Skip to main content
Log in

Intermittent fasting shifts the diurnal transcriptome atlas of transcription factors

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Intermittent fasting remains a safe and effective strategy to ameliorate various age-related diseases, but its specific mechanisms are not fully understood. Considering that transcription factors (TFs) determine the response to environmental signals, here, we profiled the diurnal expression of 600 samples across four metabolic tissues sampled every 4 over 24 h from mice placed on five different feeding regimens to provide an atlas of TFs in biological space, time, and feeding regimen. Results showed that 1218 TFs exhibited tissue-specific and temporal expression profiles in ad libitum mice, of which 974 displayed significant oscillations at least in one tissue. Intermittent fasting triggered more than 90% (1161 in 1234) of TFs to oscillate somewhere in the body and repartitioned their tissue-specific expression. A single round of fasting generally promoted TF expression, especially in skeletal muscle and adipose tissues, while intermittent fasting mainly suppressed TF expression. Intermittent fasting down-regulated aging pathway and upregulated the pathway responsible for the inhibition of mammalian target of rapamycin (mTOR). Intermittent fasting shifts the diurnal transcriptome atlas of TFs, and mTOR inhibition may orchestrate intermittent fasting-induced health improvements. This atlas offers a reference and resource to understand how TFs and intermittent fasting may contribute to diurnal rhythm oscillation and bring about specific health benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The accession number for the sequences reported in this paper is GEO: GSE154797 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE154797). Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Guolin Li (hnsdlgl@hunnu.edu.cn).

Abbreviations

AL:

Ad libitum

AF:

Acute fasting

AR:

Refeeding after acute fasting

BAT:

Brown adipose tissue

Bmal1 :

Brain and muscle ARNT-like 1

EODF:

Every-other-day fasting

EODR:

Every-other-day refeeding

mTOR:

Mammalian target of rapamycin

PAGE:

Parametric analysis of gene set enrichment

Rorc :

RAR-related orphan receptor C

TFs:

Transcription factors

TSS:

Tissue specificity scores

WAT:

White adipose tissue

ZT:

Zeitgeber time

References

  1. Fontana L, Partridge L (2015) Promoting health and longevity through diet: from model organisms to humans. Cell 161:106–118. https://doi.org/10.1016/j.cell.2015.02.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. de Cabo R, Mattson MP (2019) Effects of intermittent fasting on health, aging, and disease. N Engl J Med 381:2541–2551. https://doi.org/10.1056/NEJMra1905136

    Article  PubMed  Google Scholar 

  3. Stekovic S, Hofer SJ, Tripolt N, Aon MA, Royer P, Pein L, Stadler JT, Pendl T, Prietl B, Url J, Schroeder S, Tadic J, Eisenberg T, Magnes C, Stumpe M, Zuegner E, Bordag N, Riedl R, Schmidt A, Kolesnik E, Verheyen N, Springer A, Madl T, Sinner F, de Cabo R, Kroemer G, Obermayer-Pietsch B, Dengjel J, Sourij H, Pieber TR, Madeo F (2019) Alternate day fasting improves physiological and molecular markers of aging in healthy, non-obese humans. Cell Metab 30:462-476.e6. https://doi.org/10.1016/j.cmet.2019.07.016

    Article  CAS  PubMed  Google Scholar 

  4. Catterson JH, Khericha M, Dyson MC, Vincent AJ, Callard R, Haveron SM, Rajasingam A, Ahmad M, Partridge L (2018) Short-term, intermittent fasting induces long-lasting gut health and TOR-independent lifespan extension. Curr Biol 28:1714-1724 e4. https://doi.org/10.1016/j.cub.2018.04.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Honjoh S, Yamamoto T, Uno M, Nishida E (2009) Signalling through RHEB-1 mediates intermittent fasting-induced longevity in C. elegans. Nature 457:726–730. https://doi.org/10.1038/nature07583

