF, Rey NL, Yilmaz A, Kumar P, Madaj Z, Maddens M, Bahado-Singh RO, Becker K, Schulz E, Meyerdirk LK, Steiner JA, Ma J, Brundin P (2018) Biochemical profiling of the brain and blood metabolome in a mouse model of prodromal Parkinson’s disease reveals distinct metabolic profiles. J Proteome Res 17:2460–2469. https://doi.org/10.1021/acs.jproteome.8b00224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Meloni M, Puligheddu M, Carta M, Cannas A, Figorilli M, Defazio G (2020) Efficacy and safety of 5-hydroxytryptophan on depression and apathy in Parkinson’s disease: a preliminary finding. Eur J Neurol 27:779–786. https://doi.org/10.1111/ene.14179

    Article  CAS  PubMed  Google Scholar 

  73. Gatarek P, Sekulska-Nalewajko J, Bobrowska-Korczaka B, Pawelczyk M, Jastrzebski K, Glabinski A, Kaluzna-Czaplinska J (2022) Plasma metabolic disturbances in Parkinson’s disease patients. Biomedicines. https://doi.org/10.3390/biomedicines10123005

    Article  PubMed  PubMed Central  Google Scholar 

  74. Yan Z, Yang F, Wen S, Ding W, Si Y, Li R, Wang K, Yao L (2022) Longitudinal metabolomics profiling of serum amino acids in rotenone-induced Parkinson’s mouse model. Amino Acids 54:111–121. https://doi.org/10.1007/s00726-021-03117-1

    Article  CAS  PubMed  Google Scholar 

  75. Cengiz S, Arslan DB, Kicik A, Erdogdu E, Yildirim M, Hatay GH, Tufekcioglu Z, Ulug AM, Bilgic B, Hanagasi H, Demiralp T, Gurvit H, Ozturk-Isik E (2022) Identification of metabolic correlates of mild cognitive impairment in Parkinson’s disease using magnetic resonance spectroscopic imaging and machine learning. MAGMA 35:997–1008. https://doi.org/10.1007/s10334-022-01030-6

    Article  CAS  PubMed  Google Scholar 

  76. Nagesh Babu G, Gupta M, Paliwal VK, Singh S, Chatterji T, Roy R (2018) Serum metabolomics study in a group of Parkinson’s disease patients from northern India. Clin Chim Acta 480:214–219. https://doi.org/10.1016/j.cca.2018.02.022

    Article  CAS  PubMed  Google Scholar 

  77. Ohman A, Forsgren L (2015) NMR metabonomics of cerebrospinal fluid distinguishes between Parkinson’s disease and controls. Neurosci Lett 594:36–39. https://doi.org/10.1016/j.neulet.2015.03.051

    Article  CAS  PubMed  Google Scholar 

  78. Nickels SL, Walter J, Bolognin S, Gerard D, Jaeger C, Qing X, Tisserand J, Jarazo J, Hemmer K, Harms A, Halder R, Lucarelli P, Berger E, Antony PMA, Glaab E, Hankemeier T, Klein C, Sauter T, Sinkkonen L, Schwamborn JC (2019) Impaired serine metabolism complements LRRK2-G2019S pathogenicity in PD patients. Parkinsonism Relat Disord 67:48–55. https://doi.org/10.1016/j.parkreldis.2019.09.018

    Article  PubMed  Google Scholar 

  79. El Arfani A, Albertini G, Bentea E, Demuyser T, Van Eeckhaut A, Smolders I, Massie A (2015) Alterations in the motor cortical and striatal glutamatergic system and D-serine levels in the bilateral 6-hydroxydopamine rat model for Parkinson’s disease. Neurochem Int 88:88–96. https://doi.org/10.1016/j.neuint.2015.07.005

    Article  CAS  PubMed  Google Scholar 

  80. Travaglio M, Michopoulos F, Yu Y, Popovic R, Foster E, Coen M, Martins LM (2023) Increased cysteine metabolism in PINK1 models of Parkinson’s disease. Dis Model Mech. https://doi.org/10.1242/dmm.049727

    Article  PubMed  PubMed Central  Google Scholar 

  81. Bose S, Nag TC, Dey S, Sundd M, Jain S (2023) Therapeutic potential of low-intensity magnetic field stimulation in 6-hydroxydopamine rat model of Parkinson’s disease: from inflammation to motor function. Ann Neurosci 30:11–19. https://doi.org/10.1177/09727531221117634

    Article  PubMed  Google Scholar 

  82. Koh YC, Chok D, Chang CH, Wei CC, Wu CT, Cheng KC, Nagabhushanam K, Ho CT, Pan MH (2023) Prevention of glutamate-induced neurodegeneration by piceatannol via mitochondrial rescue in vitro and in vivo. Mol Nutr Food Res 67:e2300139. https://doi.org/10.1002/mnfr.202300139

    Article  CAS  PubMed  Google Scholar 

  83. Chang KH, Chen CM (2020) The role of oxidative stress in Parkinson’s disease. Antioxidants (Basel). https://doi.org/10.3390/antiox9070597

    Article  PubMed  PubMed Central  Google Scholar 

  84. Alqahtani T, Deore SL, Kide AA, Shende BA, Sharma R, Dadarao Chakole R, Nemade LS, Kishor Kale N, Borah S, Shrikant Deokar S, Behera A, Dhawal Bhandari D, Gaikwad N, Kalam Azad A, Ghosh A (2023) Mitochondrial dysfunction and oxidative stress in Alzheimer’s disease, and Parkinson’s disease, Huntington’s disease and amyotrophic lateral sclerosis -an updated review. Mitochondrion 71:83–92. https://doi.org/10.1016/j.mito.2023.05.007

