Skip to main content

Advertisement

Log in

Mechanisms and therapeutic prospect of the JAK-STAT signaling pathway in liver cancer

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Liver cancer (LC) poses a significant global health challenge due to its high incidence and poor prognosis. Current systemic treatment options, such as surgery, chemotherapy, radiofrequency ablation, and immunotherapy, have shown limited effectiveness for advanced LC patients. Moreover, owing to the heterogeneous nature of LC, it is crucial to uncover more in-depth pathogenic mechanisms and develop effective treatments to address the limitations of the existing therapeutic modalities. Increasing evidence has revealed the crucial role of the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway in the pathogenesis of LC. The specific mechanisms driving the JAK-STAT pathway activation in LC, participate in a variety of malignant biological processes, including cell differentiation, evasion, anti-apoptosis, immune escape, and treatment resistance. Both preclinical and clinical investigations on the JAK-STAT pathway inhibitors have exhibited potential in LC treatment, thereby opening up avenues for the development of more targeted therapeutic strategies for LC. In this study, we provide an overview of the JAK-STAT pathway, delving into the composition, activation, and dynamic interplay within the pathway. Additionally, we focus on the molecular mechanisms driving the aberrant activation of the JAK-STAT pathway in LC. Furthermore, we summarize the latest advancements in targeting the JAK-STAT pathway for LC treatment. The insights presented in this review aim to underscore the necessity of research into the JAK-STAT signaling pathway as a promising avenue for LC therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Gravitz L (2014) Liver cancer. Nature 516(7529):S1

    Article  CAS  PubMed  Google Scholar 

  2. Wilson JF (2005) Liver cancer on the rise. Ann Intern Med 142(12):1029–1032

    Article  PubMed  Google Scholar 

  3. Bruix J, Reig M, Sherman M (2016) Evidence-based diagnosis, staging, and treatment of patients with hepatocellular carcinoma. Gastroenterology 150(4):835–853

    Article  PubMed  Google Scholar 

  4. Peng J, Lü M, Peng Y, Tang X (2023) Global incidence of primary liver cancer by etiology among children, adolescents, and young adults. J Hepatol 79(2):e92–e94

    Article  PubMed  Google Scholar 

  5. Chen JG, Zhang SW (2011) Liver cancer epidemic in China: past, present and future. Semin Cancer Biol 21(1):59–69

    Article  PubMed  Google Scholar 

  6. Ganesan P, Kulik LM (2023) Hepatocellular carcinoma: new developments. Clin Liver Dis 27(1):85–102

    Article  PubMed  Google Scholar 

  7. Piñero F, Dirchwolf M, Pessôa MG (2020) Biomarkers in hepatocellular carcinoma diagnosis, prognosis and treatment response assessment. Cells 9(6):1370

    Article  PubMed  PubMed Central  Google Scholar 

  8. Singal AG, Sanduzzi-Zamparelli M, Nahon P, Ronot M, Hoshida Y, Rich N, Reig M, Vilgrain V, Marrero J, Llovet JM et al (2023) International liver cancer association (ILCA) white paper on hepatocellular carcinoma risk stratification and surveillance. J Hepatol 79(1):226–239

    Article  PubMed  Google Scholar 

  9. Marengo A, Rosso C, Bugianesi E (2016) Liver cancer: connections with obesity, fatty liver, and cirrhosis. Annu Rev Med 67:103–117

    Article  CAS  PubMed  Google Scholar 

  10. Zhou H, Song T (2021) Conversion therapy and maintenance therapy for primary hepatocellular carcinoma. Biosci Trends 15(3):155–160

    Article  CAS  PubMed  Google Scholar 

  11. Zheng Y, Wang S, Cai J, Ke A, Fan J (2021) The progress of immune checkpoint therapy in primary liver cancer. Biochim Biophys Acta Rev Cancer 1876:188638

    Article  CAS  PubMed  Google Scholar 

  12. Bruix J, Han KH, Gores G, Llovet JM, Mazzaferro V (2015) Liver cancer: approaching a personalized care. J Hepatol 62(1 Suppl):S144–S156

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kensler TW, Qian GS, Chen JG, Groopman JD (2003) Translational strategies for cancer prevention in liver. Nat Rev Cancer 3(5):321–329

    Article  CAS  PubMed  Google Scholar 

  14. Lujambio A, Villanueva A (2015) The usual SASPects of liver cancer. Aging (Albany NY) 7(6):348–349

    Article  CAS  PubMed  Google Scholar 

  15. Bruix J (2011) Liver cancer: still a long way to go. Hepatology 54(1):1–2

    Article  PubMed  Google Scholar 

  16. de Lope CR, Tremosini S, Forner A, Reig M, Bruix J (2012) Management of HCC. J Hepatol 56:S75–S87

    Article  PubMed  Google Scholar 

  17. Anwanwan D, Singh SK, Singh S, Saikam V, Singh R (2020) Challenges in liver cancer and possible treatment approaches. Biochim Biophys Acta Rev Cancer 1873:188314

    Article  CAS  PubMed  Google Scholar 

  18. Thorgeirsson SS, Lee JS, Grisham JW (2006) Molecular prognostication of liver cancer: end of the beginning. J Hepatol 44(4):798–805

    Article  CAS  PubMed  Google Scholar 

  19. Ma L, Wang XW (2022) Dissecting liver tumor heterogeneity to improve health equity. Trends Cancer 8(4):286–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cheng K, Cai N, Zhu J, Yang X, Liang H, Zhang W (2022) Tumor-associated macrophages in liver cancer: from mechanisms to therapy. Cancer Commun (Lond) 42(11):1112–1140

    Article  PubMed  Google Scholar 

  21. Li X, Ramadori P, Pfister D, Seehawer M, Zender L, Heikenwalder M (2021) The immunological and metabolic landscape in primary and metastatic liver cancer. Nat Rev Cancer 21(9):541–557

    Article  CAS  PubMed  Google Scholar 

  22. Li L, Wang H (2016) Heterogeneity of liver cancer and personalized therapy. Cancer Lett 379(2):191–197

    Article  CAS  PubMed  Google Scholar 

  23. Dufour JF, Johnson P (2010) Liver cancer: from molecular pathogenesis to new therapies: summary of the EASL single topic conference. J Hepatol 52(2):296–304

    Article  CAS  PubMed  Google Scholar 

  24. Chowdhury MMH, Salazar CJJ, Nurunnabi M (2021) Recent advances in bionanomaterials for liver cancer diagnosis and treatment. Biomater Sci 9(14):4821–4842

    Article  CAS  PubMed  Google Scholar 

  25. Zhu CP, Wang AQ, Zhang HH, Wan XS, Yang XB, Chen SG, Zhao HT (2015) Research progress and prospects of markers for liver cancer stem cells. World J Gastroenterol 21(42):12190–12196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hong X, Campanario S, Ramírez-Pardo I, Grima-Terrén M, Isern J, Muñoz-Cánoves P (2022) Stem cell aging in the skeletal muscle: The importance of communication. Ageing Res Rev 73:101528

    Article  CAS  PubMed  Google Scholar 

  27. Smith HJ, Sharma A, Mair WB (2020) Metabolic communication and healthy aging: where should we focus our energy? Dev Cell 54(2):196–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jain A, Zoncu R (2022) Organelle transporters and inter-organelle communication as drivers of metabolic regulation and cellular homeostasis. Mol Metab 60:101481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wu Q, Zhang H, Sun S, Wang L, Sun S (2021) Extracellular vesicles and immunogenic stress in cancer. Cell Death Dis 12(10):894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Menck K, Scharf C, Bleckmann A, Dyck L, Rost U, Wenzel D, Dhople VM, Siam L, Pukrop T, Binder C et al (2015) Tumor-derived microvesicles mediate human breast cancer invasion through differentially glycosylated EMMPRIN. J Mol Cell Biol 7(2):143–153

    Article  CAS  PubMed  Google Scholar 

  31. Hu X, Li J, Fu M, Zhao X, Wang W (2021) The JAK/STAT signaling pathway: from bench to clinic. Signal Transduct Target Ther 6(1):402

    Article  PubMed  PubMed Central  Google Scholar 

  32. Banerjee S, Biehl A, Gadina M, Hasni S, Schwartz DM (2017) JAK-STAT signaling as a target for inflammatory and autoimmune diseases: current and future prospects. Drugs 77(5):521–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yan Z, Gibson SA, Buckley JA, Qin H, Benveniste EN (2018) Role of the JAK/STAT signaling pathway in regulation of innate immunity in neuroinflammatory diseases. Clin Immunol 189:4–13

