Skip to main content

Advertisement

Log in

JAK/STAT signaling and cellular iron metabolism in hepatocellular carcinoma: therapeutic implications

  • Review
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Iron metabolism plays a crucial role in the development and progression of hepatocellular carcinoma (HCC), the most common type of primary liver cancer. Iron is an essential micronutrient that is involved in many physiological processes, including oxygen transport, DNA synthesis, and cellular growth and differentiation. However, excessive iron accumulation in the liver has been linked to oxidative stress, inflammation, and DNA damage, which can increase the risk of HCC. Studies have shown that iron overload is common in patients with HCC and that it is associated with a poor prognosis and reduced survival rates. Various iron metabolism-related proteins and signaling pathways such as the JAK/STAT pathway are dysregulated in HCC. Moreover, reduced hepcidin expression was reported to promote HCC in a JAK/STAT pathway-dependent manner. Therefore, it is important to understand the crosstalk between iron metabolism and the JAK/STAT pathway to prevent or treat iron overload in HCC. Iron chelators can bind to iron and remove it from the body, but its effect on JAK/STAT pathway is unclear. Also, HCC can be targeted by using the JAK/STAT pathway inhibitors, but their effect on hepatic iron metabolism is not known. In this review, for the first time, we focus on the role of the JAK/STAT signaling pathway in regulating cellular iron metabolism and its association with the development of HCC. We also discuss novel pharmacological agents and their therapeutic potential in manipulating iron metabolism and JAK/STAT signaling in HCC.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Torti SV, Manz DH, Paul BT, Blanchette-Farra N, Torti FM. Iron and cancer. Ann Rev Nutrition; 2018;38:97.

  2. Ogunwobi OO, Harricharran T, Huaman J, et al. Mechanisms of hepatocellular carcinoma progression. World J Gastroenterol. 2019;25:2279.

  3. Paganoni R, Lechel A, Vujic Spasic M. Iron at the interface of hepatocellular carcinoma. Int J Molecular Sci. 2021;22:4097.

  4. Llovet JM, Montal R, Sia D, Finn RS. Molecular therapies and precision medicine for hepatocellular carcinoma. Nat Rev Clin Oncol. 2018;15:599–616.

    PubMed  Google Scholar 

  5. Ganasen M, Togashi H, Takeda H, et al. Structural basis for promotion of duodenal iron absorption by enteric ferric reductase with ascorbate. Commun Biol. 2018;1:1–12.

    CAS  Google Scholar 

  6. Kawabata H. Transferrin and transferrin receptors update. Free Radical Biol Med. 2019;133:46–54.

    CAS  Google Scholar 

  7. Moore KS, von Lindern M. RNA binding proteins and regulation of mRNA translation in erythropoiesis. Front Physiol; 2018;9:910.

  8. Anderson GJ, Frazer DM. Current understanding of iron homeostasis. Am J Clin Nutr. 2017;106:1559S-1566S.

    PubMed Central  PubMed  Google Scholar 

  9. Katsarou A, Pantopoulos K. Basics and principles of cellular and systemic iron homeostasis. Molec Aspects Med. 2020;75:100866.

  10. Petronek MS, Spitz DR, Buettner GR, Allen BG. Linking cancer metabolic dysfunction and genetic instability through the lens of iron metabolism. Cancers. 2019;11:1077.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Kim Y-J, Park W-R, Choi B, Choi H-S, Kim D-K. Epigallocatechin-3-Gallate Suppresses BMP-6-Mediated SMAD1/5/8 Transactivation of Hepcidin Gene by Inducing SMILE in Hepatocytes. Antioxidants. 2021;10:1590.

  12. Vogt A-CS, Arsiwala T, Mohsen M, Vogel M, Manolova V, Bachmann MF. On iron metabolism and its regulation. Int J Molec Sci. 2021;22:4591.