    Article  CAS  PubMed  Google Scholar 

  85. Peng C, Trojanowski JQ, Lee VM (2020) Protein transmission in neurodegenerative disease. Nat Rev Neurol 16:199–212. https://doi.org/10.1038/s41582-020-0333-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sies H (2015) Oxidative stress: a concept in redox biology and medicine. Redox Biol 4:180–183. https://doi.org/10.1016/j.redox.2015.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Nicolson GL (2014) Mitochondrial dysfunction and chronic disease: treatment with natural supplements. Integr Med (Encinitas) 13:35–43

    PubMed  Google Scholar 

  88. Nunnari J, Suomalainen A (2012) Mitochondria: in sickness and in health. Cell 148:1145–1159. https://doi.org/10.1016/j.cell.2012.02.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Trushina E, McMurray CT (2007) Oxidative stress and mitochondrial dysfunction in neurodegenerative diseases. Neuroscience 145:1233–1248. https://doi.org/10.1016/j.neuroscience.2006.10.056

    Article  CAS  PubMed  Google Scholar 

  90. Zhou H, Yuan Y, Qi Z, Tong Q, Zhang K (2015) Study on changes of plasma levels of oxidative stress biomarkers and its relation with cognition function in patients with Parkinson’s disease. Zhonghua Yi Xue Za Zhi 95:3357–3360

    CAS  PubMed  Google Scholar 

  91. Morales-Martinez A, Martinez-Gomez PA, Martinez-Fong D, Villegas-Rojas MM, Perez-Severiano F, Del Toro-Colin MA, Delgado-Minjares KM, Blanco-Alvarez VM, Leon-Chavez BA, Aparicio-Trejo OE, Baez-Cortes MT, Cardenas-Aguayo MD, Luna-Munoz J, Pacheco-Herrero M, Angeles-Lopez QD, Martinez-Davila IA, Salinas-Lara C, Romero-Lopez JP, Sanchez-Garibay C, Mendez-Cruz AR, Soto-Rojas LO (2022) Oxidative stress and mitochondrial complex I dysfunction correlate with neurodegeneration in an alpha-synucleinopathy animal model. Int J Mol Sci. https://doi.org/10.3390/ijms231911394

    Article  PubMed  PubMed Central  Google Scholar 

  92. Liu H, Ho PW, Leung CT, Pang SY, Chang EES, Choi ZY, Kung MH, Ramsden DB, Ho SL (2021) Aberrant mitochondrial morphology and function associated with impaired mitophagy and DNM1L-MAPK/ERK signaling are found in aged mutant Parkinsonian LRRK2(R1441G) mice. Autophagy 17:3196–3220. https://doi.org/10.1080/15548627.2020.1850008

    Article  CAS  PubMed  Google Scholar 

  93. Zhao Y, Wang Y, Wu Y, Tao C, Xu R, Chen Y, Qian L, Xu T, Lian X (2023) PKM2-mediated neuronal hyperglycolysis enhances the risk of Parkinson’s disease in diabetic rats. J Pharm Anal 13:187–200. https://doi.org/10.1016/j.jpha.2022.11.006

    Article  PubMed  Google Scholar 

  94. Zhou P, Qian L, D’Aurelio M, Cho S, Wang G, Manfredi G, Pickel V, Iadecola C (2012) Prohibitin reduces mitochondrial free radical production and protects brain cells from different injury modalities. J Neurosci 32:583–592. https://doi.org/10.1523/JNEUROSCI.2849-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bose A, Beal MF (2019) Mitochondrial dysfunction and oxidative stress in induced pluripotent stem cell models of Parkinson’s disease. Eur J Neurosci 49:525–532. https://doi.org/10.1111/ejn.14264

    Article  PubMed  Google Scholar 

  96. Jiang H, Ren Y, Yuen EY, Zhong P, Ghaedi M, Hu Z, Azabdaftari G, Nakaso K, Yan Z, Feng J (2012) Parkin controls dopamine utilization in human midbrain dopaminergic neurons derived from induced pluripotent stem cells. Nat Commun 3:668. https://doi.org/10.1038/ncomms1669

    Article  CAS  PubMed  Google Scholar 

  97. Ohta E, Nihira T, Uchino A, Imaizumi Y, Okada Y, Akamatsu W, Takahashi K, Hayakawa H, Nagai M, Ohyama M, Ryo M, Ogino M, Murayama S, Takashima A, Nishiyama K, Mizuno Y, Mochizuki H, Obata F, Okano H (2015) I2020T mutant LRRK2 iPSC-derived neurons in the Sagamihara family exhibit increased Tau phosphorylation through the AKT/GSK-3beta signaling pathway. Hum Mol Genet 24:4879–4900. https://doi.org/10.1093/hmg/ddv212

    Article  CAS  PubMed  Google Scholar 

  98. Iannielli A, Bido S, Folladori L, Segnali A, Cancellieri C, Maresca A, Massimino L, Rubio A, Morabito G, Caporali L, Tagliavini F, Musumeci O, Gregato G, Bezard E, Carelli V, Tiranti V, Broccoli V (2018) Pharmacological inhibition of necroptosis protects from dopaminergic neuronal cell death in Parkinson’s disease models. Cell Rep 22:2066–2079. https://doi.org/10.1016/j.celrep.2018.01.089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Brazdis RM, Alecu JE, Marsch D, Dahms A, Simmnacher K, Lorentz S, Brendler A, Schneider Y, Marxreiter F, Roybon L, Winner B, Xiang W, Prots I (2020) Demonstration of brain region-specific neuronal vulnerability in human iPSC-based model of familial Parkinson’s disease. Hum Mol Genet 29:1180–1191. https://doi.org/10.1093/hmg/ddaa039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Huang ZP, Liu SF, Zhuang JL, Li LY, Li MM, Huang YL, Chen YH, Chen XR, Lin S, Ye LC, Chen CN (2023) Role of microglial metabolic reprogramming in Parkinson’s disease. Biochem Pharmacol 213:115619. https://doi.org/10.1016/j.bcp.2023.115619