    Article  CAS  PubMed  Google Scholar 

  34. Xin P, Xu X, Deng C, Liu S, Wang Y, Zhou X, Ma H, Wei D, Sun S (2020) The role of JAK/STAT signaling pathway and its inhibitors in diseases. Int Immunopharmacol 80:106210

    Article  CAS  PubMed  Google Scholar 

  35. Guttman-Yassky E, Irvine AD, Brunner PM, Kim BS, Boguniewicz M, Parmentier J, Platt AM, Kabashima K (2023) The role of Janus kinase signaling in the pathology of atopic dermatitis. J Allergy Clin Immunol. https://doi.org/10.1016/j.jaci.2023.07.010

    Article  PubMed  Google Scholar 

  36. Crispino N, Ciccia F (2021) JAK/STAT pathway and nociceptive cytokine signalling in rheumatoid arthritis and psoriatic arthritis. Clin Exp Rheumatol 39(3):668–675

    Article  PubMed  Google Scholar 

  37. Hu Q, Bian Q, Rong D, Wang L, Song J, Huang HS, Zeng J, Mei J, Wang PY (2023) JAK/STAT pathway: extracellular signals, diseases, immunity, and therapeutic regimens. Front Bioeng Biotechnol 11:1110765

    Article  PubMed  PubMed Central  Google Scholar 

  38. Dodington DW, Desai HR, Woo M (2018) JAK/STAT - Emerging Players in Metabolism. Trends Endocrinol Metab 29(1):55–65

    Article  CAS  PubMed  Google Scholar 

  39. Xue C, Yao Q, Gu X, Shi Q, Yuan X, Chu Q, Bao Z, Lu J, Li L (2023) Evolving cognition of the JAK-STAT signaling pathway: autoimmune disorders and cancer. Signal Transduct Target Ther 8(1):204

    Article  PubMed  PubMed Central  Google Scholar 

  40. Mahjoor M, Mahmoudvand G, Farokhi S, Shadab A, Kashfi M, Afkhami H (2023) Double-edged sword of JAK/STAT signaling pathway in viral infections: novel insights into virotherapy. Cell Commun Signal 21(1):272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Owen KL, Brockwell NK, Parker BS (2019) JAK-STAT signaling: a double-edged sword of immune regulation and cancer progression. Cancers (Basel). https://doi.org/10.3390/cancers11122002

    Article  PubMed  Google Scholar 

  42. Shao F, Pang X, Baeg GH (2021) Targeting the JAK/STAT signaling pathway for breast cancer. Curr Med Chem 28(25):5137–5151

    Article  CAS  PubMed  Google Scholar 

  43. Liu Y, Wang W, Zhang J, Gao S, Xu T, Yin Y (2023) JAK/STAT signaling in diabetic kidney disease. Front Cell Dev Biol 11:1233259

    Article  PubMed  PubMed Central  Google Scholar 

  44. Montero P, Milara J, Roger I, Cortijo J (2021) Role of JAK/STAT in interstitial lung diseases; molecular and cellular mechanisms. Int J Mol Sci. https://doi.org/10.3390/ijms22126211

    Article  PubMed  PubMed Central  Google Scholar 

  45. Huang IH, Chung WH, Wu PC, Chen CB (2022) JAK-STAT signaling pathway in the pathogenesis of atopic dermatitis: an updated review. Front Immunol 13:1068260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Valle-Mendiola A, Gutiérrez-Hoya A, Soto-Cruz I (2023) JAK/STAT signaling and cervical cancer: from the cell surface to the nucleus. Genes (Basel). https://doi.org/10.3390/genes14061141

    Article  PubMed  Google Scholar 

  47. Gao J, Zhao BR, Zhang H, You YL, Li F, Wang XW (2021) Interferon functional analog activates antiviral Jak/Stat signaling through integrin in an arthropod. Cell Rep 36(13):109761

    Article  CAS  PubMed  Google Scholar 

  48. Trivedi S, Starz-Gaiano M (2018) Drosophila Jak/STAT signaling: regulation and relevance in human cancer and metastasis. Int J Mol Sci. https://doi.org/10.3390/ijms19124056

    Article  PubMed  PubMed Central  Google Scholar 

  49. Cai Z, Zhang S, Wu P, Ren Q, Wei P, Hong M, Feng Y, Wong CK, Tang H, Zeng H (2021) A novel potential target of IL-35-regulated JAK/STAT signaling pathway in lupus nephritis. Clin Transl Med 11(2):e309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pencik J, Pham HT, Schmoellerl J, Javaheri T, Schlederer M, Culig Z, Merkel O, Moriggl R, Grebien F, Kenner L (2016) JAK-STAT signaling in cancer: from cytokines to non-coding genome. Cytokine 87:26–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tzeng HT, Chyuan IT, Lai JH (2021) Targeting the JAK-STAT pathway in autoimmune diseases and cancers: a focus on molecular mechanisms and therapeutic potential. Biochem Pharmacol 193:114760

    Article  CAS  PubMed  Google Scholar 

  52. Ni Y, Low JT, Silke J, O’Reilly LA (2022) Digesting the role of JAK-STAT and cytokine signaling in oral and gastric cancers. Front Immunol 13:835997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Waldmann TA, Chen J (2017) Disorders of the JAK/STAT pathway in T cell lymphoma pathogenesis: implications for immunotherapy. Annu Rev Immunol 35:533–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Toh TB, Lim JJ, Hooi L, Rashid M, Chow EK (2020) Targeting Jak/Stat pathway as a therapeutic strategy against SP/CD44+ tumorigenic cells in Akt/β-catenin-driven hepatocellular carcinoma. J Hepatol 72(1):104–118

    Article  CAS  PubMed  Google Scholar 

  55. Zhao Y, Li ZX, Zhu YJ, Fu J, Zhao XF, Zhang YN, Wang S, Wu JM, Wang KT, Wu R et al (2021) Single-cell transcriptome analysis uncovers intratumoral heterogeneity and underlying mechanisms for drug resistance in hepatobiliary tumor organoids. Adv Sci (Weinh) 8(11):e2003897

    Article  PubMed  Google Scholar 

  56. Calderaro J, Couchy G, Imbeaud S, Amaddeo G, Letouzé E, Blanc JF, Laurent C, Hajji Y, Azoulay D, Bioulac-Sage P et al (2017) Histological subtypes of hepatocellular carcinoma are related to gene mutations and molecular tumour classification. J Hepatol 67(4):727–738

    Article  CAS  PubMed  Google Scholar 

  57. Wang S, Zhang S, He Y, Huang X, Hui Y, Tang Y (2019) HOXA11-AS regulates JAK-STAT pathway by miR-15a-3p/STAT3 axis to promote the growth and metastasis in liver cancer. J Cell Biochem 120(9):15941–15951

    Article  CAS  PubMed  Google Scholar 

  58. Lin Q, Ling YB, Chen JW, Zhou CR, Chen J, Li X, Huang MS (2018) Circular RNA circCDK13 suppresses cell proliferation, migration and invasion by modulating the JAK/STAT and PI3K/AKT pathways in liver cancer. Int J Oncol 53(1):246–256

    CAS  PubMed  Google Scholar 

  59. Hin Tang JJ, Hao Thng DK, Lim JJ, Toh TB (2020) JAK/STAT signaling in hepatocellular carcinoma. Hepat Oncol 7(1):Hep18

    Article  PubMed  PubMed Central  Google Scholar 

  60. Zhang CS, Lin Y, Sun FB, Gao J, Han B, Li SJ (2019) miR-409 down-regulates Jak-Stat pathway to inhibit progression of liver cancer. Eur Rev Med Pharmacol Sci 23(1):146–154

    PubMed  Google Scholar 

  61. Kong R, Wang N, Han W, Bao W, Lu J (2021) IFNγ-mediated repression of system xc(-) drives vulnerability to induced ferroptosis in hepatocellular carcinoma cells. J Leukoc Biol 110(2):301–314

    Article  CAS  PubMed  Google Scholar 

  62. Wang KD, Zhu ML, Qin CJ, Dong RF, Xiao CM, Lin Q, Wei RY, He XY, Zang X, Kong LY et al (2023) Sanguinarine induces apoptosis in osteosarcoma by attenuating the binding of STAT3 to the single-stranded DNA-binding protein 1 (SSBP1) promoter region. Br J Pharmacol 180(24):3175–3193