  13. Wang P, Dai X, Jiang W, Li Y, Wei W. RBR E3 ubiquitin ligases in tumorigenesis. Semin Cancer Biol. 2020. p. 131–44.

  14. Ye L, Jin F, Kumar SK, Dai Y. The mechanisms and therapeutic targets of ferroptosis in cancer. Expert Opin Ther Targets. 2021;25:965–86.

    CAS  PubMed  Google Scholar 

  15. Zhao Y, Dong Q, Li J, et al. Targeting cancer stem cells and their niche: perspectives for future therapeutic targets and strategies. Semin Cancer Biol. 2018. p. 139–55.

  16. Muhammad JS, Bajbouj K, Shafarin J, Hamad M. Estrogen-induced epigenetic silencing of FTH1 and TFRC genes reduces liver cancer cell growth and survival. Epigenetics. 2020;15:1302–18.

    PubMed Central  PubMed  Google Scholar 

  17. Greene CJ, Attwood K, Sharma NJ, et al. Transferrin receptor 1 upregulation in primary tumor and downregulation in benign kidney is associated with progression and mortality in renal cell carcinoma patients. Oncotarget Impact J. 2017;8: 107052.

    Google Scholar 

  18. Cui C, Cheng X, Yan L, et al. Downregulation of TfR1 promotes progression of colorectal cancer via the JAK/STAT pathway. Cancer Manage Res. 2019;11:6323.

  19. Xiao C, Fu X, Wang Y, et al. Transferrin receptor regulates malignancies and the stemness of hepatocellular carcinoma-derived cancer stem-like cells by affecting iron accumulation. PloS one. 2020;15:e0243812.

  20. Hentze MW, Muckenthaler MU, Galy B, Camaschella C. Two to tango: regulation of Mammalian iron metabolism. Cell. 2010;142:24–38.

    CAS  PubMed  Google Scholar 

  21. Manz DH, Blanchette NL, Paul BT, Torti FM, Torti SV. Iron and cancer: recent insights. Ann N Y Acad Sci. 2016;1368:149–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Aiyama T, Orimo T, Yokoo H, et al. Adenomatous polyposis coli-binding protein end-binding 1 promotes hepatocellular carcinoma growth and metastasis. PloS one. 2020;15:e0239462.

  23. L Ronco A, A Storz M, Martínez-López W, M Calderón J, Golomar W. Dietary Acid load and bladder cancer risk: An epidemiologic case-control study. Multidisciplinary Cancer Invest. 2022;6:1–12.

  24. Joachim JH, Mehta KJ. Hepcidin in hepatocellular carcinoma. Br J Cancer. 2022;pp 1–8.

  25. Guo W, Zhang S, Chen Y, et al. An important role of the hepcidin–ferroportin signaling in affecting tumor growth and metastasis. Acta Biochim Biophy Sinica. 2015;47:703–15.

  26. Jung M, Mertens C, Tomat E, Brüne B. Iron as a central player and promising target in cancer progression. Int J Molec Sci. 2019;20:273.

  27. Mackenzie EL, Iwasaki K, Tsuji Y. Intracellular iron transport and storage: from molecular mechanisms to health implications. Antioxid Redox Signal. 2008;10:997–1030.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Alkhateeb AA, Connor JR. Nuclear ferritin: a new role for ferritin in cell biology. Biochim Biophys Acta (BBA)-General Subjects. 2010;1800:793–7.

  29. Paul BT, Manz DH, Torti FM, Torti SV. Mitochondria and Iron: current questions. Expert Rev Hematol. 2017;10:65–79.

    CAS  PubMed  Google Scholar 

  30. Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 2021;22:266–82.

    PubMed Central  PubMed  Google Scholar 

  31. Hsu MY, Mina E, Roetto A, Porporato PE. Iron: an essential element of cancer metabolism. Cells. 2020;9:2591.

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Johnson PS, Foley JF, Kessinger A, Lemon HM. Small cell undifferentiated bronchogenic carcinoma: Current status with emphasis upon the role of chemotherapy. J Surg Oncol. 1978;10:549–57.