    Article  CAS  PubMed  Google Scholar 

  101. Flores-Martinez YM, Fernandez-Parrilla MA, Ayala-Davila J, Reyes-Corona D, Blanco-Alvarez VM, Soto-Rojas LO, Luna-Herrera C, Gonzalez-Barrios JA, Leon-Chavez BA, Gutierrez-Castillo ME, Martinez-Davila IA, Martinez-Fong D (2018) Acute neuroinflammatory response in the substantia nigra pars compacta of rats after a local injection of lipopolysaccharide. J Immunol Res 2018:1838921. https://doi.org/10.1155/2018/1838921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Requejo-Aguilar R, Lopez-Fabuel I, Fernandez E, Martins LM, Almeida A, Bolanos JP (2014) PINK1 deficiency sustains cell proliferation by reprogramming glucose metabolism through HIF1. Nat Commun 5:4514. https://doi.org/10.1038/ncomms5514

    Article  CAS  PubMed  Google Scholar 

  103. Lai SW (2019) Reader response: Association between diabetes and subsequent Parkinson disease: a record-linkage cohort study. Neurology 92:925. https://doi.org/10.1212/WNL.0000000000007458

    Article  PubMed  Google Scholar 

  104. De Pablo-Fernandez E, Goldacre R, Pakpoor J, Noyce AJ, Warner TT (2018) Association between diabetes and subsequent Parkinson disease: a record-linkage cohort study. Neurology 91:e139–e142. https://doi.org/10.1212/WNL.0000000000005771

    Article  PubMed  Google Scholar 

  105. Dexter DT, Carter CJ, Wells FR, Javoy-Agid F, Agid Y, Lees A, Jenner P, Marsden CD (1989) Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease. J Neurochem 52:381–389. https://doi.org/10.1111/j.1471-4159.1989.tb09133.x

    Article  CAS  PubMed  Google Scholar 

  106. Ren Y, Jiang H, Pu J, Li L, Wu J, Yan Y, Zhao G, Guttuso TJ, Zhang B, Feng J (2022) Molecular features of Parkinson’s disease in patient-derived midbrain dopaminergic neurons. Mov Disord 37:70–79. https://doi.org/10.1002/mds.28786

    Article  CAS  PubMed  Google Scholar 

  107. Montine KS, Quinn JF, Zhang J, Fessel JP, Roberts LJ 2nd, Morrow JD, Montine TJ (2004) Isoprostanes and related products of lipid peroxidation in neurodegenerative diseases. Chem Phys Lipids 128:117–124. https://doi.org/10.1016/j.chemphyslip.2003.10.010

    Article  CAS  PubMed  Google Scholar 

  108. Dias V, Junn E, Mouradian MM (2013) The role of oxidative stress in Parkinson’s disease. J Parkinsons Dis 3:461–491. https://doi.org/10.3233/JPD-130230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Konjevod M, Saiz J, Barbas C, Bergareche A, Ardanaz E, Huerta JM, Vinagre-Aragon A, Erro ME, Chirlaque MD, Abilleira E, Ibarluzea JM, Amiano P (2022) A set of reliable samples for the study of biomarkers for the early diagnosis of Parkinson’s disease. Front Neurol 13:844841. https://doi.org/10.3389/fneur.2022.844841

    Article  PubMed  PubMed Central  Google Scholar 

  110. Lu J, Wang C, Cheng X, Wang R, Yan X, He P, Chen H, Yu Z (2022) A breakdown in microglial metabolic reprogramming causes internalization dysfunction of alpha-synuclein in a mouse model of Parkinson’s disease. J Neuroinflamm 19:113. https://doi.org/10.1186/s12974-022-02484-0

    Article  CAS  Google Scholar 

  111. Kawahata I, Bousset L, Melki R, Fukunaga K (2019) Fatty acid-binding protein 3 is critical for alpha-synuclein uptake and MPP(+)-induced mitochondrial dysfunction in cultured dopaminergic neurons. Int J Mol Sci. https://doi.org/10.3390/ijms20215358

    Article  PubMed  PubMed Central  Google Scholar 

  112. Fanning S, Haque A, Imberdis T, Baru V, Barrasa MI, Nuber S, Termine D, Ramalingam N, Ho GPH, Noble T, Sandoe J, Lou Y, Landgraf D, Freyzon Y, Newby G, Soldner F, Terry-Kantor E, Kim TE, Hofbauer HF, Becuwe M, Jaenisch R, Pincus D, Clish CB, Walther TC, Farese RV Jr, Srinivasan S, Welte MA, Kohlwein SD, Dettmer U, Lindquist S, Selkoe D (2019) Lipidomic analysis of alpha-synuclein neurotoxicity identifies stearoyl CoA desaturase as a target for parkinson treatment. Mol Cell 73(1001–1014):e8. https://doi.org/10.1016/j.molcel.2018.11.028

    Article  CAS  Google Scholar 

  113. Sharon R, Bar-Joseph I, Frosch MP, Walsh DM, Hamilton JA, Selkoe DJ (2003) The formation of highly soluble oligomers of alpha-synuclein is regulated by fatty acids and enhanced in Parkinson’s disease. Neuron 37:583–595. https://doi.org/10.1016/s0896-6273(03)00024-2