    Article  CAS  PubMed  Google Scholar 

  63. Bharadwaj U, Kasembeli MM, Robinson P, Tweardy DJ (2020) Targeting janus kinases and signal transducer and activator of transcription 3 to treat inflammation, fibrosis, and cancer: rationale, progress, and caution. Pharmacol Rev 72(2):486–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lokau J, Schoeder V, Haybaeck J, Garbers C (2019) Jak-Stat Signaling Induced by Interleukin-6 Family Cytokines in Hepatocellular Carcinoma. Cancers (Basel). https://doi.org/10.3390/cancers11111704

    Article  PubMed  Google Scholar 

  65. Favoino E, Prete M, Catacchio G, Ruscitti P, Navarini L, Giacomelli R, Perosa F (2021) Working and safety profiles of JAK/STAT signaling inhibitors. Are these small molecules also smart? Autoimmun Rev 20(3):102750

    Article  CAS  PubMed  Google Scholar 

  66. La Manna S, De Benedictis I, Marasco D (2021) Proteomimetics of natural regulators of JAK-STAT pathway: novel therapeutic perspectives. Front Mol Biosci 8:792546

    Article  PubMed  Google Scholar 

  67. Welsch K, Holstein J, Laurence A, Ghoreschi K (2017) Targeting JAK/STAT signalling in inflammatory skin diseases with small molecule inhibitors. Eur J Immunol 47(7):1096–1107

    Article  CAS  PubMed  Google Scholar 

  68. Wilson GS, Tian A, Hebbard L, Duan W, George J, Li X, Qiao L (2013) Tumoricidal effects of the JAK inhibitor ruxolitinib (INC424) on hepatocellular carcinoma in vitro. Cancer Lett 341(2):224–230

    Article  CAS  PubMed  Google Scholar 

  69. Xie L, Zeng Y, Dai Z, He W, Ke H, Lin Q, Chen Y, Bu J, Lin D, Zheng M (2018) Chemical and genetic inhibition of STAT3 sensitizes hepatocellular carcinoma cells to sorafenib induced cell death. Int J Biol Sci 14(5):577–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Okusaka T, Ueno H, Ikeda M, Mitsunaga S, Ozaka M, Ishii H, Yokosuka O, Ooka Y, Yoshimoto R, Yanagihara Y et al (2015) Phase 1 and pharmacological trial of OPB-31121, a signal transducer and activator of transcription-3 inhibitor, in patients with advanced hepatocellular carcinoma. Hepatol Res 45(13):1283–1291

    Article  CAS  PubMed  Google Scholar 

  71. Yoo C, Kang J, Lim HY, Kim JH, Lee MA, Lee KH, Kim TY, Ryoo BY (2019) Phase I dose-finding study of OPB-111077, a novel STAT3 inhibitor, in patients with advanced hepatocellular carcinoma. Cancer Res Treat 51(2):510–518

    Article  CAS  PubMed  Google Scholar 

  72. Gombos G, Németh N, Pös O, Styk J, Buglyó G, Szemes T, Danihel L, Nagy B, Balogh I, Soltész B (2023) New possible ways to use exosomes in diagnostics and therapy via JAK/STAT pathways. Pharmaceutics. https://doi.org/10.3390/pharmaceutics15071904

    Article  PubMed  PubMed Central  Google Scholar 

  73. Ravandi F, Talpaz M, Kantarjian H, Estrov Z (2002) Cellular signalling pathways: new targets in leukaemia therapy. Br J Haematol 116(1):57–77

    Article  CAS  PubMed  Google Scholar 

  74. Conway G, Margoliath A, Wong-Madden S, Roberts RJ, Gilbert W (1997) Jak1 kinase is required for cell migrations and anterior specification in zebrafish embryos. Proc Natl Acad Sci U S A 94(7):3082–3087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kleppe M, Spitzer MH, Li S, Hill CE, Dong L, Papalexi E, De Groote S, Bowman RL, Keller M, Koppikar P et al (2017) Jak1 integrates cytokine sensing to regulate hematopoietic stem cell function and stress hematopoiesis. Cell Stem Cell 21(4):489-501.e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Heuschkel MJ, Bach C, Meiss-Heydmann L, Gerges E, Felli E, Giannone F, Pessaux P, Schuster C, Lucifora J, Baumert TF et al (2023) JAK1 promotes HDV replication and is a potential target for antiviral therapy. J Hepatol. https://doi.org/10.1016/j.jhep.2023.10.030

    Article  PubMed  Google Scholar 

  77. Sexl V, Kovacic B, Piekorz R, Moriggl R, Stoiber D, Hoffmeyer A, Liebminger R, Kudlacek O, Weisz E, Rothammer K et al (2003) Jak1 deficiency leads to enhanced Abelson-induced B-cell tumor formation. Blood 101(12):4937–4943

    Article  CAS  PubMed  Google Scholar 

  78. Yasuda T, Fukada T, Nishida K, Nakayama M, Matsuda M, Miura I, Dainichi T, Fukuda S, Kabashima K, Nakaoka S et al (2016) Hyperactivation of JAK1 tyrosine kinase induces stepwise, progressive pruritic dermatitis. J Clin Invest 126(6):2064–2076

    Article  PubMed  PubMed Central  Google Scholar 

  79. Pardanani A, Lasho T, Smith G, Burns CJ, Fantino E, Tefferi A (2009) CYT387, a selective JAK1/JAK2 inhibitor: in vitro assessment of kinase selectivity and preclinical studies using cell lines and primary cells from polycythemia vera patients. Leukemia 23(8):1441–1445

    Article  CAS  PubMed  Google Scholar 

  80. Pardanani A (2008) JAK2 inhibitor therapy in myeloproliferative disorders: rationale, preclinical studies and ongoing clinical trials. Leukemia 22(1):23–30

    Article  CAS  PubMed  Google Scholar 

  81. Nair PC, Piehler J, Tvorogov D, Ross DM, Lopez AF, Gotlib J, Thomas D (2023) Next-generation JAK2 inhibitors for the treatment of myeloproliferative neoplasms: lessons from structure-based drug discovery approaches. Blood Cancer Discov 4(5):352–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Silvennoinen O, Hubbard SR (2015) Molecular insights into regulation of JAK2 in myeloproliferative neoplasms. Blood 125(22):3388–3392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Pardanani A, Hood J, Lasho T, Levine RL, Martin MB, Noronha G, Finke C, Mak CC, Mesa R, Zhu H et al (2007) TG101209, a small molecule JAK2-selective kinase inhibitor potently inhibits myeloproliferative disorder-associated JAK2V617F and MPLW515L/K mutations. Leukemia 21(8):1658–1668

    Article  CAS  PubMed  Google Scholar 

  84. Dawson MA, Curry JE, Barber K, Beer PA, Graham B, Lyons JF, Richardson CJ, Scott MA, Smyth T, Squires MS et al (2010) AT9283, a potent inhibitor of the aurora kinases and Jak2, has therapeutic potential in myeloproliferative disorders. Br J Haematol 150(1):46–57

    Article  CAS  PubMed  Google Scholar 

  85. Hu M, Yang T, Yang L, Niu L, Zhu J, Zhao A, Shi M, Yuan X, Tang M, Yang J et al (2022) Preclinical studies of flonoltinib maleate, a novel JAK2/FLT3 inhibitor, in treatment of JAK2(V617F)-induced myeloproliferative neoplasms. Blood Cancer J 12(3):37

    Article  PubMed  PubMed Central  Google Scholar 

  86. Downes CE, McClure BJ, McDougal DP, Heatley SL, Bruning JB, Thomas D, Yeung DT, White DL (2022) JAK2 alterations in acute lymphoblastic leukemia: molecular insights for superior precision medicine strategies. Front Cell Dev Biol 10:942053

    Article  PubMed  PubMed Central  Google Scholar 

  87. Lucia E, Recchia AG, Gentile M, Bossio S, Vigna E, Mazzone C, Madeo A, Morabito L, Gigliotti V, De Stefano L et al (2011) Janus kinase 2 inhibitors in myeloproliferative disorders. Expert Opin Investig Drugs 20(1):41–59

    Article  CAS  PubMed  Google Scholar 

  88. Pandey G, Kuykendall AT, Reuther GW (2022) JAK2 inhibitor persistence in MPN: uncovering a central role of ERK activation. Blood Cancer J 12(1):13