    CAS  PubMed  Google Scholar 

  33. Bian Z, Hann H-W, Ye Z, et al. Ferritin level prospectively predicts hepatocarcinogenesis in patients with chronic hepatitis B virus infection. Oncol Lett. 2018;16:3499–508.

    PubMed Central  PubMed  Google Scholar 

  34. Vela D. Hepcidin, an emerging and important player in brain iron homeostasis. J Transl Med. 2018;16:1–18.

    Google Scholar 

  35. Maegdefrau U, Arndt S, Kivorski G, Hellerbrand C, Bosserhoff A-K. Downregulation of hemojuvelin prevents inhibitory effects of bone morphogenetic proteins on iron metabolism in hepatocellular carcinoma. Lab Invest. 2011;91:1615–23.

    CAS  PubMed  Google Scholar 

  36. Renassia C, Peyssonnaux C. New insights into the links between hypoxia and iron homeostasis. Curr Opin Hematol. 2019;26:125.

  37. Hino K, Yanatori I, Hara Y, Nishina S. Iron and liver cancer: An inseparable connection. FEBS J. 2022;289:7810–29.

  38. Kessler SM, Laggai S, Kiemer AK, Barghash A, Helms V. Hepatic hepcidin expression is decreased in cirrhosis and HCC. J Hepatol. 2015;62:977–9.

    CAS  PubMed  Google Scholar 

  39. Rana S, Prabhakar N. Iron disorders and hepcidin. Clin Chim Acta. 2021;523:454–68.

    CAS  PubMed  Google Scholar 

  40. Hawula ZJ, Wallace DF, Subramaniam VN, Rishi G. Therapeutic advances in regulating the hepcidin/ferroportin axis. Pharmaceuticals. 2019;12:170.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Bryan S, Dormandy E, Roberts T, et al. Screening for sickle cell and thalassaemia in primary care: a cost-effectiveness study. Br J Gen Pract. 2011;61:e620–7.

    PubMed Central  PubMed  Google Scholar 

  42. Ganz T, Nemeth E. Iron homeostasis in host defence and inflammation. Nat Rev Immunol. 2015;15:500–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Morales M, Xue X. Targeting iron metabolism in cancer therapy. Theranostics. 2021;11:8412.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Huang S-N, Ruan H-Z, Chen MY-J, Zhou G, Qian ZM. Aspirin increases ferroportin 1 expression by inhibiting hepcidin via the JAK/STAT3 pathway in interleukin 6-treated PC-12 cells. Neurosci. Lett. 2018;662:1–5.

  45. Shibabaw T, Teferi B, Molla MD, Ayelign B. Inflammation mediated hepcidin-ferroportin pathway and its therapeutic window in breast cancer. Breast Cancer: Targets Therapy; 2020;12:165.

  46. Liu Z-K, Li C, Zhang R-Y, et al. EYA2 suppresses the progression of hepatocellular carcinoma via SOCS3-mediated blockade of JAK/STAT signaling. Mol Cancer. 2021;20:1–18.

    CAS  Google Scholar 

  47. Ward RJ, Dexter DT, Crichton RR. Iron, neuroinflammation and neurodegeneration. Int J Molec Sci. 2022;23:7267.

  48. Miller KJ, Asim M. Unravelling the role of kinases that underpin androgen signalling in prostate cancer. Cells. 2022;11:952.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Mahmoud AM, Sayed AM, Ahmed OS, Abdel-Daim MM, Hassanein EH. The role of flavonoids in inhibiting IL-6 and inflammatory arthritis. Curr Topics Med Chem. 2022;

  50. Sharma N, Butterworth J, Cooper BT, Tselepis C, Iqbal TH. The emerging role of the liver in iron metabolism. Official J Am College of Gastroenterol| ACG; 2005;100:201–6.

