Skip to main content

Advertisement

Log in

Non-coding RNAs and angiogenesis in cardiovascular diseases: a comprehensive review

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Non-coding RNAs (ncRNAs) have key roles in the etiology of many illnesses, including heart failure, myocardial infarction, stroke, and in physiological processes like angiogenesis. In transcriptional regulatory circuits that control heart growth, signaling, and stress response, as well as remodeling in cardiac disease, ncRNAs have become important players. Studies on ncRNAs and cardiovascular disease have made great progress recently. Here, we go through the functions of non-coding RNAs (ncRNAs) like circular RNAs (circRNAs), and microRNAs (miRNAs) as well as long non-coding RNAs (lncRNAs) in modulating cardiovascular disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R et al (2017) Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation 135(10):e146–e603

    Article  PubMed  PubMed Central  Google Scholar 

  2. Eapen ZJ, Tang WH, Felker GM, Hernandez AF, Mahaffey KW, Lincoff AM et al (2012) Defining heart failure end points in ST-segment elevation myocardial infarction trials: integrating past experiences to chart a path forward. Circ Cardiovasc Qual Outcomes 5(4):594–600

    Article  PubMed  Google Scholar 

  3. Milonas C, Jernberg T, Lindbäck J, Agewall S, Wallentin L, Stenestrand U (2010) Effect of Angiotensin-converting enzyme inhibition on one-year mortality and frequency of repeat acute myocardial infarction in patients with acute myocardial infarction. Am J Cardiol 105(9):1229–1234

    Article  CAS  PubMed  Google Scholar 

  4. Virani SS, Alonso A, Aparicio HJ, Benjamin EJ, Bittencourt MS, Callaway CW et al (2021) Heart disease and stroke statistics-2021 update: a report from the American Heart Association. Circulation 143(8):e254–e743

    Article  PubMed  Google Scholar 

  5. Shah KS, Xu H, Matsouaka RA, Bhatt DL, Heidenreich PA, Hernandez AF et al (2017) Heart failure with preserved, borderline, and reduced ejection fraction: 5-year outcomes. J Am Coll Cardiol 70(20):2476–2486

    Article  PubMed  Google Scholar 

  6. Frangogiannis NG (2014) The immune system and the remodeling infarcted heart: cell biological insights and therapeutic opportunities. J Cardiovasc Pharmacol 63(3):185–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Seropian IM, Toldo S, Van Tassell BW, Abbate A (2014) Anti-inflammatory strategies for ventricular remodeling following ST-segment elevation acute myocardial infarction. J Am Coll Cardiol 63(16):1593–1603

    Article  CAS  PubMed  Google Scholar 

  8. Avan A, Hachinski V (2021) Stroke and dementia, leading causes of neurological disability and death, potential for prevention. Alzheimers Dement 17(6):1072–1076

    Article  PubMed  Google Scholar 

  9. Krishnamurthi RV, Feigin VL, Forouzanfar MH, Mensah GA, Connor M, Bennett DA et al (2013) Global and regional burden of first-ever ischaemic and haemorrhagic stroke during 1990–2010: findings from the Global Burden of Disease Study 2010. Lancet Glob Health 1(5):e259–e281

    Article  PubMed  PubMed Central  Google Scholar 

  10. Murphy SJ, Werring DJ (2020) Stroke: causes and clinical features. Medicine 48(9):561–566

    Article  PubMed  Google Scholar 

  11. Kobiyama K, Ley K (2018) Atherosclerosis. Circ Res 123(10):1118–1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Perrotta P, Emini Veseli B, Van der Veken B, Roth L, Martinet W, De Meyer GRY (2019) Pharmacological strategies to inhibit intra-plaque angiogenesis in atherosclerosis. Vascul Pharmacol 112:72–78

    Article  CAS  PubMed  Google Scholar 

  13. Basic J, Stojkovic S, Assadian A, Rauscher S, Duschek N, Kaun C et al (2019) The relevance of vascular endothelial growth factor, hypoxia inducible factor-1 alpha, and clusterin in carotid plaque instability. J Stroke Cerebrovasc Dis 28(6):1540–1545