    Article  CAS  PubMed  Google Scholar 

  6. Xie K, Neff F, Markert A, Rozman J, Aguilar-Pimentel JA, Amarie OV, Becker L, Brommage R, Garrett L, Henzel KS, Holter SM, Janik D, Lehmann I, Moreth K, Pearson BL, Racz I, Rathkolb B, Ryan DP, Schroder S, Treise I, Bekeredjian R, Busch DH, Graw J, Ehninger G, Klingenspor M, Klopstock T, Ollert M, Sandholzer M, Schmidt-Weber C, Weiergraber M, Wolf E, Wurst W, Zimmer A, Gailus-Durner V, Fuchs H, Hrabe de Angelis M, Ehninger D (2017) Every-other-day feeding extends lifespan but fails to delay many symptoms of aging in mice. Nat Commun 8:155. https://doi.org/10.1038/s41467-017-00178-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Longo VD, Mattson MP (2014) Fasting: molecular mechanisms and clinical applications. Cell Metab 19:181–192. https://doi.org/10.1016/j.cmet.2013.12.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chaix A, Lin T, Le HD, Chang MW, Panda S (2019) Time-restricted feeding prevents obesity and metabolic syndrome in mice lacking a circadian clock. Cell Metab 29:303-319.e4. https://doi.org/10.1016/j.cmet.2018.08.004

    Article  CAS  PubMed  Google Scholar 

  9. Longo VD, Panda S (2016) Fasting, circadian rhythms, and time-restricted feeding in healthy lifespan. Cell Metab 23:1048–1059. https://doi.org/10.1016/j.cmet.2016.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kinouchi K, Magnan C, Ceglia N, Liu Y, Cervantes M, Pastore N, Huynh T, Ballabio A, Baldi P, Masri S, Sassone-Corsi P (2018) Fasting imparts a switch to alternative daily pathways in liver and muscle. Cell Rep 25:3299-3314 e6. https://doi.org/10.1016/j.celrep.2018.11.077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Anson RM, Guo Z, de Cabo R, Iyun T, Rios M, Hagepanos A, Ingram DK, Lane MA, Mattson MP (2003) Intermittent fasting dissociates beneficial effects of dietary restriction on glucose metabolism and neuronal resistance to injury from calorie intake. Proc Natl Acad Sci USA 100:6216–6220. https://doi.org/10.1073/pnas.1035720100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Martinez-Lopez N, Tarabra E, Toledo M, Garcia-Macia M, Sahu S, Coletto L, Batista-Gonzalez A, Barzilai N, Pessin JE, Schwartz GJ, Kersten S, Singh R (2017) System-wide benefits of intermeal fasting by autophagy. Cell Metab 26:856-871 e5. https://doi.org/10.1016/j.cmet.2017.09.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wei F, Gong L, Lu S, Zhou Y, Liu L, Duan Z, Xiang R, Gonzalez FJ, Li G (2022) Circadian transcriptional pathway atlas highlights a proteasome switch in intermittent fasting. Cell Rep 41:111547. https://doi.org/10.1016/j.celrep.2022.111547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mihaylova MM, Cheng CW, Cao AQ, Tripathi S, Mana MD, Bauer-Rowe KE, Abu-Remaileh M, Clavain L, Erdemir A, Lewis CA, Freinkman E, Dickey AS, La Spada AR, Huang Y, Bell GW, Deshpande V, Carmeliet P, Katajisto P, Sabatini DM, Yilmaz OH (2018) Fasting activates fatty acid oxidation to enhance intestinal stem cell function during homeostasis and aging. Cell Stem Cell 22:769-778.e4. https://doi.org/10.1016/j.stem.2018.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nagai M, Noguchi R, Takahashi D, Morikawa T, Koshida K, Komiyama S, Ishihara N, Yamada T, Kawamura YI, Muroi K, Hattori K, Kobayashi N, Fujimura Y, Hirota M, Matsumoto R, Aoki R, Tamura-Nakano M, Sugiyama M, Katakai T, Sato S, Takubo K, Dohi T, Hase K (2019) Fasting-refeeding impacts immune cell dynamics and mucosal immune responses. Cell 178:1072-1087.e14. https://doi.org/10.1016/j.cell.2019.07.047