    Article  CAS  PubMed  Google Scholar 

  114. Sharon R, Goldberg MS, Bar-Josef I, Betensky RA, Shen J, Selkoe DJ (2001) alpha-Synuclein occurs in lipid-rich high molecular weight complexes, binds fatty acids, and shows homology to the fatty acid-binding proteins. Proc Natl Acad Sci USA 98:9110–9115. https://doi.org/10.1073/pnas.171300598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Golovko MY, Rosenberger TA, Faergeman NJ, Feddersen S, Cole NB, Pribill I, Berger J, Nussbaum RL, Murphy EJ (2006) Acyl-CoA synthetase activity links wild-type but not mutant alpha-synuclein to brain arachidonate metabolism. Biochemistry 45:6956–6966. https://doi.org/10.1021/bi0600289

    Article  CAS  PubMed  Google Scholar 

  116. Golovko MY, Faergeman NJ, Cole B, Castagnet PI, Nussbaum RL, Murphy EJ (2005) Alpha-synuclein gene deletion decreases brain palmitate uptake and alters the palmitate metabolism in the absence of alpha-synuclein palmitate binding. Biochemistry 44:8251–8259. https://doi.org/10.1021/bi0502137

    Article  CAS  PubMed  Google Scholar 

  117. Castagnet PI, Golovko MY, Barcelo-Coblijn GC, Nussbaum RL, Murphy EJ (2005) Fatty acid incorporation is decreased in astrocytes cultured from alpha-synuclein gene-ablated mice. J Neurochem 94:839–849. https://doi.org/10.1111/j.1471-4159.2005.03247.x

    Article  CAS  PubMed  Google Scholar 

  118. Barcelo-Coblijn G, Golovko MY, Weinhofer I, Berger J, Murphy EJ (2007) Brain neutral lipids mass is increased in alpha-synuclein gene-ablated mice. J Neurochem 101:132–141. https://doi.org/10.1111/j.1471-4159.2006.04348.x

    Article  CAS  PubMed  Google Scholar 

  119. van Maarschalkerweerd A, Vetri V, Vestergaard B (2015) Cholesterol facilitates interactions between alpha-synuclein oligomers and charge-neutral membranes. FEBS Lett 589:2661–2667. https://doi.org/10.1016/j.febslet.2015.08.013

    Article  CAS  PubMed  Google Scholar 

  120. Qi Z, Wan M, Zhang J, Li Z (2023) Influence of cholesterol on the membrane binding and conformation of alpha-synuclein. J Phys Chem B 127:1956–1964. https://doi.org/10.1021/acs.jpcb.2c08077

    Article  CAS  PubMed  Google Scholar 

  121. Fecchio C, Palazzi L, de Laureto PP (2018) alpha-Synuclein and polyunsaturated fatty acids: molecular basis of the interaction and implication in neurodegeneration. Molecules. https://doi.org/10.3390/molecules23071531

    Article  PubMed  PubMed Central  Google Scholar 

  122. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature 388:839–840. https://doi.org/10.1038/42166

    Article  CAS  PubMed  Google Scholar 

  123. Roberts RF, Wade-Martins R, Alegre-Abarrategui J (2015) Direct visualization of alpha-synuclein oligomers reveals previously undetected pathology in Parkinson’s disease brain. Brain 138:1642–1657. https://doi.org/10.1093/brain/awv040

    Article  PubMed  PubMed Central  Google Scholar 

  124. Luth ES, Stavrovskaya IG, Bartels T, Kristal BS, Selkoe DJ (2014) Soluble, prefibrillar alpha-synuclein oligomers promote complex I-dependent, Ca2+-induced mitochondrial dysfunction. J Biol Chem 289:21490–21507. https://doi.org/10.1074/jbc.M113.545749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Chung SY, Kishinevsky S, Mazzulli JR, Graziotto J, Mrejeru A, Mosharov EV, Puspita L, Valiulahi P, Sulzer D, Milner TA, Taldone T, Krainc D, Studer L, Shim JW (2016) Parkin and PINK1 patient iPSC-derived midbrain dopamine neurons exhibit mitochondrial dysfunction and alpha-synuclein accumulation. Stem Cell Reports 7:664–677. https://doi.org/10.1016/j.stemcr.2016.08.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Ahmad T, Aggarwal K, Pattnaik B, Mukherjee S, Sethi T, Tiwari BK, Kumar M, Micheal A, Mabalirajan U, Ghosh B, Sinha Roy S, Agrawal A (2013) Computational classification of mitochondrial shapes reflects stress and redox state. Cell Death Dis 4:e461. https://doi.org/10.1038/cddis.2012.213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Liu X, Hajnoczky G (2011) Altered fusion dynamics underlie unique morphological changes in mitochondria during hypoxia-reoxygenation stress. Cell Death Differ 18:1561–1572. https://doi.org/10.1038/cdd.2011.13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Plotegher N, Gratton E, Bubacco L (2014) Number and Brightness analysis of alpha-synuclein oligomerization and the associated mitochondrial morphology alterations in live cells. Biochim Biophys Acta 1840:2014–2024. https://doi.org/10.1016/j.bbagen.2014.02.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Xie W, Chung KK (2012) Alpha-synuclein impairs normal dynamics of mitochondria in cell and animal models of Parkinson’s disease. J Neurochem 122:404–414. https://doi.org/10.1111/j.1471-4159.2012.07769.x