    Article  PubMed  Google Scholar 

  14. Gomes CPC, Schroen B, Kuster GM, Robinson EL, Ford K, Squire IB et al (2020) Regulatory RNAs in heart failure. Circulation 141(4):313–328

    Article  PubMed  PubMed Central  Google Scholar 

  15. Li X, Zhang L, Liang J (2016) Unraveling the expression profiles of long noncoding RNAs in Rat cardiac hypertrophy and functions of lncRNA BC088254 in cardiac hypertrophy induced by transverse aortic constriction. Cardiology 134(2):84–98

    Article  CAS  PubMed  Google Scholar 

  16. Ottaviani L, da Costa Martins PA (2017) Non-coding RNAs in cardiac hypertrophy. J Physiol 595(12):4037–4050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liao C, Gui Y, Guo Y, Xu D (2016) The regulatory function of microRNA-1 in arrhythmias. Mol BioSyst 12(2):328–333

    Article  CAS  PubMed  Google Scholar 

  18. Qin T, Li J, Zhang KQ (2020) Structure, regulation, and function of linear and circular long non-coding RNAs. Front Genet 11:150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Statello L, Guo CJ, Chen LL, Huarte M (2021) Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol 22(2):96–118

    Article  CAS  PubMed  Google Scholar 

  20. Grabowski K, Herlan L, Witten A, Qadri F, Eisenreich A, Lindner D et al (2022) Cpxm2 as a novel candidate for cardiac hypertrophy and failure in hypertension. Hypertens Res 45(2):292–307

    Article  CAS  PubMed  Google Scholar 

  21. Zurek M, Johansson E, Palmer M, Albery T, Johansson K, Rydén-Markinhutha K et al (2020) Neuregulin-1 induces cardiac hypertrophy and impairs cardiac performance in post-myocardial infarction rats. Circulation 142(13):1308–1311

    Article  CAS  PubMed  Google Scholar 

  22. Yang Y, Ahn JM, Kang DY, Ko E, Kim S, Kim TO et al (2022) Implication of different ECG left ventricular hypertrophy in patients undergoing transcatheter aortic valve replacement. J Am Heart Assoc 11(4):e023647

    Article  PubMed  PubMed Central  Google Scholar 

  23. Shimizu I, Minamino T (2016) Physiological and pathological cardiac hypertrophy. J Mol Cell Cardiol 97:245–262

    Article  CAS  PubMed  Google Scholar 

  24. Thum T, Condorelli G (2015) Long noncoding RNAs and microRNAs in cardiovascular pathophysiology. Circ Res 116(4):751–762

    Article  CAS  PubMed  Google Scholar 

  25. Wang KC, Chang HY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell 43(6):904–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Matera AG, Wang Z (2014) A day in the life of the spliceosome. Nat Rev Mol Cell Biol 15(2):108–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhao G (2018) Significance of non-coding circular RNAs and micro RNAs in the pathogenesis of cardiovascular diseases. J Med Genet 55(11):713–720

    Article  CAS  PubMed  Google Scholar 

  28. Guo JU, Agarwal V, Guo H, Bartel DP (2014) Expanded identification and characterization of mammalian circular RNAs. Genome Biol 15(7):409

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK et al (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495(7441):384–388

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M et al (2014) circRNA biogenesis competes with pre-mRNA splicing. Mol Cell 56(1):55–66

    Article  CAS  PubMed  Google Scholar 

  31. Altesha MA, Ni T, Khan A, Liu K, Zheng X (2019) Circular RNA in cardiovascular disease. J Cell Physiol 234(5):5588–5600

    Article  CAS  PubMed  Google Scholar 

  32. Zhou MY, Yang JM, Xiong XD (2018) The emerging landscape of circular RNA in cardiovascular diseases. J Mol Cell Cardiol 122:134–139

    Article  CAS  PubMed  Google Scholar 

  33. Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH et al (2013) Circular intronic long noncoding RNAs. Mol Cell 51(6):792–806