    Article  CAS  PubMed  Google Scholar 

  16. Li G, Xie C, Lu S, Nichols RG, Tian Y, Li L, Patel D, Ma Y, Brocker CN, Yan T, Krausz KW, Xiang R, Gavrilova O, Patterson AD, Gonzalez FJ (2017) Intermittent fasting promotes white adipose browning and decreases obesity by shaping the gut microbiota. Cell Metab 26:672-685.e4. https://doi.org/10.1016/j.cmet.2017.08.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cignarella F, Cantoni C, Ghezzi L, Salter A, Dorsett Y, Chen L, Phillips D, Weinstock GM, Fontana L, Cross AH, Zhou Y, Piccio L (2018) Intermittent fasting confers protection in CNS autoimmunity by altering the gut microbiota. Cell Metab 27:1222-1235.e6. https://doi.org/10.1016/j.cmet.2018.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lambert SA, Jolma A, Campitelli LF, Das PK, Yin Y, Albu M, Chen X, Taipale J, Hughes TR, Weirauch MT (2018) The human transcription factors. Cell 172:650–665. https://doi.org/10.1016/j.cell.2018.01.029

    Article  CAS  PubMed  Google Scholar 

  19. Vaquerizas JM, Kummerfeld SK, Teichmann SA, Luscombe NM (2009) A census of human transcription factors: function, expression and evolution. Nat Rev Genet 10:252–263. https://doi.org/10.1038/nrg2538

    Article  CAS  PubMed  Google Scholar 

  20. Desvergne B, Michalik L, Wahli W (2006) Transcriptional regulation of metabolism. Physiol Rev 86:465–514. https://doi.org/10.1152/physrev.00025.2005

    Article  CAS  PubMed  Google Scholar 

  21. Rui L (2014) Energy metabolism in the liver. Compr Physiol 4:177–197. https://doi.org/10.1002/cphy.c130024

    Article  PubMed  PubMed Central  Google Scholar 

  22. Jensen TL, Kiersgaard MK, Sorensen DB, Mikkelsen LF (2013) Fasting of mice: a review. Lab Anim 47:225–240. https://doi.org/10.1177/0023677213501659

    Article  CAS  PubMed  Google Scholar 

  23. Cahill GF Jr (1970) Starvation in man. N Engl J Med 282:668–675. https://doi.org/10.1056/NEJM197003192821209

    Article  CAS  PubMed  Google Scholar 

  24. Secor SM, Carey HV (2016) Integrative physiology of fasting. Compr Physiol 6:773–825. https://doi.org/10.1002/cphy.c150013

    Article  PubMed  Google Scholar 

  25. Goldstein I, Hager GL (2015) Transcriptional and chromatin regulation during fasting—the genomic era. Trends Endocrinol Metab 26:699–710. https://doi.org/10.1016/j.tem.2015.09.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cogburn LA, Trakooljul N, Wang X, Ellestad LE, Porter TE (2020) Transcriptome analyses of liver in newly-hatched chicks during the metabolic perturbation of fasting and re-feeding reveals THRSPA as the key lipogenic transcription factor. BMC Genomics 21:109. https://doi.org/10.1186/s12864-020-6525-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kersten S, Seydoux J, Peters JM, Gonzalez FJ, Desvergne B, Wahli W (1999) Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting. J Clin Invest 103:1489–1498. https://doi.org/10.1172/JCI6223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Goldstein I, Baek S, Presman DM, Paakinaho V, Swinstead EE, Hager GL (2017) Transcription factor assisted loading and enhancer dynamics dictate the hepatic fasting response. Genome Res 27:427–439. https://doi.org/10.1101/gr.212175.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yang X, Downes M, Yu RT, Bookout AL, He W, Straume M, Mangelsdorf DJ, Evans RM (2006) Nuclear receptor expression links the circadian clock to metabolism. Cell 126:801–810. https://doi.org/10.1016/j.cell.2006.06.050

    Article  CAS  PubMed  Google Scholar 

  30. Mure LS, Le HD, Benegiamo G, Chang MW, Rios L, Jillani N, Ngotho M, Kariuki T, Dkhissi-Benyahya O, Cooper HM, Panda S (2018) Diurnal transcriptome atlas of a primate across major neural and peripheral tissues. Science 359:eaao0318. https://doi.org/10.1126/science.aao0318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang R, Lahens NF, Ballance HI, Hughes ME, Hogenesch JB (2014) A circadian gene expression atlas in mammals: implications for biology and medicine. Proc Natl Acad Sci USA 111:16219–16224. https://doi.org/10.1073/pnas.1408886111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yeung J, Mermet J, Jouffe C, Marquis J, Charpagne A, Gachon F, Naef F (2018) Transcription factor activity rhythms and tissue-specific chromatin interactions explain circadian gene expression across organs. Genome Res 28:182–191. https://doi.org/10.1101/gr.222430.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Koronowski KB, Kinouchi K, Welz PS, Smith JG, Zinna VM, Shi J, Samad M, Chen S, Magnan CN, Kinchen JM, Li W, Baldi P, Benitah SA, Sassone-Corsi P (2019) Defining the independence of the liver circadian clock. Cell 177:1448-1462.e14. https://doi.org/10.1016/j.cell.2019.04.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fuller RW, Snoddy HD (1968) Feeding schedule alteration of daily rhythm in tyrosine alpha-ketoglutarate transaminase of rat liver. Science 159:738. https://doi.org/10.1126/science.159.3816.738