    Article  PubMed  PubMed Central  Google Scholar 

  89. Zhang Y, Li J, Zhong H, Xiao X, Wang Z, Cheng Z, Hu C, Zhang G, Liu S (2021) The JAK2 inhibitor TG101209 exhibits anti-tumor and chemotherapeutic sensitizing effects on burkitt lymphoma cells by inhibiting the JAK2/STAT3/c-MYB signaling axis. Cell Death Discov 7(1):268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Papageorgiou AC, Wikman LE (2004) Is JAK3 a new drug target for immunomodulation-based therapies? Trends Pharmacol Sci 25(11):558–562

    Article  CAS  PubMed  Google Scholar 

  91. Bodaar K, Yamagata N, Barthe A, Landrigan J, Chonghaile TN, Burns M, Stevenson KE, Devidas M, Loh ML, Hunger SP et al (2022) JAK3 mutations and mitochondrial apoptosis resistance in T-cell acute lymphoblastic leukemia. Leukemia 36(6):1499–1507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chen C, Yin Y, Shi G, Zhou Y, Shao S, Wei Y, Wu L, Zhang D, Sun L, Zhang T (2022) A highly selective JAK3 inhibitor is developed for treating rheumatoid arthritis by suppressing γc cytokine-related JAK-STAT signal. Sci Adv 8(33):eabo4363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Burke JR, Cheng L, Gillooly KM, Strnad J, Zupa-Fernandez A, Catlett IM, Zhang Y, Heimrich EM, McIntyre KW, Cunningham MD et al (2019) Autoimmune pathways in mice and humans are blocked by pharmacological stabilization of the TYK2 pseudokinase domain. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aaw1736

    Article  PubMed  PubMed Central  Google Scholar 

  94. Wrobleski ST, Moslin R, Lin S, Zhang Y, Spergel S, Kempson J, Tokarski JS, Strnad J, Zupa-Fernandez A, Cheng L et al (2019) Highly selective inhibition of tyrosine kinase 2 (TYK2) for the treatment of autoimmune diseases: discovery of the allosteric inhibitor BMS-986165. J Med Chem 62(20):8973–8995

    Article  CAS  PubMed  Google Scholar 

  95. Villanueva MT (2019) TYK2 inhibition shows promise. Nat Rev Drug Discov 18(9):668

    Article  CAS  PubMed  Google Scholar 

  96. Zhou Y, Li X, Shen R, Wang X, Zhang F, Liu S, Li D, Liu J, Li P, Yan Y et al (2022) Novel small molecule tyrosine kinase 2 pseudokinase ligands block cytokine-induced TYK2-mediated signaling pathways. Front Immunol 13:884399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Liang Y, Zhu Y, Xia Y, Peng H, Yang XK, Liu YY, Xu WD, Pan HF, Ye DQ (2014) Therapeutic potential of tyrosine kinase 2 in autoimmunity. Expert Opin Ther Targets 18(5):571–580

    Article  CAS  PubMed  Google Scholar 

  98. Yuan S, Wang L, Zhang H, Xu F, Zhou X, Yu L, Sun J, Chen J, Ying H, Xu X et al (2023) Mendelian randomization and clinical trial evidence supports TYK2 inhibition as a therapeutic target for autoimmune diseases. EBioMedicine 89:104488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Nogueira M, Puig L, Torres T (2020) JAK inhibitors for treatment of psoriasis: focus on selective TYK2 inhibitors. Drugs 80(4):341–352

    Article  CAS  PubMed  Google Scholar 

  100. Jensen LT, Attfield KE, Feldmann M, Fugger L (2023) Allosteric TYK2 inhibition: redefining autoimmune disease therapy beyond JAK1–3 inhibitors. EBioMedicine 97:104840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gao B, Wang H, Lafdil F, Feng D (2012) STAT proteins - key regulators of anti-viral responses, inflammation, and tumorigenesis in the liver. J Hepatol 57(2):430–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wong GL, Manore SG, Doheny DL, Lo HW (2022) STAT family of transcription factors in breast cancer: pathogenesis and therapeutic opportunities and challenges. Semin Cancer Biol 86(Pt 3):84–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhou Q, Ren Q, Jiao L, Huang J, Yi J, Chen J, Lai J, Ji G, Zheng T (2022) The potential roles of JAK/STAT signaling in the progression of osteoarthritis. Front Endocrinol (Lausanne) 13:1069057

    Article  PubMed  Google Scholar 

  104. Lin HW, Thompson JW, Morris KC, Perez-Pinzon MA (2011) Signal transducers and activators of transcription: STATs-mediated mitochondrial neuroprotection. Antioxid Redox Signal 14(10):1853–1861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Gao B (2005) Cytokines, STATs and liver disease. Cell Mol Immunol 2(2):92–100

    CAS  PubMed  Google Scholar 

  106. Akira S (1999) Functional roles of STAT family proteins: lessons from knockout mice. Stem Cells 17(3):138–146

    Article  CAS  PubMed  Google Scholar 

  107. Gong X, Liu X (2022) In-depth analysis of the expression and functions of signal transducers and activators of transcription in human ovarian cancer. Front Oncol 12:1054647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Imada K, Leonard WJ (2000) The Jak-STAT pathway. Mol Immunol 37(1–2):1–11

    Article  CAS  PubMed  Google Scholar 

  109. Sawka-Verhelle D, Tartare-Deckert S, Decaux JF, Girard J, Van Obberghen E (2000) Stat 5B, activated by insulin in a Jak-independent fashion, plays a role in glucokinase gene transcription. Endocrinology 141(6):1977–1988

    Article  CAS  PubMed  Google Scholar 

  110. Kaltenecker D, Themanns M, Mueller KM, Spirk K, Suske T, Merkel O, Kenner L, Luís A, Kozlov A, Haybaeck J et al (2019) Hepatic growth hormone-JAK2-STAT5 signalling: metabolic function, non-alcoholic fatty liver disease and hepatocellular carcinoma progression. Cytokine 124:154569

    Article  CAS  PubMed  Google Scholar 

  111. Zuo Y, Feng Q, Jin L, Huang F, Miao Y, Liu J, Xu Y, Chen X, Zhang H, Guo T et al (2020) Regulation of the linear ubiquitination of STAT1 controls antiviral interferon signaling. Nat Commun 11(1):1146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Shang S, Yang YW, Chen F, Yu L, Shen SH, Li K, Cui B, Lv XX, Zhang C, Yang C et al (2022) TRIB3 reduces CD8(+) T cell infiltration and induces immune evasion by repressing the STAT1-CXCL10 axis in colorectal cancer. Sci Transl Med 14(626):eabf0992

    Article  CAS  PubMed  Google Scholar 

  113. Li J, Williams MJ, Park HJ, Bastos HP, Wang X, Prins D, Wilson NK, Johnson C, Sham K, Wantoch M et al (2022) STAT1 is essential for HSC function and maintains MHCIIhi stem cells that resist myeloablation and neoplastic expansion. Blood 140(14):1592–1606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Lu C, Ma H, Song L, Wang H, Wang L, Li S, Lagana SM, Sepulveda AR, Hoebe K, Pan SS et al (2023) IFN-γR/STAT1 signaling in recipient hematopoietic antigen-presenting cells suppresses graft-versus-host disease. J Clin Invest. https://doi.org/10.1172/JCI125986

    Article  PubMed  PubMed Central  Google Scholar 

  115. Gonzalez-Moro I, Olazagoitia-Garmendia A, Colli ML, Cobo-Vuilleumier N, Postler TS, Marselli L, Marchetti P, Ghosh S, Gauthier BR, Eizirik DL et al (2020) The T1D-associated lncRNA Lnc13 modulates human pancreatic β cell inflammation by allele-specific stabilization of STAT1 mRNA. Proc Natl Acad Sci U S A 117(16):9022–9031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wang Y, Song Q, Huang W, Lin Y, Wang X, Wang C, Willard B, Zhao C, Nan J, Holvey-Bates E et al (2021) A virus-induced conformational switch of STAT1-STAT2 dimers boosts antiviral defenses. Cell Res 31(2):206–218

    Article  CAS  PubMed  Google Scholar 

  117. Blaszczyk K, Olejnik A, Nowicka H, Ozgyin L, Chen YL, Chmielewski S, Kostyrko K, Wesoly J, Balint BL, Lee CK et al (2015) STAT2/IRF9 directs a prolonged ISGF3-like transcriptional response and antiviral activity in the absence of STAT1. Biochem J 466(3):511–524

    Article  CAS  PubMed  Google Scholar 

  118. Jordan MB (2023) Loss of STAT2 may be dangerous in a world filled with viruses. J Clin Invest. https://doi.org/10.1172/JCI170886