  51. Yin M, Liu Y, Chen Y. Iron metabolism: an emerging therapeutic target underlying the anti-cancer effect of quercetin. Free Radical Res. 2021;55:296–303.

    Google Scholar 

  52. Gao AH, Hu YR, Zhu WP. IFN-γ inhibits ovarian cancer progression via SOCS1/JAK/STAT signaling pathway. Clin Transl Oncol. 2022;24:57–65.

    CAS  PubMed  Google Scholar 

  53. Masclef L, Ahmed O, Estavoyer B, et al. Roles and mechanisms of BAP1 deubiquitinase in tumor suppression. Cell Death Differ. 2021;28:606–25.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Recalcati S, Correnti M, Gammella E, Raggi C, Invernizzi P, Cairo G. Iron metabolism in liver cancer stem cells. Front Oncol. 2019;9:149.

  55. Xu Z, Feng J, Li Y, et al. The vicious cycle between ferritinophagy and ROS production triggered EMT inhibition of gastric cancer cells was through p53/AKT/mTor pathway. Chemico-Biol Interact. 2020;328:109196.

  56. Sun Y, Li C, Feng J, et al. Ferritinophagic flux activation in CT26 cells contributed to EMT inhibition induced by a novel iron chelator, DpdtpA. Oxidative Med Cellular Longevity. 2019;2019:8753413.

  57. Rizzollo F, More S, Vangheluwe P, Agostinis P. The lysosome as a master regulator of iron metabolism. Trends Biochem Sci. 2021;46:960–75.

    CAS  PubMed  Google Scholar 

  58. Costa da Silva M, Breckwoldt MO, Vinchi F, et al. Iron induces anti-tumor activity in tumor-associated macrophages. Front Immunol. 2017;8:1479.

  59. Zanganeh S, Hutter G, Spitler R, et al. Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat Nanotechnol. 2016;11:986–94.

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Fanelli M, Formica M, Fusi V, Giorgi L, Micheloni M, Paoli P. New trends in platinum and palladium complexes as antineoplastic agents. Coord Chem Rev. 2016;310:41–79.

    CAS  Google Scholar 

  61. Bogdan AR, Miyazawa M, Hashimoto K, Tsuji Y. Regulators of iron homeostasis: new players in metabolism, cell death, and disease. Trends Biochem Sci. 2016;41:274–86.

    CAS  PubMed  Google Scholar 

  62. Saeki I, Yamamoto N, Yamasaki T, et al. Effects of an oral iron chelator, deferasirox, on advanced hepatocellular carcinoma. World J Gastroenterol. 2016;22:8967.

  63. Lee J-C, Chiang K-C, Feng T-H, et al. The iron chelator, Dp44mT, effectively inhibits human oral squamous cell carcinoma cell growth in vitro and in vivo. Int J Molec Sci. 2016;17:1435.

  64. Asperti M, Cantamessa L, Ghidinelli S, et al. The antitumor didox acts as an iron chelator in hepatocellular carcinoma cells. Pharmaceuticals. 2019;12:129.

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Tang D, Chen X, Kang R, Kroemer G. Ferroptosis: molecular mechanisms and health implications. Cell Res. 2021;31:107–25.

    CAS  PubMed  Google Scholar 

  66. Stoyanovsky DA, Tyurina YY, Shrivastava I, et al. Iron catalysis of lipid peroxidation in ferroptosis: regulated enzymatic or random free radical reaction? Free Radical Biol Med. 2019;133:153–61.

    CAS  Google Scholar 

  67. Li J, Cao F, Yin H, et al. Ferroptosis: past, present and future. Cell Death Dis. 2020;11:1–13.

    PubMed Central  PubMed  Google Scholar 

  68. Bebber CM, Müller F, Prieto Clemente L, Weber J, von Karstedt S. Ferroptosis in cancer cell biology. Cancer. 2020;12:164.