    Article  CAS  PubMed  Google Scholar 

  35. Kohsaka A, Laposky AD, Ramsey KM, Estrada C, Joshu C, Kobayashi Y, Turek FW, Bass J (2007) High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab 6:414–421. https://doi.org/10.1016/j.cmet.2007.09.006

    Article  CAS  PubMed  Google Scholar 

  36. Greenwell BJ, Trott AJ, Beytebiere JR, Pao S, Bosley A, Beach E, Finegan P, Hernandez C, Menet JS (2019) Rhythmic food intake drives rhythmic gene expression more potently than the hepatic circadian clock in mice. Cell Rep 27:649-657.e5. https://doi.org/10.1016/j.celrep.2019.03.064

    Article  CAS  PubMed  Google Scholar 

  37. Villanueva JE, Livelo C, Trujillo AS, Chandran S, Woodworth B, Andrade L, Le HD, Manor U, Panda S, Melkani GC (2019) Time-restricted feeding restores muscle function in Drosophila models of obesity and circadian-rhythm disruption. Nat Commun 10:2700. https://doi.org/10.1038/s41467-019-10563-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vollmers C, Gill S, DiTacchio L, Pulivarthy SR, Le HD, Panda S (2009) Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression. Proc Natl Acad Sci USA 106:21453–21458. https://doi.org/10.1073/pnas.0909591106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Eckel-Mahan KL, Patel VR, de Mateo S, Orozco-Solis R, Ceglia NJ, Sahar S, Dilag-Penilla SA, Dyar KA, Baldi P, Sassone-Corsi P (2013) Reprogramming of the circadian clock by nutritional challenge. Cell 155:1464–1478. https://doi.org/10.1016/j.cell.2013.11.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Crosby P, Hamnett R, Putker M, Hoyle NP, Reed M, Karam CJ, Maywood ES, Stangherlin A, Chesham JE, Hayter EA, Rosenbrier-Ribeiro L, Newham P, Clevers H, Bechtold DA, O’Neill JS (2019) Insulin/IGF-1 drives PERIOD synthesis to entrain circadian rhythms with feeding time. Cell 177:896-909.e20. https://doi.org/10.1016/j.cell.2019.02.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mohawk JA, Green CB, Takahashi JS (2012) Central and peripheral circadian clocks in mammals. Annu Rev Neurosci 35:445–462. https://doi.org/10.1146/annurev-neuro-060909-153128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hatori M, Vollmers C, Zarrinpar A, DiTacchio L, Bushong EA, Gill S, Leblanc M, Chaix A, Joens M, Fitzpatrick JA, Ellisman MH, Panda S (2012) Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab 15:848–860. https://doi.org/10.1016/j.cmet.2012.04.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Manoogian ENC, Panda S (2017) Circadian rhythms, time-restricted feeding, and healthy aging. Ageing Res Rev 39:59–67. https://doi.org/10.1016/j.arr.2016.12.006

    Article  PubMed  Google Scholar 

  44. Hu H, Miao YR, Jia LH, Yu QY, Zhang Q, Guo AY (2019) AnimalTFDB 3.0: a comprehensive resource for annotation and prediction of animal transcription factors. Nucleic Acids Res 47:D33–D38. https://doi.org/10.1093/nar/gky822