    Article  CAS  PubMed  Google Scholar 

  34. Legnini I, Di Timoteo G, Rossi F, Morlando M, Briganti F, Sthandier O et al (2017) Circ-ZNF609 Is a Circular RNA that Can Be Translated and Functions in Myogenesis. Mol Cell 66(1):22-37.e9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pamudurti NR, Bartok O, Jens M, Ashwal-Fluss R, Stottmeister C, Ruhe L et al (2017) Translation of CircRNAs. Mol Cell 66(1):9-21.e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yang Y, Fan X, Mao M, Song X, Wu P, Zhang Y et al (2017) Extensive translation of circular RNAs driven by N(6)-methyladenosine. Cell Res 27(5):626–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yang Y, Gao X, Zhang M, Yan S, Sun C, Xiao F et al (2018) Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis. J Natl Cancer Inst 110(3):304–315

    Article  CAS  PubMed  Google Scholar 

  38. Fan X, Weng X, Zhao Y, Chen W, Gan T, Xu D (2017) Circular RNAs in cardiovascular disease: an overview. Biomed Res Int 2017:5135781

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wang W, Wang Y, Piao H, Li B, Huang M, Zhu Z et al (2019) Circular RNAs as potential biomarkers and therapeutics for cardiovascular disease. PeerJ 7:e6831

    Article  PubMed  PubMed Central  Google Scholar 

  40. Choi I, Lee S, Hong Y-K (2012) The new era of the lymphatic system: no longer secondary to the blood vascular system. Cold Spring Harbor Perspect Med 2(4):89

    Article  Google Scholar 

  41. Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W et al (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350(23):2335–2342

    Article  CAS  PubMed  Google Scholar 

  42. Wagner N, Wagner K-D (2023) Pharmacological utility of ppar modulation for angiogenesis in cardiovascular disease. Int J Mol Sci 24(3):2345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Makki N, Brennan TM, Girotra S (2015) Acute coronary syndrome. J Intensive Care Med 30(4):186–200

    Article  PubMed  Google Scholar 

  44. Eelen G, Treps L, Li X, Carmeliet P (2020) Basic and therapeutic aspects of angiogenesis updated. Circ Res 127(2):310–329

    Article  CAS  PubMed  Google Scholar 

  45. Helkin A, Maier KG, Gahtan V (2015) Thrombospondin-1, -2 and -5 have differential effects on vascular smooth muscle cell physiology. Biochem Biophys Res Commun 464(4):1022–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Xie H, Cui Z, Wang L, Xia Z, Hu Y, Xian L et al (2014) PDGF-BB secreted by preosteoclasts induces angiogenesis during coupling with osteogenesis. Nat Med 20(11):1270–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xu X, Zong Y, Gao Y, Sun X, Zhao H, Luo W et al (2019) VEGF induce vasculogenic mimicry of choroidal melanoma through the PI3k signal pathway. Biomed Res Int 2019:3909102

    Article  PubMed  PubMed Central  Google Scholar 

  48. Bennett MR, Sinha S, Owens GK (2016) Vascular smooth muscle cells in atherosclerosis. Circ Res 118(4):692–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bieniasz-Krzywiec P, Martín-Pérez R, Ehling M, García-Caballero M, Pinioti S, Pretto S et al (2019) Podoplanin-expressing macrophages promote lymphangiogenesis and lymphoinvasion in breast cancer. Cell Metab 30(5):917–36.e10

    Article  CAS  PubMed  Google Scholar 

  50. Nowak-Sliwinska P, Alitalo K, Allen E, Anisimov A, Aplin AC, Auerbach R et al (2018) Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis 21(3):425–532

    Article  PubMed  PubMed Central  Google Scholar 

  51. Hernández-Romero IA, Guerra-Calderas L, Salgado-Albarrán M, Maldonado-Huerta T, Soto-Reyes E (2019) The regulatory roles of non-coding RNAs in angiogenesis and neovascularization from an epigenetic perspective. Front Oncol 9:1091

    Article  PubMed  PubMed Central  Google Scholar 

  52. Müller S, Raulefs S, Bruns P, Afonso-Grunz F, Plötner A, Thermann R et al (2015) Next-generation sequencing reveals novel differentially regulated mRNAs, lncRNAs, miRNAs, sdRNAs and a piRNA in pancreatic cancer. Mol Cancer 14:1–18

    Google Scholar 

  53. Fasolo F, Di Gregoli K, Maegdefessel L, Johnson JL (2019) Non-coding RNAs in cardiovascular cell biology and atherosclerosis. Cardiovasc Res 115(12):1732–1756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Poller W, Dimmeler S, Heymans S, Zeller T, Haas J, Karakas M et al (2018) Non-coding RNAs in cardiovascular diseases: diagnostic and therapeutic perspectives. Eur Heart J 39(29):2704–2716