    Article  CAS  PubMed  Google Scholar 

  130. Ludtmann MHR, Angelova PR, Horrocks MH, Choi ML, Rodrigues M, Baev AY, Berezhnov AV, Yao Z, Little D, Banushi B, Al-Menhali AS, Ranasinghe RT, Whiten DR, Yapom R, Dolt KS, Devine MJ, Gissen P, Kunath T, Jaganjac M, Pavlov EV, Klenerman D, Abramov AY, Gandhi S (2018) alpha-synuclein oligomers interact with ATP synthase and open the permeability transition pore in Parkinson’s disease. Nat Commun 9:2293. https://doi.org/10.1038/s41467-018-04422-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Di Maio R, Barrett PJ, Hoffman EK, Barrett CW, Zharikov A, Borah A, Hu X, McCoy J, Chu CT, Burton EA, Hastings TG, Greenamyre JT (2016) alpha-Synuclein binds to TOM20 and inhibits mitochondrial protein import in Parkinson’s disease. Sci Transl Med 8:342–378. https://doi.org/10.1126/scitranslmed.aaf3634

    Article  CAS  Google Scholar 

  132. Choi ML, Chappard A, Singh BP, Maclachlan C, Rodrigues M, Fedotova EI, Berezhnov AV, De S, Peddie CJ, Athauda D, Virdi GS, Zhang W, Evans JR, Wernick AI, Zanjani ZS, Angelova PR, Esteras N, Vinokurov AY, Morris K, Jeacock K, Tosatto L, Little D, Gissen P, Clarke DJ, Kunath T, Collinson L, Klenerman D, Abramov AY, Horrocks MH, Gandhi S (2022) Pathological structural conversion of alpha-synuclein at the mitochondria induces neuronal toxicity. Nat Neurosci 25:1134–1148. https://doi.org/10.1038/s41593-022-01140-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Luk KC (2019) Oxidative stress and alpha-synuclein conspire in vulnerable neurons to promote Parkinson’s disease progression. J Clin Invest 129:3530–3531. https://doi.org/10.1172/JCI130351

    Article  PubMed  PubMed Central  Google Scholar 

  134. Moors TE, Maat CA, Niedieker D, Mona D, Petersen D, Timmermans-Huisman E, Kole J, El-Mashtoly SF, Spycher L, Zago W, Barbour R, Mundigl O, Kaluza K, Huber S, Hug MN, Kremer T, Ritter M, Dziadek S, Geurts JJG, Gerwert K, Britschgi M, van de Berg WDJ (2021) The subcellular arrangement of alpha-synuclein proteoforms in the Parkinson’s disease brain as revealed by multicolor STED microscopy. Acta Neuropathol 142:423–448. https://doi.org/10.1007/s00401-021-02329-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Lindstrom V, Gustafsson G, Sanders LH, Howlett EH, Sigvardson J, Kasrayan A, Ingelsson M, Bergstrom J, Erlandsson A (2017) Extensive uptake of alpha-synuclein oligomers in astrocytes results in sustained intracellular deposits and mitochondrial damage. Mol Cell Neurosci 82:143–156. https://doi.org/10.1016/j.mcn.2017.04.009

    Article  CAS  PubMed  Google Scholar 

  136. Chavarria C, Rodriguez-Bottero S, Quijano C, Cassina P, Souza JM (2018) Impact of monomeric, oligomeric and fibrillar alpha-synuclein on astrocyte reactivity and toxicity to neurons. Biochem J 475:3153–3169. https://doi.org/10.1042/BCJ20180297

    Article  CAS  PubMed  Google Scholar 

  137. Smith WW, Jiang H, Pei Z, Tanaka Y, Morita H, Sawa A, Dawson VL, Dawson TM, Ross CA (2005) Endoplasmic reticulum stress and mitochondrial cell death pathways mediate A53T mutant alpha-synuclein-induced toxicity. Hum Mol Genet 14:3801–3811. https://doi.org/10.1093/hmg/ddi396

    Article  CAS  PubMed  Google Scholar 

  138. Colla E, Jensen PH, Pletnikova O, Troncoso JC, Glabe C, Lee MK (2012) Accumulation of toxic alpha-synuclein oligomer within endoplasmic reticulum occurs in alpha-synucleinopathy in vivo. J Neurosci 32:3301–3305. https://doi.org/10.1523/JNEUROSCI.5368-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Natalello A, Brocca S, Ponzini E, Santambrogio C, Grandori R (2023) Modulation of alpha-synuclein conformational ensemble and aggregation pathways by dopamine and related molecules. Front Biosci (Landmark Ed) 28:266. https://doi.org/10.31083/j.fbl2810266

    Article  CAS  PubMed  Google Scholar 

  140. Pirchio R, Graziadio C, Colao A, Pivonello R, Auriemma RS (2022) Metabolic effects of prolactin. Front Endocrinol (Lausanne) 13:1015520. https://doi.org/10.3389/fendo.2022.1015520

    Article  PubMed  Google Scholar 

  141. dos Santos Silva CM, Barbosa FR, Lima GA, Warszawski L, Fontes R, Domingues RC, Gadelha MR (2011) BMI and metabolic profile in patients with prolactinoma before and after treatment with dopamine agonists. Obesity (Silver Spring) 19:800–805. https://doi.org/10.1038/oby.2010.150

    Article  CAS  PubMed  Google Scholar 

  142. Korner J, Lo J, Freda PU, Wardlaw SL (2003) Treatment with cabergoline is associated with weight loss in patients with hyperprolactinemia. Obes Res 11:311–312. https://doi.org/10.1038/oby.2003.46

    Article  CAS  PubMed  Google Scholar 

  143. Ciresi A, Amato MC, Guarnotta V, Lo Castro F, Giordano C (2013) Higher doses of cabergoline further improve metabolic parameters in patients with prolactinoma regardless of the degree of reduction in prolactin levels. Clin Endocrinol (Oxf) 79:845–852. https://doi.org/10.1111/cen.12204