    Article  CAS  PubMed  Google Scholar 

  45. Ravasi T, Suzuki H, Cannistraci CV, Katayama S, Bajic VB, Tan K, Akalin A, Schmeier S, Kanamori-Katayama M, Bertin N, Carninci P, Daub CO, Forrest AR, Gough J, Grimmond S, Han JH, Hashimoto T, Hide W, Hofmann O, Kamburov A, Kaur M, Kawaji H, Kubosaki A, Lassmann T, van Nimwegen E, MacPherson CR, Ogawa C, Radovanovic A, Schwartz A, Teasdale RD, Tegner J, Lenhard B, Teichmann SA, Arakawa T, Ninomiya N, Murakami K, Tagami M, Fukuda S, Imamura K, Kai C, Ishihara R, Kitazume Y, Kawai J, Hume DA, Ideker T, Hayashizaki Y (2010) An atlas of combinatorial transcriptional regulation in mouse and man. Cell 140:744–752. https://doi.org/10.1016/j.cell.2010.01.044

    Article  CAS  PubMed  Google Scholar 

  46. Neph S, Stergachis AB, Reynolds A, Sandstrom R, Borenstein E, Stamatoyannopoulos JA (2012) Circuitry and dynamics of human transcription factor regulatory networks. Cell 150:1274–1286. https://doi.org/10.1016/j.cell.2012.04.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Coelho M, Oliveira T, Fernandes R (2013) Biochemistry of adipose tissue: an endocrine organ. Arch Med Sci 9:191–200. https://doi.org/10.5114/aoms.2013.33181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ahima RS, Flier JS (2000) Adipose tissue as an endocrine organ. Trends Endocrinol Metab 11:327–332. https://doi.org/10.1016/s1043-2760(00)00301-5

    Article  CAS  PubMed  Google Scholar 

  49. Husse J, Kiehn JT, Barclay JL, Naujokat N, Meyer-Kovac J, Lehnert H, Oster H (2017) Tissue-specific dissociation of diurnal transcriptome rhythms during sleep restriction in mice. Sleep. https://doi.org/10.1093/sleep/zsx068

    Article  PubMed  Google Scholar 

  50. Lundell LS, Parr EB, Devlin BL, Ingerslev LR, Altintas A, Sato S, Sassone-Corsi P, Barres R, Zierath JR, Hawley JA (2020) Time-restricted feeding alters lipid and amino acid metabolite rhythmicity without perturbing clock gene expression. Nat Commun 11:4643. https://doi.org/10.1038/s41467-020-18412-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Buttgereit F, Brand MD (1995) A hierarchy of ATP-consuming processes in mammalian cells. Biochem J 312(Pt 1):163–167. https://doi.org/10.1042/bj3120163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Panda S (2016) Circadian physiology of metabolism. Science 354:1008–1015. https://doi.org/10.1126/science.aah4967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hatchwell L, Harney DJ, Cielesh M, Young K, Koay YC, O’Sullivan JF, Larance M (2020) Multi-omics analysis of the intermittent fasting response in mice identifies an unexpected role for HNF4alpha. Cell Rep 30:3566-3582.e4. https://doi.org/10.1016/j.celrep.2020.02.051

    Article  CAS  PubMed  Google Scholar 

  54. Gimble JM, Sutton GM, Bunnell BA, Ptitsyn AA, Floyd ZE (2011) Prospective influences of circadian clocks in adipose tissue and metabolism. Nat Rev Endocrinol 7:98–107. https://doi.org/10.1038/nrendo.2010.214

    Article  CAS  PubMed  Google Scholar 

  55. Musiek ES, Holtzman DM (2016) Mechanisms linking circadian clocks, sleep, and neurodegeneration. Science 354:1004–1008. https://doi.org/10.1126/science.aah4968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Logan RW, McClung CA (2019) Rhythms of life: circadian disruption and brain disorders across the lifespan. Nat Rev Neurosci 20:49–65. https://doi.org/10.1038/s41583-018-0088-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kim S, Volsky DJ (2005) PAGE: parametric analysis of gene set enrichment. BMC Bioinformatics 6:144–144

    Article  PubMed  PubMed Central  Google Scholar 

  58. Bult CJ, Blake JA, Smith CL, Kadin JA, Richardson JE (2019) Mouse genome database (MGD) 2019. Nucleic Acids Res 47:D801-d806. https://doi.org/10.1093/nar/gky1056