    Article  CAS  PubMed  Google Scholar 

  55. Calway T, Kim GH (2015) Harnessing the therapeutic potential of MicroRNAs for cardiovascular disease. J Cardiovasc Pharmacol Ther 20(2):131–143

    Article  CAS  PubMed  Google Scholar 

  56. Kobayashi K, Maeda K, Takefuji M, Kikuchi R, Morishita Y, Hirashima M et al (2017) Dynamics of angiogenesis in ischemic areas of the infarcted heart. Sci Rep 7(1):7156

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  57. Liu R, Liu C, Cui L, Zhou L, Li N, Wei X (2019) Expression and significance of MiR-126 and VEGF in proliferative diabetic retinopathy. Eur Rev Med Pharmacol Sci 23(15):9

    Google Scholar 

  58. Meng S, Cao J-T, Zhang B, Zhou Q, Shen C-X, Wang C-Q (2012) Downregulation of microRNA-126 in endothelial progenitor cells from diabetes patients, impairs their functional properties, via target gene Spred-1. J Mol Cell Cardiol 53(1):64–72

    Article  CAS  PubMed  Google Scholar 

  59. Fu R, Tong JS (2020) miR-126 reduces trastuzumab resistance by targeting PIK3R2 and regulating AKT/mTOR pathway in breast cancer cells. J Cell Mol Med 24(13):7600–7608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Song L, Li D, Gu Y, Wen Z-M, Jie J, Zhao D et al (2016) MicroRNA-126 targeting PIK3R2 inhibits NSCLC A549 cell proliferation, migration, and invasion by regulation of PTEN/PI3K/AKT pathway. Clin Lung Cancer 17(5):e65–e75

    Article  CAS  PubMed  Google Scholar 

  61. Zhang L, Ouyang P, He G, Wang X, Song D, Yang Y et al (2021) Exosomes from microRNA-126 overexpressing mesenchymal stem cells promote angiogenesis by targeting the PIK3R2-mediated PI3K/Akt signalling pathway. J Cell Mol Med 25(4):2148–2162

    Article  CAS  PubMed  Google Scholar 

  62. Zernecke A, Bidzhekov K, Noels H, Shagdarsuren E, Gan L, Denecke B et al (2009) Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal 2(100):81

    Article  Google Scholar 

  63. Fish JE, Santoro MM, Morton SU, Yu S, Yeh R-F, Wythe JD et al (2008) miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell 15(2):272–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ye P, Liu J, He F, Xu W, Yao K (2014) Hypoxia-induced deregulation of miR-126 and its regulative effect on VEGF and MMP-9 expression. Int J Med Sci 11(1):17

    Article  PubMed  Google Scholar 

  65. Zhang Y, Xu Y, Zhou K, Kao G, Xiao J (2022) MicroRNA-126 and VEGF enhance the function of endothelial progenitor cells in acute myocardial infarction. Exp Ther Med 23(2):142

    Article  PubMed  Google Scholar 

  66. Burek M, König A, Lang M, Fiedler J, Oerter S, Roewer N et al (2019) Hypoxia-induced microRNA-212/132 alter blood-brain barrier integrity through inhibition of tight junction-associated proteins in human and mouse brain microvascular endothelial cells. Transl Stroke Res 10(6):672–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lei Z, Klasson TD, Brandt MM, van de Hoek G, Logister I, Cheng C et al (2020) Control of angiogenesis via a VHL/miR-212/132 axis. Cells 9(4):1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Eskildsen TV, Jeppesen PL, Schneider M, Nossent AY, Sandberg MB, Hansen PB et al (2013) Angiotensin II regulates microRNA-132/-212 in hypertensive rats and humans. Int J Mol Sci 14(6):11190–11207

    Article  PubMed  PubMed Central  Google Scholar 

  69. Lei Z, Fang J, Deddens JC, Metz CH, Van Eeuwijk EC, El Azzouzi H et al (2020) Loss of miR-132/212 has no long-term beneficial effect on cardiac function after permanent coronary occlusion in mice. Front Physiol 11:590