    Article  CAS  PubMed  Google Scholar 

  144. Rosin C, Colombo S, Calver AA, Bates TE, Skaper SD (2005) Dopamine D2 and D3 receptor agonists limit oligodendrocyte injury caused by glutamate oxidative stress and oxygen/glucose deprivation. Glia 52:336–343. https://doi.org/10.1002/glia.20250

    Article  PubMed  Google Scholar 

  145. Nakamura Y, Arawaka S, Sato H, Sasaki A, Shigekiyo T, Takahata K, Tsunekawa H, Kato T (2021) Monoamine oxidase-B inhibition facilitates alpha-synuclein secretion in vitro and delays its aggregation in rAAV-based rat models of Parkinson’s disease. J Neurosci 41:7479–7491. https://doi.org/10.1523/JNEUROSCI.0476-21.2021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Pieta Dias C, Martins de Lima MN, Presti-Torres J, Dornelles A, Garcia VA, Siciliani Scalco F, Rewsaat Guimaraes M, Constantino L, Budni P, Dal-Pizzol F, Schroder N (2007) Memantine reduces oxidative damage and enhances long-term recognition memory in aged rats. Neuroscience 146:1719–1725. https://doi.org/10.1016/j.neuroscience.2007.03.018

    Article  CAS  PubMed  Google Scholar 

  147. Dabrowska-Bouta B, Struzynska L, Sidoryk-Wegrzynowicz M, Sulkowski G (2021) Memantine modulates oxidative stress in the rat brain following experimental autoimmune encephalomyelitis. Int J Mol Sci. https://doi.org/10.3390/ijms222111330

    Article  PubMed  PubMed Central  Google Scholar 

  148. Lemos IDS, Torres CA, Alano CG, Matiola RT, de Figueiredo SR, Padilha APZ, De Pieri E, Effting PS, Machado-De-Avila RA, Reus GZ, Leipnitz G, Streck EL (2024) Memantine improves memory and neurochemical damage in a model of maple syrup urine disease. Neurochem Res 49:758–770. https://doi.org/10.1007/s11064-023-04072-x

    Article  CAS  PubMed  Google Scholar 

  149. Zakaria EM, Abdel-Ghany RH, Elgharbawy AS, Alsemeh AE, Metwally SS (2023) A novel approach to repositioning memantine for metabolic syndrome-induced steatohepatitis: modulation of hepatic autophagy, inflammation, and fibrosis. Life Sci 319:121509. https://doi.org/10.1016/j.lfs.2023.121509

    Article  CAS  PubMed  Google Scholar 

  150. Braga CA, Follmer C, Palhano FL, Khattar E, Freitas MS, Romao L, Di Giovanni S, Lashuel HA, Silva JL, Foguel D (2011) The anti-Parkinsonian drug selegiline delays the nucleation phase of alpha-synuclein aggregation leading to the formation of nontoxic species. J Mol Biol 405:254–273. https://doi.org/10.1016/j.jmb.2010.10.027

    Article  CAS  PubMed  Google Scholar 

  151. Muller T (2020) Pharmacokinetics and pharmacodynamics of levodopa/carbidopa cotherapies for Parkinson’s disease. Expert Opin Drug Metab Toxicol 16:403–414. https://doi.org/10.1080/17425255.2020.1750596

    Article  CAS  PubMed  Google Scholar 

  152. Di Giovanni S, Eleuteri S, Paleologou KE, Yin G, Zweckstetter M, Carrupt PA, Lashuel HA (2010) Entacapone and tolcapone, two catechol O-methyltransferase inhibitors, block fibril formation of alpha-synuclein and beta-amyloid and protect against amyloid-induced toxicity. J Biol Chem 285:14941–14954. https://doi.org/10.1074/jbc.M109.080390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Bertolini F, Novaroli L, Carrupt PA, Reist M (2007) Novel screening assay for antioxidant protection against peroxyl radical-induced loss of protein function. J Pharm Sci 96:2931–2944. https://doi.org/10.1002/jps.20881

    Article  CAS  PubMed  Google Scholar 

  154. Ferreira DG, Batalha VL, Vicente Miranda H, Coelho JE, Gomes R, Goncalves FQ, Real JI, Rino J, Albino-Teixeira A, Cunha RA, Outeiro TF, Lopes LV (2017) Adenosine A2A receptors modulate alpha-synuclein aggregation and toxicity. Cereb Cortex 27:718–730. https://doi.org/10.1093/cercor/bhv268

    Article  PubMed  Google Scholar 

  155. He Y, Huang L, Wang K, Pan X, Cai Q, Zhang F, Yang J, Fang G, Zhao X, You F, Feng Y, Li Y, Chen JF (2022) alpha-Synuclein selectively impairs motor sequence learning and value sensitivity: reversal by the adenosine A2A receptor antagonists. Cereb Cortex 32:808–823. https://doi.org/10.1093/cercor/bhab244

    Article  PubMed  Google Scholar 

  156. Lavigne EG, Buttigieg D, Steinschneider R, Burstein ES (2021) Pimavanserin promotes trophic factor release and protects cultured primary dopaminergic neurons exposed to MPP+ in a GDNF-dependent manner. ACS Chem Neurosci 12:2088–2098. https://doi.org/10.1021/acschemneuro.0c00751

    Article  CAS  PubMed  Google Scholar 

  157. Zhu R, Luo Y, Li S, Wang Z (2022) The role of microglial autophagy in Parkinson’s disease. Front Aging Neurosci 14:1039780. https://doi.org/10.3389/fnagi.2022.1039780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Dai C, Tan C, Zhao L, Liang Y, Liu G, Liu H, Zhong Y, Liu Z, Mo L, Liu X, Chen L (2023) Glucose metabolism impairment in Parkinson’s disease. Brain Res Bull 199:110672. https://doi.org/10.1016/j.brainresbull.2023.110672