    CAS  Google Scholar 

  69. Xu T, Ding W, Ji X, et al. Molecular mechanisms of ferroptosis and its role in cancer therapy. J Cell Mol Med. 2019;23:4900–12.

    PubMed Central  PubMed  Google Scholar 

  70. Su Y, Zhao B, Zhou L, et al. Ferroptosis, a novel pharmacological mechanism of anti-cancer drugs. Cancer Lett. 2020;483:127–36.

    CAS  PubMed  Google Scholar 

  71. Chen X, Kang R, Kroemer G, Tang D. Broadening horizons: the role of ferroptosis in cancer. Nat Rev Clin Oncol. 2021;18:280–96.

    CAS  PubMed  Google Scholar 

  72. Florean C, Song S, Dicato M, Diederich M. Redox biology of regulated cell death in cancer: A focus on necroptosis and ferroptosis. Free Radical Biol Med. 2019;134:177–89.

    CAS  Google Scholar 

  73. Brown RA, Richardson KL, Kabir TD, Trinder D, Ganss R, Leedman PJ. Altered iron metabolism and impact in cancer biology, metastasis, and immunology. Front Oncol. 2020;10:476.

  74. Hangauer MJ, Viswanathan VS, Ryan MJ, et al. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature. 2017;551:247–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Wang W, Green M, Choi JE, et al. CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. Nature. 2019;569:270–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Eling N, Reuter L, Hazin J, Hamacher-Brady A, Brady NR. Identification of artesunate as a specific activator of ferroptosis in pancreatic cancer cells. Oncoscience. Impact J. 2015;2:517.

  77. Basit F, Van Oppen LM, Schöckel L, et al. Mitochondrial complex I inhibition triggers a mitophagy-dependent ROS increase leading to necroptosis and ferroptosis in melanoma cells. Cell Death Dis. 2017;8:e2716–e2716.

    PubMed Central  PubMed  Google Scholar 

  78. Cramer SL, Saha A, Liu J, et al. Systemic depletion of L-cyst (e) ine with cyst (e) inase increases reactive oxygen species and suppresses tumor growth. Nat Med. 2017;23:120–7.

    CAS  PubMed  Google Scholar 

  79. Gaschler MM, Hu F, Feng H, Linkermann A, Min W, Stockwell BR. Determination of the subcellular localization and mechanism of action of ferrostatins in suppressing ferroptosis. ACS Chem Biol. 2018;13:1013–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Zhang Y, Tan H, Daniels JD, et al. Imidazole ketone erastin induces ferroptosis and slows tumor growth in a mouse lymphoma model. Cell Chem Biol. 2019;26:623–633. e9.

  81. Galluzzi L, Vitale I, Aaronson SA, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018;25:486–541.

    PubMed Central  PubMed  Google Scholar 

  82. Viswanathan VS, Ryan MJ, Dhruv HD, et al. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature. 2017;547:453–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Yu H, Yang C, Jian L, et al. Sulfasalazine-induced ferroptosis in breast cancer cells is reduced by the inhibitory effect of estrogen receptor on the transferrin receptor. Oncol Rep. 2019;42:826–38.

    PubMed  Google Scholar 

  84. Hassannia B, Wiernicki B, Ingold I, et al. Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma. J Clin Investig. 2018;128:3341–55.

    PubMed Central  PubMed  Google Scholar 

  85. Vyoral D, Petrak J. Therapeutic potential of hepcidin—the master regulator of iron metabolism. Pharmacol Res. 2017;115:242–54.

    CAS  PubMed  Google Scholar 

  86. Sangkhae V, Nemeth E. Regulation of the iron homeostatic hormone hepcidin. Adv Nutr. 2017;8:126–36.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Sagar P, Angmo S, Sandhir R, Rishi V, Yadav H, Singhal NK. Effect of hepcidin antagonists on anemia during inflammatory disorders. Pharmacol Therapeutics. 2021;226:107877.