    Article  PubMed  PubMed Central  Google Scholar 

  119. Bucciol G, Moens L, Ogishi M, Rinchai D, Matuozzo D, Momenilandi M, Kerrouche N, Cale CM, Treffeisen ER, Al Salamah M et al (2023) Human inherited complete STAT2 deficiency underlies inflammatory viral diseases. J Clin Invest. https://doi.org/10.1172/JCI168321

    Article  PubMed  PubMed Central  Google Scholar 

  120. Yang C, Mai H, Peng J, Zhou B, Hou J, Jiang D (2020) STAT4: an immunoregulator contributing to diverse human diseases. Int J Biol Sci 16(9):1575–1585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. He H, Qiu X, Qi M, Bajinka O, Qin L, Tan Y (2022) lncRNA STAT4-AS1 inhibited TH17 cell differentiation by targeting RORγt protein. J Immunol Res 2022:8307280

    Article  PubMed  PubMed Central  Google Scholar 

  122. Shin HJ, Park HY, Jeong SJ, Park HW, Kim YK, Cho SH, Kim YY, Cho ML, Kim HY, Min KU et al (2005) STAT4 expression in human T cells is regulated by DNA methylation but not by promoter polymorphism. J Immunol 175(11):7143–7150

    Article  CAS  PubMed  Google Scholar 

  123. Murray PJ (2017) Macrophage polarization. Annu Rev Physiol 79:541–566

    Article  CAS  PubMed  Google Scholar 

  124. Kamerkar S, Leng C, Burenkova O, Jang SC, McCoy C, Zhang K, Dooley K, Kasera S, Zi T, Sisó S et al (2022) Exosome-mediated genetic reprogramming of tumor-associated macrophages by exoASO-STAT6 leads to potent monotherapy antitumor activity. Sci Adv 8(7):eabj7002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Sharma M, Leung D, Momenilandi M, Jones LCW, Pacillo L, James AE, Murrell JR, Delafontaine S, Maimaris J, Vaseghi-Shanjani M et al (2023) Human germline heterozygous gain-of-function STAT6 variants cause severe allergic disease. J Exp Med. https://doi.org/10.1084/jem.20221755

    Article  PubMed  PubMed Central  Google Scholar 

  126. Takeuchi I, Yanagi K, Takada S, Uchiyama T, Igarashi A, Motomura K, Hayashi Y, Nagano N, Matsuoka R, Sugiyama H et al (2023) STAT6 gain-of-function variant exacerbates multiple allergic symptoms. J Allergy Clin Immunol 151(5):1402–9.e6

    Article  CAS  PubMed  Google Scholar 

  127. Sahoo A, Alekseev A, Obertas L, Nurieva R (2014) Grail controls Th2 cell development by targeting STAT6 for degradation. Nat Commun 5:4732

    Article  CAS  PubMed  Google Scholar 

  128. Chen W, Daines MO, Khurana Hershey GK (2004) Turning off signal transducer and activator of transcription (STAT): the negative regulation of STAT signaling. J Allergy Clin Immunol 114(3):476–489

    Article  CAS  PubMed  Google Scholar 

  129. Frankson R, Yu ZH, Bai Y, Li Q, Zhang RY, Zhang ZY (2017) Therapeutic targeting of oncogenic tyrosine phosphatases. Cancer Res 77(21):5701–5705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Philips RL, Wang Y, Cheon H, Kanno Y, Gadina M, Sartorelli V, Horvath CM, Darnell JE Jr, Stark GR, O’Shea JJ (2022) The JAK-STAT pathway at 30: much learned, much more to do. Cell 185(21):3857–3876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Liao J, Fu Y, Shuai K (2000) Distinct roles of the NH2- and COOH-terminal domains of the protein inhibitor of activated signal transducer and activator of transcription (STAT) 1 (PIAS1) in cytokine-induced PIAS1-Stat1 interaction. Proc Natl Acad Sci U S A 97(10):5267–5272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Liu B, Liao J, Rao X, Kushner SA, Chung CD, Chang DD, Shuai K (1998) Inhibition of Stat1-mediated gene activation by PIAS1. Proc Natl Acad Sci USA 95(18):10626–10631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Shuai K (2006) Regulation of cytokine signaling pathways by PIAS proteins. Cell Res 16(2):196–202

    Article  CAS  PubMed  Google Scholar 

  134. Niu GJ, Xu JD, Yuan WJ, Sun JJ, Yang MC, He ZH, Zhao XF, Wang JX (2018) Protein inhibitor of activated STAT (PIAS) negatively regulates the JAK/STAT pathway by inhibiting STAT phosphorylation and translocation. Front Immunol 9:2392

    Article  PubMed  PubMed Central  Google Scholar 

  135. Kile BT, Alexander WS (2001) The suppressors of cytokine signalling (SOCS). Cell Mol Life Sci 58(11):1627–1635

    Article  CAS  PubMed  Google Scholar 

  136. Sasaki A, Yasukawa H, Shouda T, Kitamura T, Dikic I, Yoshimura A (2000) CIS3/SOCS-3 suppresses erythropoietin (EPO) signaling by binding the EPO receptor and JAK2. J Biol Chem 275(38):29338–29347

    Article  CAS  PubMed  Google Scholar 

  137. Ram PA, Waxman DJ (1999) SOCS/CIS protein inhibition of growth hormone-stimulated STAT5 signaling by multiple mechanisms. J Biol Chem 274(50):35553–35561

    Article  CAS  PubMed  Google Scholar 

  138. Yan D, Jin F, Lin Y (2020) lncRNA HAND2-AS1 inhibits liver cancer cell proliferation and migration by upregulating SOCS5 to inactivate the JAK-STAT pathway. Cancer Biother Radiopharm 35(2):143–152

    CAS  PubMed  Google Scholar 

  139. Luo M, Xu X, Liu X, Shen W, Yang L, Zhu Z, Weng S, He J, Zuo H (2022) The non-receptor protein tyrosine phosphatase PTPN6 mediates a positive regulatory approach from the interferon regulatory factor to the JAK/Stat pathway in Litopenaeus vannamei. Front Immunol 13:913955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Tanuma N, Shima H, Nakamura K, Kikuchi K (2001) Protein tyrosine phosphatase epsilonC selectively inhibits interleukin-6- and interleukin- 10-induced JAK-STAT signaling. Blood 98(10):3030–3034

    Article  CAS  PubMed  Google Scholar 

  141. Heinrich PC, Behrmann I, Haan S, Hermanns HM, Müller-Newen G, Schaper F (2003) Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 374(Pt 1):1–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Khan MGM, Ghosh A, Variya B, Santharam MA, Kandhi R, Ramanathan S, Ilangumaran S (2019) Hepatocyte growth control by SOCS1 and SOCS3. Cytokine 121:154733

    Article  CAS  PubMed  Google Scholar 

  143. Wang X, Huang XJ, Ihsan A, Liu ZY, Huang LL, Zhang HH, Zhang HF, Zhou W, Liu Q, Xue XJ et al (2011) Metabolites and JAK/STAT pathway were involved in the liver and spleen damage in male Wistar rats fed with mequindox. Toxicology 280(3):126–134

    Article  CAS  PubMed  Google Scholar 

  144. Rah B, Rather RA, Bhat GR, Baba AB, Mushtaq I, Farooq M, Yousuf T, Dar SB, Parveen S, Hassan R et al (2022) JAK/STAT signaling: molecular targets, therapeutic opportunities, and limitations of targeted inhibitions in solid malignancies. Front Pharmacol 13:821344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Darnell JE Jr (1997) STATs and gene regulation. Science 277(5332):1630–1635

    Article  CAS  PubMed  Google Scholar 

  146. Park H, Lee S, Lee J, Moon H, Ro SW (2023) Exploring the JAK/STAT signaling pathway in hepatocellular carcinoma: unraveling signaling complexity and therapeutic implications. Int J Mol Sci. https://doi.org/10.3390/ijms241813764

    Article  PubMed  PubMed Central  Google Scholar 

  147. Thomas SJ, Snowden JA, Zeidler MP, Danson SJ (2015) The role of JAK/STAT signalling in the pathogenesis, prognosis and treatment of solid tumours. Br J Cancer 113(3):365–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Shi SY, Luk CT, Schroer SA, Kim MJ, Dodington DW, Sivasubramaniyam T, Lin L, Cai EP, Lu SY, Wagner KU et al (2017) Janus kinase 2 (JAK2) dissociates hepatosteatosis from hepatocellular carcinoma in mice. J Biol Chem 292(9):3789–3799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Zakir U, Siddiqui NN, Naqvi FU, Khan R (2022) Aberrant STAT1 methylation as a non-invasive biomarker in blood of HCV induced hepatocellular carcinoma. Cancer Biomark 34(1):95–103