    Article  PubMed  PubMed Central  Google Scholar 

  70. Ucar A, Gupta SK, Fiedler J, Erikci E, Kardasinski M, Batkai S et al (2012) The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy. Nat Commun 3(1):1–11

    Article  Google Scholar 

  71. Ma S, Meng Z, Chen R, Guan K-L (2019) The Hippo pathway: biology and pathophysiology. Annu Rev Biochem 88:577–604

    Article  CAS  PubMed  Google Scholar 

  72. Ma C, Peng P, Zhou Y, Liu T, Wang L, Lu C (2020) MicroRNA-93 promotes angiogenesis and attenuates remodeling via inactivation of the Hippo/Yap pathway by targeting Lats2 after myocardial infarctionω. Mol Med Rep 22(1):483–493

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Piccolo S, Dupont S, Cordenonsi M (2014) The biology of YAP/TAZ: hippo signaling and beyond. Physiol Rev 94(4):1287–1312

    Article  CAS  PubMed  Google Scholar 

  74. Fang L, Du WW, Yang W, Rutnam ZJ, Peng C, Li H et al (2012) MiR-93 enhances angiogenesis and metastasis by targeting LATS2. Cell Cycle 11(23):4352–4365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kim J, Kim YH, Kim J, Bae H, Lee D-H, Kim KH et al (2017) YAP/TAZ regulates sprouting angiogenesis and vascular barrier maturation. J Clin Investig 127(9):3441–3461

    Article  PubMed  PubMed Central  Google Scholar 

  76. Sakabe M, Fan J, Odaka Y, Liu N, Hassan A, Duan X et al (2017) YAP/TAZ-CDC42 signaling regulates vascular tip cell migration. Proc Natl Acad Sci 114(41):10918–10923

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  77. Choi H-J, Zhang H, Park H, Choi K-S, Lee H-W, Agrawal V et al (2015) Yes-associated protein regulates endothelial cell contact-mediated expression of angiopoietin-2. Nat Commun 6(1):1–14

    Article  CAS  Google Scholar 

  78. Zhou Q, Li L, Zhao B, Guan K-L (2015) The hippo pathway in heart development, regeneration, and diseases. Circ Res 116(8):1431–1447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Singh A, Ramesh S, Cibi DM, Yun LS, Li J, Li L et al (2016) Hippo signaling mediators Yap and Taz are required in the epicardium for coronary vasculature development. Cell Rep 15(7):1384–1393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Heallen T, Morikawa Y, Leach J, Tao G, Willerson JT, Johnson RL et al (2013) Hippo signaling impedes adult heart regeneration. Development 140(23):4683–4690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Matsui Y, Nakano N, Shao D, Gao S, Luo W, Hong C et al (2008) Lats2 is a negative regulator of myocyte size in the heart. Circ Res 103(11):1309–1318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Shao D, Zhai P, Del Re DP, Sciarretta S, Yabuta N, Nojima H et al (2014) A functional interaction between Hippo-YAP signalling and FoxO1 mediates the oxidative stress response. Nat Commun 5(1):1–10

    Article  Google Scholar 

  83. Semenza GL (2016) Targeting hypoxia-inducible factor 1 to stimulate tissue vascularization. J Investig Med 64(2):361–363

    Article  PubMed  PubMed Central  Google Scholar 

  84. Devlin C, Greco S, Martelli F, Ivan M (2011) miR-210: More than a silent player in hypoxia. IUBMB Life 63(2):94–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Voellenkle C, Garcia-Manteiga J, Pedrotti S, Perfetti A, De Toma I, Da Silva D et al (2016) Implication of Long noncoding RNAs in the endothelial cell response to hypoxia revealed by RNA-sequencing. Sci Rep 6(1):1–13