    Article  CAS  PubMed  Google Scholar 

  159. Bu LL, Liu YQ, Shen Y, Fan Y, Yu WB, Jiang DL, Tang YL, Yang YJ, Wu P, Zuo CT, Koprich JB, Liu FT, Wu JJ, Wang J (2021) Neuroprotection of exendin-4 by enhanced autophagy in a Parkinsonian rat model of alpha-synucleinopathy. Neurotherapeutics 18:962–978. https://doi.org/10.1007/s13311-021-01018-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Ledeen RW, Wu G (2018) Gangliosides, alpha-synuclein, and Parkinson’s disease. Prog Mol Biol Transl Sci 156:435–454. https://doi.org/10.1016/bs.pmbts.2017.12.009

    Article  CAS  PubMed  Google Scholar 

  161. Wu G, Lu ZH, Kulkarni N, Ledeen RW (2012) Deficiency of ganglioside GM1 correlates with Parkinson’s disease in mice and humans. J Neurosci Res 90:1997–2008. https://doi.org/10.1002/jnr.23090

    Article  CAS  PubMed  Google Scholar 

  162. Oueslati A, Fournier M, Lashuel HA (2010) Role of post-translational modifications in modulating the structure, function and toxicity of alpha-synuclein: implications for Parkinson’s disease pathogenesis and therapies. Prog Brain Res 183:115–145. https://doi.org/10.1016/S0079-6123(10)83007-9

    Article  CAS  PubMed  Google Scholar 

  163. Bell R, Castellana-Cruz M, Nene A, Thrush RJ, Xu CK, Kumita JR, Vendruscolo M (2023) Effects of N-terminal acetylation on the aggregation of disease-related alpha-synuclein Variants. J Mol Biol 435:167825. https://doi.org/10.1016/j.jmb.2022.167825

    Article  CAS  PubMed  Google Scholar 

  164. Bell R, Vendruscolo M (2021) Modulation of the interactions between alpha-synuclein and lipid membranes by post-translational modifications. Front Neurol 12:661117. https://doi.org/10.3389/fneur.2021.661117

    Article  PubMed  PubMed Central  Google Scholar 

  165. Sison SL, Vermilyea SC, Emborg ME, Ebert AD (2018) Using patient-derived induced pluripotent stem cells to identify Parkinson’s disease-relevant phenotypes. Curr Neurol Neurosci Rep 18:84. https://doi.org/10.1007/s11910-018-0893-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Rasool A, Manzoor R, Kaleem U, Kaleem I, Bashir S, Farrukh A, Khattak S, Haq A, Afzal R (2023) Oxidative stress and dopaminergic metabolism: a major PD pathogenic mechanism and basis of potential antioxidant therapies. CNS Neurol Disord Drug Targets. https://doi.org/10.2174/1871527322666230609141519

    Article  PubMed  Google Scholar 

  167. Zhao H, Zhuo L, Sun Y, Shen P, Lin H, Zhan S (2022) Thiazolidinedione use and risk of Parkinson’s disease in patients with type 2 diabetes mellitus. NPJ Parkinsons Dis 8:138. https://doi.org/10.1038/s41531-022-00406-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Cardoso S, Moreira PI (2020) Antidiabetic drugs for Alzheimer’s and Parkinson’s diseases: repurposing insulin, metformin, and thiazolidinediones. Int Rev Neurobiol 155:37–64. https://doi.org/10.1016/bs.irn.2020.02.010

    Article  CAS  PubMed  Google Scholar 

  169. Ghio S, Camilleri A, Caruana M, Ruf VC, Schmidt F, Leonov A, Ryazanov S, Griesinger C, Cauchi RJ, Kamp F, Giese A, Vassallo N (2019) Cardiolipin promotes pore-forming activity of alpha-synuclein oligomers in mitochondrial membranes. ACS Chem Neurosci 10:3815–3829. https://doi.org/10.1021/acschemneuro.9b00320

    Article  CAS  PubMed  Google Scholar 

  170. Du XY, Xie XX, Liu RT (2020) The role of alpha-synuclein oligomers in Parkinson’s disease. Int J Mol Sci. https://doi.org/10.3390/ijms21228645

    Article  PubMed  PubMed Central  Google Scholar 

  171. Butterfield DA, Palmieri EM, Castegna A (2016) Clinical implications from proteomic studies in neurodegenerative diseases: lessons from mitochondrial proteins. Expert Rev Proteomics 13:259–274. https://doi.org/10.1586/14789450.2016.1149470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Butterfield DA, Favia M, Spera I, Campanella A, Lanza M, Castegna A (2022) Metabolic features of brain function with relevance to clinical features of Alzheimer and Parkinson diseases. Molecules. https://doi.org/10.3390/molecules27030951H

    Article  PubMed  PubMed Central  Google Scholar 

  173. Labandeira CM, Fraga-Bau A, Arias Ron D, Alvarez-Rodriguez E, Vicente-Alba P, Lago-Garma J, Rodriguez-Perez AI (2022) Parkinson’s disease and diabetes mellitus: common mechanisms and treatment repurposing. Neural Regen Res 17:1652–1658. https://doi.org/10.4103/1673-5374.332122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Cai R, Zhang Y, Simmering JE, Schultz JL, Li Y, Fernandez-Carasa I, Consiglio A, Raya A, Polgreen PM, Narayanan NS, Yuan Y, Chen Z, Su W, Han Y, Zhao C, Gao L, Ji X, Welsh MJ, Liu L (2019) Enhancing glycolysis attenuates Parkinson’s disease progression in models and clinical databases. J Clin Invest 129:4539–4549. https://doi.org/10.1172/JCI129987