    Article  CAS  PubMed  Google Scholar 

  150. Erdogan F, Radu TB, Orlova A, Qadree AK, de Araujo ED, Israelian J, Valent P, Mustjoki SM, Herling M, Moriggl R et al (2022) JAK-STAT core cancer pathway: an integrative cancer interactome analysis. J Cell Mol Med 26(7):2049–2062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Zhao J, Qi YF, Yu YR (2021) STAT3: a key regulator in liver fibrosis. Ann Hepatol 21:100224

    Article  CAS  PubMed  Google Scholar 

  152. Constantinescu SN, Girardot M, Pecquet C (2008) Mining for JAK-STAT mutations in cancer. Trends Biochem Sci 33(3):122–131

    Article  CAS  PubMed  Google Scholar 

  153. Kan Z, Zheng H, Liu X, Li S, Barber TD, Gong Z, Gao H, Hao K, Willard MD, Xu J et al (2013) Whole-genome sequencing identifies recurrent mutations in hepatocellular carcinoma. Genome Res 23(9):1422–1433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Yang S, Luo C, Gu Q, Xu Q, Wang G, Sun H, Qian Z, Tan Y, Qin Y, Shen Y et al (2016) Activating JAK1 mutation may predict the sensitivity of JAK-STAT inhibition in hepatocellular carcinoma. Oncotarget 7(5):5461–5469

    Article  PubMed  Google Scholar 

  155. Pilati C, Amessou M, Bihl MP, Balabaud C, Nhieu JT, Paradis V, Nault JC, Izard T, Bioulac-Sage P, Couchy G et al (2011) Somatic mutations activating STAT3 in human inflammatory hepatocellular adenomas. J Exp Med 208(7):1359–1366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Pilati C, Zucman-Rossi J (2015) Mutations leading to constitutive active gp130/JAK1/STAT3 pathway. Cytokine Growth Factor Rev 26(5):499–506

    Article  CAS  PubMed  Google Scholar 

  157. Poussin K, Pilati C, Couchy G, Calderaro J, Bioulac-Sage P, Bacq Y, Paradis V, Leteurtre E, Sturm N, Ramos J et al (2013) Biochemical and functional analyses of gp130 mutants unveil JAK1 as a novel therapeutic target in human inflammatory hepatocellular adenoma. Oncoimmunology 2(12):e27090

    Article  PubMed  Google Scholar 

  158. He G, Yu GY, Temkin V, Ogata H, Kuntzen C, Sakurai T, Sieghart W, Peck-Radosavljevic M, Leffert HL, Karin M (2010) Hepatocyte IKKbeta/NF-kappaB inhibits tumor promotion and progression by preventing oxidative stress-driven STAT3 activation. Cancer Cell 17(3):286–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. He G, Karin M (2011) NF-κB and STAT3 - key players in liver inflammation and cancer. Cell Res 21(1):159–168

    Article  CAS  PubMed  Google Scholar 

  160. Subramaniam A, Shanmugam MK, Perumal E, Li F, Nachiyappan A, Dai X, Swamy SN, Ahn KS, Kumar AP, Tan BK et al (1835) (2013) Potential role of signal transducer and activator of transcription (STAT)3 signaling pathway in inflammation, survival, proliferation and invasion of hepatocellular carcinoma. Biochim Biophys Acta 1:46–60

    Google Scholar 

  161. Bromberg JF, Wrzeszczynska MH, Devgan G, Zhao Y, Pestell RG, Albanese C, Darnell JE (1999) Stat3 as an oncogene. Cell 98(3):295–303

    Article  CAS  PubMed  Google Scholar 

  162. Zhou Q, Jiang H, Zhang J, Yu W, Zhou Z, Huang P, Wang J, Xiao Z (2018) Uridine-cytidine kinase 2 promotes metastasis of hepatocellular carcinoma cells via the Stat3 pathway. Cancer Manag Res 10:6339–6355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Morath I, Hartmann TN, Orian-Rousseau V (2016) CD44: More than a mere stem cell marker. Int J Biochem Cell Biol 81(Pt A):166–173

    Article  CAS  PubMed  Google Scholar 

  164. Yan Y, Zuo X, Wei D (2015) concise review: emerging role of CD44 in cancer stem cells: a promising biomarker and therapeutic target. Stem Cells Transl Med 4(9):1033–1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Zöller M (2011) CD44: can a cancer-initiating cell profit from an abundantly expressed molecule? Nat Rev Cancer 11(4):254–267

    Article  PubMed  Google Scholar 

  166. Prochazka L, Tesarik R, Turanek J (2014) Regulation of alternative splicing of CD44 in cancer. Cell Signal 26(10):2234–2239

    Article  CAS  PubMed  Google Scholar 

  167. Zeng Y, Wodzenski D, Gao D, Shiraishi T, Terada N, Li Y, Vander Griend DJ, Luo J, Kong C, Getzenberg RH et al (2013) Stress-response protein RBM3 attenuates the stem-like properties of prostate cancer cells by interfering with CD44 variant splicing. Cancer Res 73(13):4123–4133

    Article  CAS  PubMed  Google Scholar 

  168. Williams K, Motiani K, Giridhar PV, Kasper S (2013) CD44 integrates signaling in normal stem cell, cancer stem cell and (pre)metastatic niches. Exp Biol Med (Maywood) 238(3):324–338

    Article  CAS  PubMed  Google Scholar 

  169. Xiong S, Wang R, Chen Q, Luo J, Wang J, Zhao Z, Li Y, Wang Y, Wang X, Cheng B (2018) Cancer-associated fibroblasts promote stem cell-like properties of hepatocellular carcinoma cells through IL-6/STAT3/Notch signaling. Am J Cancer Res 8(2):302–316

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Lee H, Herrmann A, Deng JH, Kujawski M, Niu G, Li Z, Forman S, Jove R, Pardoll DM, Yu H (2009) Persistently activated Stat3 maintains constitutive NF-kappaB activity in tumors. Cancer Cell 15(4):283–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Han SS, Yun H, Son DJ, Tompkins VS, Peng L, Chung ST, Kim JS, Park ES, Janz S (2010) NF-kappaB/STAT3/PI3K signaling crosstalk in iMyc E mu B lymphoma. Mol Cancer. https://doi.org/10.1186/1476-4598-9-97

    Article  PubMed  PubMed Central  Google Scholar 

  172. Lee H, Deng J, Xin H, Liu Y, Pardoll D, Yu H (2011) A requirement of STAT3 DNA binding precludes Th-1 immunostimulatory gene expression by NF-κB in tumors. Cancer Res 71(11):3772–3780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Li L, Xiao C, He K, Xiang G (2021) Circ_0072088 promotes progression of hepatocellular carcinoma by activating JAK2/STAT3 signaling pathway via miR-375. IUBMB Life 73(9):1153–1165

    Article  CAS  PubMed  Google Scholar 

  174. Mueller KM, Themanns M, Friedbichler K, Kornfeld JW, Esterbauer H, Tuckermann JP, Moriggl R (2012) Hepatic growth hormone and glucocorticoid receptor signaling in body growth, steatosis and metabolic liver cancer development. Mol Cell Endocrinol 361(1–2):1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Mueller KM, Kornfeld JW, Friedbichler K, Blaas L, Egger G, Esterbauer H, Hasselblatt P, Schlederer M, Haindl S, Wagner KU et al (2011) Impairment of hepatic growth hormone and glucocorticoid receptor signaling causes steatosis and hepatocellular carcinoma in mice. Hepatology 54(4):1398–1409

    Article  CAS  PubMed  Google Scholar 

  176. Paukku K, Silvennoinen O (2004) STATs as critical mediators of signal transduction and transcription: lessons learned from STAT5. Cytokine Growth Factor Rev 15(6):435–455

    Article  CAS  PubMed  Google Scholar 

  177. Kaltenecker D, Themanns M, Mueller KM, Spirk K, Golob-Schwarzl N, Friedbichler K, Kenner L, Haybaeck J, Moriggl R (2019) STAT5 deficiency in hepatocytes reduces diethylnitrosamine-induced liver tumorigenesis in mice. Cytokine 124:154573