  88. Katsarou A, Pantopoulos K. Hepcidin therapeutics. Pharmaceuticals. 2018;11:127.

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Li S, Tan HY, Wang N, Cheung F, Hong M, Feng Y. The potential and action mechanism of polyphenols in the treatment of liver diseases. Oxidative Med Cellular Longevity; 2018;2018.

  90. Ren Y, Li S, Song Z, Luo Q, Zhang Y, Wang H. The regulatory roles of polysaccharides and ferroptosis-related phytochemicals in liver diseases. Nutrients. 2022;14:2303.

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Zhou Q, Jiang H, Zhang J, et al. Uridine-cytidine kinase 2 promotes metastasis of hepatocellular carcinoma cells via the Stat3 pathway. Cancer Manage Res. 2018;10:6339.

  92. Huynh J, Chand A, Gough D, Ernst M. Therapeutically exploiting STAT3 activity in cancer—using tissue repair as a road map. Nat Rev Cancer. 2019;19:82–96.

    CAS  PubMed  Google Scholar 

  93. Rah B, Rather RA, Bhat GR, et al. JAK/STAT signaling: Molecular targets, therapeutic opportunities, and limitations of targeted inhibitions in solid malignancies. Front Pharmacol. 2022;13.

  94. Jensen KV, Cseh O, Aman A, Weiss S, Luchman HA. The JAK2/STAT3 inhibitor pacritinib effectively inhibits patient-derived GBM brain tumor initiating cells in vitro and when used in combination with temozolomide increases survival in an orthotopic xenograft model. PloS one; 2017;12:e0189670.

  95. Mascarenhas J, Hoffman R, Talpaz M, et al. Pacritinib vs best available therapy, including ruxolitinib, in patients with myelofibrosis: a randomized clinical trial. JAMA Oncol Am Med Assoc. 2018;4:652–9.

    Google Scholar 

  96. Bujanda L, Rodríguez-González A, Sarasqueta C, et al. Effect of pravastatin on the survival of patients with advanced gastric cancer. Oncotarget. Impact J. 2016;7:4379.

  97. Hin Tang JJ, Hao Thng DK, Lim JJ, Toh TB. JAK/STAT signaling in hepatocellular carcinoma. Hepatic oncology. Future Med. 2020;7:HEP18.

  98. Okusaka T, Ueno H, Ikeda M, et al. Phase 1 and pharmacological trial of OPB-31121, a signal transducer and activator of transcription-3 inhibitor, in patients with advanced hepatocellular carcinoma. Hepatol Res. 2015;45:1283–91.

    CAS  PubMed  Google Scholar 

  99. Li Y, Han Q, Zhao H, Guo Q, Zhang J. Napabucasin reduces cancer stem cell characteristics in hepatocellular carcinoma. Front Pharmacol. 2020;11: 597520.

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Lee C, Cheung ST. STAT3: An emerging therapeutic target for hepatocellular carcinoma. Cancers. 2019;11:1646.

Download references

Acknowledgements

Not applicable.

Funding

JSM is funded by King Hussein Cancer Foundation, Jordan (2022-KHA-001), and the Research Institute for Medical and Health Sciences, University of Sharjah (Project No. 22010901118).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization was contributed by JSM, and BR; methodology was contributed by BR; formal analysis was contributed by BR; investigation was contributed by BR, and NMF; data curation was contributed by BR; writing—original draft preparation, was contributed by BR; writing—review and editing, was contributed by JSM, MH, and BR; supervision was contributed by JSM and MH. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Mawieh Hamad or Jibran Sualeh Muhammad.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rah, B., Farhat, N.M., Hamad, M. et al. JAK/STAT signaling and cellular iron metabolism in hepatocellular carcinoma: therapeutic implications. Clin Exp Med 23, 3147–3157 (2023). https://doi.org/10.1007/s10238-023-01047-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-023-01047-8

Keywords

Navigation