    Article  PubMed  PubMed Central  Google Scholar 

  175. Sanguanphun T, Promtang S, Sornkaew N, Niamnont N, Sobhon P, Meemon K (2023) Anti-Parkinson effects of Holothuria leucospilota-derived palmitic acid in Caenorhabditis elegans model of Parkinson’s disease. Mar Drugs. https://doi.org/10.3390/md21030141

    Article  PubMed  PubMed Central  Google Scholar 

  176. Zhang Q, Gao Y, Zhang J, Li Y, Chen J, Huang R, Ma G, Wang L, Zhang Y, Nie K, Wang L (2020) L-Asparaginase exerts neuroprotective effects in an SH-SY5Y-A53T model of Parkinson’s disease by regulating glutamine metabolism. Front Mol Neurosci 13:563054. https://doi.org/10.3389/fnmol.2020.563054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Rojas-Morales P, Pedraza-Chaverri J, Tapia E (2020) Ketone bodies, stress response, and redox homeostasis. Redox Biol 29:101395. https://doi.org/10.1016/j.redox.2019.101395

    Article  CAS  PubMed  Google Scholar 

  178. Harris JJ, Jolivet R, Attwell D (2012) Synaptic energy use and supply. Neuron 75:762–777. https://doi.org/10.1016/j.neuron.2012.08.019

    Article  CAS  PubMed  Google Scholar 

  179. Jensen NJ, Wodschow HZ, Nilsson M, Rungby J (2020) Effects of ketone bodies on brain metabolism and function in neurodegenerative diseases. Int J Mol Sci. https://doi.org/10.3390/ijms21228767

    Article  PubMed  PubMed Central  Google Scholar 

  180. Paknahad Z, Sheklabadi E, Moravejolahkami AR, Chitsaz A, Hassanzadeh A (2022) The effects of Mediterranean diet on severity of disease and serum Total Antioxidant Capacity (TAC) in patients with Parkinson’s disease: a single center, randomized controlled trial. Nutr Neurosci 25:313–320. https://doi.org/10.1080/1028415X.2020.1751509

    Article  CAS  PubMed  Google Scholar 

  181. Knight E, Geetha T, Burnett D, Babu JR (2022) The role of diet and dietary patterns in Parkinson’s disease. Nutrients. https://doi.org/10.3390/nu14214472

    Article  PubMed  PubMed Central  Google Scholar 

  182. Zhao Y, Yang G, Zhao Z, Wang C, Duan C, Gao L, Li S (2020) Antidepressant-like effects of Lactobacillus plantarum DP189 in a corticosterone-induced rat model of chronic stress. Behav Brain Res 395:112853. https://doi.org/10.1016/j.bbr.2020.112853

    Article  CAS  PubMed  Google Scholar 

  183. Magistrelli L, Amoruso A, Mogna L, Graziano T, Cantello R, Pane M, Comi C (2019) Probiotics may have beneficial effects in Parkinson’s disease: in vitro evidence. Front Immunol 10:969. https://doi.org/10.3389/fimmu.2019.00969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Pan S, Wei H, Yuan S, Kong Y, Yang H, Zhang Y, Cui X, Chen W, Liu J, Zhang Y (2022) Probiotic Pediococcus pentosaceus ameliorates MPTP-induced oxidative stress via regulating the gut microbiota-gut-brain axis. Front Cell Infect Microbiol 12:1022879. https://doi.org/10.3389/fcimb.2022.1022879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Valvaikar S, Vaidya B, Sharma S, Bishnoi M, Kondepudi KK, Sharma SS (2024) Supplementation of probiotic Bifidobacterium breve Bif11 reverses neurobehavioural deficits, inflammatory changes and oxidative stress in Parkinson’s disease model. Neurochem Int 174:105691. https://doi.org/10.1016/j.neuint.2024.105691

    Article  CAS  PubMed  Google Scholar 

  186. Wang L, Zhao Z, Zhao L, Zhao Y, Yang G, Wang C, Gao L, Niu C, Li S (2022) Lactobacillus plantarum DP189 reduces alpha-SYN aggravation in MPTP-Induced Parkinson’s disease mice via regulating oxidative damage, inflammation, and gut microbiota disorder. J Agric Food Chem 70:1163–1173. https://doi.org/10.1021/acs.jafc.1c07711

    Article  CAS  PubMed  Google Scholar 

  187. Zuo T, Xie M, Yan M, Zhang Z, Tian T, Zhu Y, Wang L, Sun Y (2022) In situ analysis of acupuncture protecting dopaminergic neurons from lipid peroxidative damage in mice of Parkinson’s disease. Cell Prolif 55:e13213. https://doi.org/10.1111/cpr.13213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was funded by National Natural Science Foundation of China (Grant No. 81600470) and Natural Science Foundation of Shandong Province (Grant No. ZR2022MC053).

Author information

Authors and Affiliations

Authors

Contributions

S. Li, Y. Liu and S. Lu drafted the manuscript. Y. Liu revised the manuscript for important intellectual content. S. Li revised the images. X. Liu, D. Yang, J. Xu and all other authors helped to sort out documents and revise the manuscript. N. Li conceived the work, organized, reviewed the manuscript, and made significant revisions to the drafts. All the authors approved the final manuscript.

Corresponding author

Correspondence to Ning Li.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Consent to publish

No applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Liu, Y., Lu, S. et al. A crazy trio in Parkinson's disease: metabolism alteration, α-synuclein aggregation, and oxidative stress. Mol Cell Biochem (2024). https://doi.org/10.1007/s11010-024-04985-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11010-024-04985-3

Keywords

Navigation