    Article  CAS  PubMed  Google Scholar 

  59. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci 102:15545–15550. https://doi.org/10.1073/pnas.0506580102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mattson MP, Longo VD, Harvie M (2017) Impact of intermittent fasting on health and disease processes. Ageing Res Rev 39:46–58. https://doi.org/10.1016/j.arr.2016.10.005

    Article  PubMed  Google Scholar 

  61. Rubinsztein DC, Mariño G, Kroemer G (2011) Autophagy and aging. Cell 146:682–695. https://doi.org/10.1016/j.cell.2011.07.030

    Article  CAS  PubMed  Google Scholar 

  62. Escobar KA, Cole NH, Mermier CM, VanDusseldorp TA (2019) Autophagy and aging: maintaining the proteome through exercise and caloric restriction. Aging Cell 18:e12876. https://doi.org/10.1111/acel.12876

    Article  CAS  PubMed  Google Scholar 

  63. Partridge L, Fuentealba M, Kennedy BK (2020) The quest to slow ageing through drug discovery. Nat Rev Drug Discov 19:513–532. https://doi.org/10.1038/s41573-020-0067-7

    Article  CAS  PubMed  Google Scholar 

  64. Zheng X, Boyer L, Jin M, Kim Y, Fan W, Bardy C, Berggren T, Evans RM, Gage FH, Hunter T (2016) Alleviation of neuronal energy deficiency by mTOR inhibition as a treatment for mitochondria-related neurodegeneration. Elife. https://doi.org/10.7554/eLife.13378

    Article  PubMed  PubMed Central  Google Scholar 

  65. McEwen BS (2007) Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev 87:873–904. https://doi.org/10.1152/physrev.00041.2006

    Article  PubMed  Google Scholar 

  66. McEwen BS (1998) Protective and damaging effects of stress mediators. N Engl J Med 338:171–179. https://doi.org/10.1056/NEJM199801153380307

    Article  CAS  PubMed  Google Scholar 

  67. Abreu-Vieira G, Xiao C, Gavrilova O, Reitman ML (2015) Integration of body temperature into the analysis of energy expenditure in the mouse. Mol Metab 4:461–470. https://doi.org/10.1016/j.molmet.2015.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet journal 17:10–12. https://doi.org/10.14806/EJ.17.1.200

    Article  Google Scholar 

  69. Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360. https://doi.org/10.1038/nmeth.3317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL (2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33:290–295. https://doi.org/10.1038/nbt.3122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Frazee AC, Pertea G, Jaffe AE, Langmead B, Salzberg SL, Leek JT (2015) Ballgown bridges the gap between transcriptome assembly and expression analysis. Nat Biotechnol 33:243–246. https://doi.org/10.1038/nbt.3172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mele M, Ferreira PG, Reverter F, DeLuca DS, Monlong J, Sammeth M, Young TR, Goldmann JM, Pervouchine DD, Sullivan TJ, Johnson R, Segre AV, Djebali S, Niarchou A, Consortium GT, Wright FA, Lappalainen T, Calvo M, Getz G, Dermitzakis ET, Ardlie KG, Guigo R (2015) Human genomics: the human transcriptome across tissues and individuals. Science 348:660–665. https://doi.org/10.1126/science.aaa0355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Carlucci M, Krisciunas A, Li H, Gibas P, Koncevicius K, Petronis A, Oh G (2020) DiscoRhythm: an easy-to-use web application and R package for discovering rhythmicity. Bioinformatics 36:1952–1954. https://doi.org/10.1093/bioinformatics/btz834

    Article  CAS  Google Scholar 

  74. Cornelissen G (2014) Cosinor-based rhythmometry. Theor Biol Med Model 11:16. https://doi.org/10.1186/1742-4682-11-16

    Article  PubMed  PubMed Central  Google Scholar 

  75. Hughes ME, Hogenesch JB, Kornacker K (2010) JTK_CYCLE: an efficient nonparametric algorithm for detecting rhythmic components in genome-scale data sets. J Biol Rhythms 25:372–380. https://doi.org/10.1177/0748730410379711

    Article  PubMed  PubMed Central  Google Scholar 

  76. Law M, Shaw DR (2018) Mouse Genome Informatics (MGI) is the international resource for information on the laboratory mouse. Methods Mol Biol 1757:141–161. https://doi.org/10.1007/978-1-4939-7737-6_7

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Lin Zheng, Qiu Wang, Qian Zhang, Lijun Chen, Baode Zhu, Guangyao Wu, Lu Wang, Lijiao Zhu, Han Liu, Siyu Wang, Xiaoli Zeng, Yu Liang, Yuebo Wang, Xiaomin Xia, Juan Wang, and Tingting Zhang for assistance with the daily feeding of mice and tissue collection; Yong Zeng and Yujie Yan for assistance with bioinformatics assay; and LC Science Facility for help with sequencing.