    Article  CAS  PubMed  Google Scholar 

  178. Friedbichler K, Themanns M, Mueller KM, Schlederer M, Kornfeld JW, Terracciano LM, Kozlov AV, Haindl S, Kenner L, Kolbe T et al (2012) Growth-hormone-induced signal transducer and activator of transcription 5 signaling causes gigantism, inflammation, and premature death but protects mice from aggressive liver cancer. Hepatology 55(3):941–952

    Article  CAS  PubMed  Google Scholar 

  179. (2015) 2015 ACR/ARHP Annual Meeting Abstract Supplement. Arthritis Rheumatol 67 Suppl 10: 1–4046

  180. Li J, Liang L, Liu Y, Luo Y, Liang X, Luo D, Feng Z, Dang Y, Yang L, Chen G (2016) Clinicopathological significance of STAT4 in hepatocellular carcinoma and its effect on cell growth and apoptosis. Onco Targets Ther 9:1721–1734

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Wang G, Chen JH, Qiang Y, Wang DZ, Chen Z (2015) Decreased STAT4 indicates poor prognosis and enhanced cell proliferation in hepatocellular carcinoma. World J Gastroenterol 21(13):3983–3993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Wubetu GY, Utsunomiya T, Ishikawa D, Yamada S, Ikemoto T, Morine Y, Iwahashi S, Saito Y, Arakawa Y, Imura S et al (2014) High STAT4 expression is a better prognostic indicator in patients with hepatocellular carcinoma after hepatectomy. Ann Surg Oncol 21(Suppl 4):S721–S728

    Article  PubMed  Google Scholar 

  183. Wang Y, Qu A, Wang H (2015) Signal transducer and activator of transcription 4 in liver diseases. Int J Biol Sci 11(4):448–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Kim LH, Cheong HS, Namgoong S, Kim JO, Kim JH, Park BL, Cho SW, Park NH, Cheong JY, Koh I et al (2015) Replication of genome wide association studies on hepatocellular carcinoma susceptibility loci of STAT4 and HLA-DQ in a Korean population. Infect Genet Evol 33:72–76

    Article  CAS  PubMed  Google Scholar 

  185. Verhoeven Y, Tilborghs S, Jacobs J, De Waele J, Quatannens D, Deben C, Prenen H, Pauwels P, Trinh XB, Wouters A et al (2020) The potential and controversy of targeting STAT family members in cancer. Semin Cancer Biol 60:41–56

    Article  CAS  PubMed  Google Scholar 

  186. Hosui A, Klover P, Tatsumi T, Uemura A, Nagano H, Doki Y, Mori M, Hiramatsu N, Kanto T, Hennighausen L et al (2012) Suppression of signal transducers and activators of transcription 1 in hepatocellular carcinoma is associated with tumor progression. Int J Cancer 131(12):2774–2784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Testoni B, Schinzari V, Guerrieri F, Gerbal-Chaloin S, Blandino G, Levrero M (2011) p53-paralog DNp73 oncogene is repressed by IFNα/STAT2 through the recruitment of the Ezh2 polycomb group transcriptional repressor. Oncogene 30(23):2670–2678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Calvisi DF, Ladu S, Gorden A, Farina M, Conner EA, Lee JS, Factor VM, Thorgeirsson SS (2006) Ubiquitous activation of Ras and Jak/Stat pathways in human HCC. Gastroenterology 130(4):1117–1128

    Article  CAS  PubMed  Google Scholar 

  189. Yoshikawa H, Matsubara K, Qian GS, Jackson P, Groopman JD, Manning JE, Harris CC, Herman JG (2001) SOCS-1, a negative regulator of the JAK/STAT pathway, is silenced by methylation in human hepatocellular carcinoma and shows growth-suppression activity. Nat Genet 28(1):29–35

    Article  CAS  PubMed  Google Scholar 

  190. Niwa Y, Kanda H, Shikauchi Y, Saiura A, Matsubara K, Kitagawa T, Yamamoto J, Kubo T, Yoshikawa H (2005) Methylation silencing of SOCS-3 promotes cell growth and migration by enhancing JAK/STAT and FAK signalings in human hepatocellular carcinoma. Oncogene 24(42):6406–6417

    Article  CAS  PubMed  Google Scholar 

  191. Liu ZK, Li C, Zhang RY, Wei D, Shang YK, Yong YL, Kong LM, Zheng NS, Liu K, Lu M et al (2021) EYA2 suppresses the progression of hepatocellular carcinoma via SOCS3-mediated blockade of JAK/STAT signaling. Mol Cancer 20(1):79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Rah B, Farhat NM, Hamad M, Muhammad JS (2023) JAK/STAT signaling and cellular iron metabolism in hepatocellular carcinoma: therapeutic implications. Clin Exp Med 23(7):3147–3157

    Article  CAS  PubMed  Google Scholar 

  193. LaFave LM, Levine RL (2012) JAK2 the future: therapeutic strategies for JAK-dependent malignancies. Trends Pharmacol Sci 33(11):574–582

    Article  CAS  PubMed  Google Scholar 

  194. Seavey MM, Dobrzanski P (2012) The many faces of Janus kinase. Biochem Pharmacol 83(9):1136–1145

    Article  CAS  PubMed  Google Scholar 

  195. Roskoski R (2022) Janus kinase (JAK) inhibitors in the treatment of neoplastic and inflammatory disorders. Pharmacol Res 183:106362

    Article  CAS  PubMed  Google Scholar 

  196. Novelli L, Motta F, De Santis M, Ansari AA, Gershwin ME, Selmi C (2021) The JANUS of chronic inflammatory and autoimmune diseases onset during COVID-19—a systematic review of the literature. J Autoimmun 117:102592

    Article  CAS  PubMed  Google Scholar 

  197. Wang YH, Huang ML (2010) Organogenesis and tumorigenesis: insight from the JAK/STAT pathway in the drosophila eye. Dev Dyn 239(10):2522–2533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Yang L, Xue H, Sun Y, Zhang L, Xue F, Ge R (2020) CircularRNA-9119 protects hepatocellular carcinoma cells from apoptosis by intercepting miR-26a/JAK1/STAT3 signaling. Cell Death Dis 11(7):605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Wajant H, Pfizenmaier K, Scheurich P (2002) TNF-related apoptosis inducing ligand (TRAIL) and its receptors in tumor surveillance and cancer therapy. Apoptosis 7(5):449–459

    Article  CAS  PubMed  Google Scholar 

  200. Yang X, Thiele CJ (2003) Targeting the tumor necrosis factor-related apoptosis-inducing ligand path in neuroblastoma. Cancer Lett 197(1–2):137–143

    Article  CAS  PubMed  Google Scholar 

  201. Song K, Chen Y, Göke R, Wilmen A, Seidel C, Göke A, Hilliard B, Chen Y (2000) Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is an inhibitor of autoimmune inflammation and cell cycle progression. J Exp Med 191(7):1095–1104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Fiorucci G, Vannucchi S, Chiantore MV, Percario ZA, Affabris E, Romeo G (2005) TNF-related apoptosis-inducing ligand (TRAIL) as a pro-apoptotic signal transducer with cancer therapeutic potential. Curr Pharm Des 11(7):933–944

    Article  CAS  PubMed  Google Scholar 

  203. Rowinsky EK (2005) Targeted induction of apoptosis in cancer management: the emerging role of tumor necrosis factor-related apoptosis-inducing ligand receptor activating agents. J Clin Oncol 23(36):9394–9407

    Article  CAS  PubMed  Google Scholar 

  204. Wang S, El-Deiry WS (2003) TRAIL and apoptosis induction by TNF-family death receptors. Oncogene 22(53):8628–8633

    Article  CAS  PubMed  Google Scholar 

  205. Chinnaiyan AM, Prasad U, Shankar S, Hamstra DA, Shanaiah M, Chenevert TL, Ross BD, Rehemtulla A (2000) Combined effect of tumor necrosis factor-related apoptosis-inducing ligand and ionizing radiation in breast cancer therapy. Proc Natl Acad Sci USA 97(4):1754–1759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Kusaba M, Nakao K, Goto T, Nishimura D, Kawashimo H, Shibata H, Motoyoshi Y, Taura N, Ichikawa T, Hamasaki K et al (2007) Abrogation of constitutive STAT3 activity sensitizes human hepatoma cells to TRAIL-mediated apoptosis. J Hepatol 47(4):546–555