Funding

G.L. was supported by the National Natural Science Foundation of China (31871198) and the Opening Fund of The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development (Hunan Normal University, National Development and Reform Commission). F.W. was supported by the National Natural Science Foundation of China (81903138) and the Natural Science Foundation of Hunan Province (2022JJ30413). F.J.G was supported by the National Cancer Institute Intramural Research Program. The funding sponsors had no role in the writing of the manuscript and in the decision to submit the manuscript for publication.

Author information

Authors and Affiliations

Authors

Contributions

GL designed and conceived the experiments. GL, MF, LG, SL, YZ, and FW conducted experiments. GL and FW performed the bioinformatics analysis. MF participated in project management. GL, ZD, and RX contributed to interpretation of results. GL, FW and FJG wrote the manuscript.

Corresponding authors

Correspondence to Fang Wei or Guolin Li.

Ethics declarations

Competing interest

The authors declare no competing interests.

Ethical approval

All mouse studies were approved by the Institutional Review Board of the Hunan Normal University and performed according to the Laboratory Animal Resources guidelines.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11010_2024_4928_MOESM1_ESM.pdf

Supplementary Fig. 1. The statistics of transcription factors across different tissues in AL mice, Related to Fig. 2. A) The Venn diagram displaying the overlap numbers of TFs expressed in different tissues of AL mice. B) The Venn diagram showing the overlap numbers of TFs with tissue specificity scores more than 5 in different tissues of AL mice. C) The Venn diagram demonstrating the overlap numbers of oscillated TFs in different tissues of AL mice. D) The number of oscillated TFs in AL mice illustrating the oscillatory phases in different tissues. TFs, transcription factors; AL, ad libitum; BAT, brown adipose tissue; WAT, white adipose tissue; ZT, zeitgeber time

Supplementary file1 (PDF 255 KB)

11010_2024_4928_MOESM2_ESM.pdf

Supplementary Fig. 2. The statistics of differentially expressed transcription factors under different feeding regimens, Related to Fig. 3. A-B) The statistics of tissue-specific TFs upregulated (A) or down-regulated (B) by different feeding modifications. TFs, transcription factors; AL, ad libitum; AF, acute fasting; AR, refeeding after acute fasting; EODF, every-other-day fasting; EODR, every-other-day refeeding; BAT, brown adipose tissue; WAT, white adipose tissue

Supplementary file2 (PDF 307 KB)

11010_2024_4928_MOESM3_ESM.pdf

Supplementary Fig. 3. The oscillatory profile of transcription factors in four metabolic tissues of mice under different feeding regimens, Related to Fig. 4. Heat maps showing oscillatory TFs in the liver, skeletal muscle, BAT and WAT of mice under different feeding regimens (n = 5). Six columns in each heat map from left to right are ZT16, ZT20, ZT0, ZT4, ZT8 and ZT12, respectively. Cells are shaded according to Z scores from − 2 to 2 (green for low, blue for high). The heat maps of AL mice were the copy of Fig. 2B, in order to show the different between AL and other treatments. TFs, transcription factors; AL, ad libitum; AF, acute fasting; AR, refeeding after acute fasting; EODF, every-other-day fasting; EODR, every-other-day refeeding; BAT, brown adipose tissue; WAT, white adipose tissue; ZT, zeitgeber time

Supplementary file3 (PDF 1728 KB)

11010_2024_4928_MOESM4_ESM.pdf

Supplementary Fig. 4. The Venn diagram demonstrating the overlap numbers of oscillated TFs in different tissues of AL mice, Related to Fig. 4

11010_2024_4928_MOESM5_ESM.pdf

Supplementary Fig. 5. The statistics of oscillatory transcription factors before and after normalized to AL rhythm, Related to Fig. 4. The statistics of oscillatory TFs before (Original) and after (FC to AL) normalized to AL rhythm illustrating the change induced by the normalization. TFs, transcription factors; AL, ad libitum; AF, acute fasting; AR, refeeding after acute fasting; EODF, every-other-day fasting; EODR, every-other-day refeeding; FC, fold changeSupplementary file4 (PDF 175 KB)

Supplementary file5 (PDF 1161 KB)

11010_2024_4928_MOESM6_ESM.pdf

Supplementary Fig. 6. The oscillatory signatures of transcription factors induced by different feeding modifications, Related to Fig. 4. A) The number of oscillatory TFs before and after normalized to the rhythm of AL mice in different tissues under different feeding regimens (n = 5). B-E) The Venn diagrams displaying the overlap numbers of rhythmic TFs across different tissues induced by AF (B), AR (C), EODF (D) and EODR (E) after normalized against the diurnal rhythm of AL mice (n = 5). F) Heat maps showing the tissue-specific oscillatory signatures of TFs induced by different feeding modifications after normalized against the rhythm of AL mice (n = 5). Six columns in each heat map from left to right are ZT16, ZT20, ZT0, ZT4, ZT8 and ZT12, respectively. Cells are shaded according to Z scores from − 2 to 2 (green for low, blue for high). AL, ad libitum; AF, acute fasting; AR, refeeding after acute fasting; EODF, every-other-day fasting; EODR, every-other-day refeeding; BAT, brown adipose tissue; WAT, white adipose tissue; ZT, zeitgeber time; FC, fold change

Supplementary file6 (PDF 339 KB)

11010_2024_4928_MOESM7_ESM.pdf

Supplementary Fig. 7. The rhythmic expression of canonical clock transcription factors induced by different feeding modifications, Related to Fig. 2. A–D) The rhythmic signatures of canonical diurnal clock TFs in different tissues induced by AF (A), AR (B), EODF (C) and EODR (D) after normalized against the diurnal rhythm of AL mice (n = 5). Shadow represents night. AL, ad libitum; AF, acute fasting; AR, refeeding after acute fasting; EODF, every-other-day fasting; EODR, every-other-day refeeding; BAT, brown adipose tissue; WAT, white adipose tissue; ZT, zeitgeber time. Data are represented as mean ± SEM.

Supplementary file7 (PDF 880 KB)

11010_2024_4928_MOESM8_ESM.pdf

Supplementary Fig. 8. Intermittent fasting shifts diurnal expressive patterns of aging and autophagy pathways, Related to Fig. 5. Z scores were calculated by parametric analysis of gene set enrichment (PAGE), and normalized to AL mice sacrificed at ZT16. AL, ad libitum; AF, acute fasting; AR, refeeding after acute fasting; EODF, every-other-day fasting; EODR, every-other-day refeeding; BAT, brown adipose tissue; WAT, white adipose tissue; ZT, zeitgeber time

Supplementary file8 (PDF 752 KB)

11010_2024_4928_MOESM9_ESM.xlsx

Supplementary Table 1. The mean of FPKM values in mice fed ad libitum, Related to Fig. 2

Supplementary file9 (XLSX 1726 KB)

11010_2024_4928_MOESM10_ESM.xlsx

Supplementary Table 2 Tissue specificity scores of transcription factors in mice fed ad libitum, Related to Fig. 2

Supplementary file10 (XLSX 503 KB)

11010_2024_4928_MOESM11_ESM.xlsx

Supplementary Table 3. Oscillation profiles of transcription factors in mice under different feeding regimens, Related to Fig. 2

Supplementary file11 (XLSX 408 KB)

11010_2024_4928_MOESM12_ESM.xlsx

Supplementary Table 4 Tissue-specific expressive pattern of transcription factors in mice under different feeding regimens, Related to Fig. 3

Supplementary file12 (XLSX 431 KB)

11010_2024_4928_MOESM13_ESM.xlsx

Supplementary Table 5 Feeding modifications induced oscillation profiles of transcription factors after normalized to the rhythm of mice fed ad libitum, Related to Fig. 4

Supplementary file13 (XLSX 320 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, M., Lu, S., Gong, L. et al. Intermittent fasting shifts the diurnal transcriptome atlas of transcription factors. Mol Cell Biochem (2024). https://doi.org/10.1007/s11010-024-04928-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11010-024-04928-y

Keywords

Navigation