    Article  CAS  PubMed  Google Scholar 

  207. Ferrajoli A, Faderl S, Van Q, Koch P, Harris D, Liu Z, Hazan-Halevy I, Wang Y, Kantarjian HM, Priebe W et al (2007) WP1066 disrupts Janus kinase-2 and induces caspase-dependent apoptosis in acute myelogenous leukemia cells. Cancer Res 67(23):11291–11299

    Article  CAS  PubMed  Google Scholar 

  208. Tsujita Y, Horiguchi A, Tasaki S, Isono M, Asano T, Ito K, Asano T, Mayumi Y, Kushibiki T (2017) STAT3 inhibition by WP1066 suppresses the growth and invasiveness of bladder cancer cells. Oncol Rep 38(4):2197–2204

    Article  CAS  PubMed  Google Scholar 

  209. Yang NN, Yang JW, Ye Y, Huang J, Wang L, Wang Y, Su XT, Lin Y, Yu FT, Ma SM et al (2021) Electroacupuncture ameliorates intestinal inflammation by activating α7nAChR-mediated JAK2/STAT3 signaling pathway in postoperative ileus. Theranostics 11(9):4078–4089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Al-Fayoumi S, Hashiguchi T, Shirakata Y, Mascarenhas J, Singer JW (2018) Pilot study of the antifibrotic effects of the multikinase inhibitor pacritinib in a mouse model of liver fibrosis. J Exp Pharmacol 10:9–17

    Article  PubMed  PubMed Central  Google Scholar 

  211. Xu J, Zhang L, Li N, Dai J, Zhang R, Yao F, Zhou S, Wu Z, Zhou H, Zhou L et al (2023) Etomidate elicits anti-tumor capacity by disrupting the JAK2/STAT3 signaling pathway in hepatocellular carcinoma. Cancer Lett 552:215970

    Article  CAS  PubMed  Google Scholar 

  212. Hirano T, Ishihara K, Hibi M (2000) Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors. Oncogene 19(21):2548–2556

    Article  CAS  PubMed  Google Scholar 

  213. Bromberg J, Darnell JE Jr (2000) The role of STATs in transcriptional control and their impact on cellular function. Oncogene 19(21):2468–2473

    Article  CAS  PubMed  Google Scholar 

  214. Buettner R, Mora LB, Jove R (2002) Activated STAT signaling in human tumors provides novel molecular targets for therapeutic intervention. Clin Cancer Res 8(4):945–954

    CAS  PubMed  Google Scholar 

  215. Lee C, Cheung ST (2019) STAT3: an emerging therapeutic target for hepatocellular carcinoma. Cancers (Basel). https://doi.org/10.3390/cancers11111646

    Article  PubMed  PubMed Central  Google Scholar 

  216. Wang HQ, Man QW, Huo FY, Gao X, Lin H, Li SR, Wang J, Su FC, Cai L, Shi Y et al (2022) STAT3 pathway in cancers: Past, present, and future. MedComm (2020) 3(2):e124

    CAS  PubMed  Google Scholar 

  217. Yu H, Jove R (2004) The STATs of cancer–new molecular targets come of age. Nat Rev Cancer 4(2):97–105

    Article  CAS  PubMed  Google Scholar 

  218. Xu G, Zhu L, Wang Y, Shi Y, Gong A, Wu C (2017) Stattic enhances radiosensitivity and reduces radio-induced migration and invasion in HCC cell lines through an apoptosis pathway. Biomed Res Int 2017:1832494

    Article  PubMed  PubMed Central  Google Scholar 

  219. Qiu X, Zhou J, Xu H, Li Y, Ma S, Qiao H, Zeng K, Wang Q, Ouyang J, Liu Y et al (2023) Alcohol reshapes a liver premetastatic niche for cancer by extra- and intrahepatic crosstalk-mediated immune evasion. Mol Ther 31(9):2662–2680

    Article  CAS  PubMed  Google Scholar 

  220. Wang D, Zheng X, Fu B, Nian Z, Qian Y, Sun R, Tian Z, Wei H (2019) Hepatectomy promotes recurrence of liver cancer by enhancing IL-11-STAT3 signaling. EBioMedicine 46:119–132

    Article  PubMed  PubMed Central  Google Scholar 

  221. Han Z, Liu S, Lin H, Trivett AL, Hannifin S, Yang D, Oppenheim JJ (2019) Inhibition of murine hepatoma tumor growth by cryptotanshinone involves TLR7-dependent activation of macrophages and induction of adaptive antitumor immune defenses. Cancer Immunol Immunother 68(7):1073–1085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Ren F, Yang Y, Wu K, Zhao T, Shi Y, Song M, Li J (2021) The effects of dandelion polysaccharides on iron metabolism by regulating hepcidin via JAK/STAT signaling pathway. Oxid Med Cell Longev 2021:7184760

    Article  PubMed  PubMed Central  Google Scholar 

  223. Dai X, Ahn KS, Kim C, Siveen KS, Ong TH, Shanmugam MK, Li F, Shi J, Kumar AP, Wang LZ et al (2015) Ascochlorin, an isoprenoid antibiotic inhibits growth and invasion of hepatocellular carcinoma by targeting STAT3 signaling cascade through the induction of PIAS3. Mol Oncol 9(4):818–833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Reilley MJ, McCoon P, Cook C, Lyne P, Kurzrock R, Kim Y, Woessner R, Younes A, Nemunaitis J, Fowler N et al (2018) STAT3 antisense oligonucleotide AZD9150 in a subset of patients with heavily pretreated lymphoma: results of a phase 1b trial. J Immunother Cancer 6(1):119

    Article  PubMed  PubMed Central  Google Scholar 

  225. Hong D, Kurzrock R, Kim Y, Woessner R, Younes A, Nemunaitis J, Fowler N, Zhou T, Schmidt J, Jo M et al (2015) AZD9150, a next-generation antisense oligonucleotide inhibitor of STAT3 with early evidence of clinical activity in lymphoma and lung cancer. Sci Transl Med 7(314):314ra185

    Article  PubMed  PubMed Central  Google Scholar 

  226. Cheng J, Jin H, Hou X, Lv J, Gao X, Zheng G (2017) Disturbed tryptophan metabolism correlating to progression and metastasis of esophageal squamous cell carcinoma. Biochem Biophys Res Commun 486(3):781–787

    Article  CAS  PubMed  Google Scholar 

  227. Okusaka T, Morimoto M, Eguchi Y, Nakamura S, Iino S, Kageyama R (2023) A phase I study to investigate the safety, tolerability and pharmacokinetics of napabucasin combined with sorafenib in Japanese patients with unresectable hepatocellular carcinoma. Drugs R D 23(2):99–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Chen Y, Chen J, Guo D, Yang P, Chen S, Zhao C, Xu C, Zhang Q, Lin C, Zhong S et al (2022) Tryptophan metabolites as biomarkers for esophageal cancer susceptibility, metastasis, and prognosis. Front Oncol 12:800291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Sun H, Ma D, Cheng Y, Li J, Zhang W, Jiang T, Li Z, Li X, Meng H (2023) The JAK-STAT signaling pathway in epilepsy. Curr Neuropharmacol 21(10):2049–2069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Gallage S, García-Beccaria M, Szydlowska M, Rahbari M, Mohr R, Tacke F, Heikenwalder M (2021) The therapeutic landscape of hepatocellular carcinoma. Med 2(5):505–552

    Article  CAS  PubMed  Google Scholar 

  231. Mandlik DS, Mandlik SK, Choudhary HB (2023) Immunotherapy for hepatocellular carcinoma: current status and future perspectives. World J Gastroenterol 29(6):1054–1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Giraud J, Chalopin D, Blanc JF, Saleh M (2021) Hepatocellular carcinoma immune landscape and the potential of immunotherapies. Front Immunol 12:655697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by grants from general scientific research project of Zhejiang Provincial Department of Education (Y202146219), Zhejiang Provincial Education Science Planning General Planning project (2023SCG250), the Postgraduate Education Research Project of Zhejiang University (20220326) and Zhejiang University Medical School Education Reform Project (42).

Author information

Authors and Affiliations

Authors

Contributions

J.J. and Q.C. designed the work, J.J. and X.Z. wrote this manuscript, and made figures. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to JunJun Jia or Qingfei Chu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, J., Zhou, X. & Chu, Q. Mechanisms and therapeutic prospect of the JAK-STAT signaling pathway in liver cancer. Mol Cell Biochem (2024). https://doi.org/10.1007/s11010-024-04983-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11010-024-04983-5

Keywords

Navigation