    Article  Google Scholar 

  86. Chan SY, Zhang Y-Y, Hemann C, Mahoney CE, Zweier JL, Loscalzo J (2009) MicroRNA-210 controls mitochondrial metabolism during hypoxia by repressing the iron-sulfur cluster assembly proteins ISCU1/2. Cell Metab 10(4):273–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zaccagnini G, Maimone B, Di Stefano V, Fasanaro P, Greco S, Perfetti A et al (2014) Hypoxia-induced miR-210 modulates tissue response to acute peripheral ischemia. Antioxid Redox Signal 21(8):1177–1188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Fasanaro P, D’Alessandra Y, Di Stefano V, Melchionna R, Romani S, Pompilio G et al (2008) MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. J Biol Chem 283(23):15878–15883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kim HW, Haider HK, Jiang S, Ashraf M (2009) Ischemic preconditioning augments survival of stem cells via miR-210 expression by targeting caspase-8-associated protein 2. J Biol Chem 284(48):33161–33168

    Article  PubMed  Google Scholar 

  90. Kim HW, Jiang S, Ashraf M, Haider KH (2012) Stem cell-based delivery of Hypoxamir-210 to the infarcted heart: implications on stem cell survival and preservation of infarcted heart function. J Mol Med 90(9):997–1010

    Article  CAS  PubMed  Google Scholar 

  91. Zaccagnini G, Maimone B, Fuschi P, Maselli D, Spinetti G, Gaetano C et al (2017) Overexpression of miR-210 and its significance in ischemic tissue damage. Sci Rep 7(1):1–10

    Article  CAS  Google Scholar 

  92. Guan Y, Song X, Sun W, Wang Y, Liu B (2019) Effect of hypoxia-induced microRNA-210 expression on cardiovascular disease and the underlying mechanism. Oxidative medicine and cellular longevity

  93. Greco S, Gaetano C, Martelli F (2014) HypoxamiR regulation and function in ischemic cardiovascular diseases. Antioxid Redox Signal 21(8):1202–1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zaccagnini G, Maimone B, Fuschi P, Longo M, Da Silva D, Carrara M et al (2019) Hypoxia-induced miR-210 is necessary for vascular regeneration upon acute limb ischemia. Int J Mol Sci 21(1):8

    Article  Google Scholar 

  95. Gorin C, Rochefort GY, Bascetin R, Ying H, Lesieur J, Sadoine J et al (2016) Priming dental pulp stem cells with fibroblast growth factor-2 increases angiogenesis of implanted tissue-engineered constructs through hepatocyte growth factor and vascular endothelial growth factor secretion. Stem Cells Transl Med 5(3):392–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kaga T, Kawano H, Sakaguchi M, Nakazawa T, Taniyama Y, Morishita R (2012) Hepatocyte growth factor stimulated angiogenesis without inflammation: differential actions between hepatocyte growth factor, vascular endothelial growth factor and basic fibroblast growth factor. Vascul Pharmacol 57(1):3–9

    Article  CAS  PubMed  Google Scholar 

  97. Awada HK, Johnson NR, Wang Y (2014) Dual delivery of vascular endothelial growth factor and hepatocyte growth factor coacervate displays strong angiogenic effects. Macromol Biosci 14(5):679–686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Maltaneri RE, Schiappacasse A, Chamorro ME, Nesse AB, Vittori DC (2020) Aquaporin-1 plays a key role in erythropoietin-induced endothelial cell migration. Biochim Biophys Acta (BBA) 1867(1):118569

    Article  CAS  Google Scholar 

  99. Sanada F, Taniyama Y, Iekushi K, Azuma J, Okayama K, Kusunoki H et al (2009) Negative action of hepatocyte growth factor/c-Met system on angiotensin II signaling via ligand-dependent epithelial growth factor receptor degradation mechanism in vascular smooth muscle cells. Circ Res 105(7):667–675

    Article  CAS  PubMed  Google Scholar 

  100. Sanada F, Taniyama Y, Azuma J, Iekushi K, Dosaka N, Yokoi T et al (2009) Hepatocyte growth factor, but not vascular endothelial growth factor, attenuates angiotensin II–Induced endothelial progenitor cell senescence. Hypertension 53(1):77–82

    Article  CAS  PubMed  Google Scholar 

  101. Fan ZG, Qu XL, Chu P, Gao YL, Gao XF, Chen SL et al (2018) MicroRNA-210 promotes angiogenesis in acute myocardial infarction. Mol Med Rep 17(4):5658–5665

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Wang X, Liu Y, Hou H, Shao W, Huang D, Hao Z et al (2022) miRNA-29 aggravates myocardial infarction via inhibiting the PI3K/mTOR/HIF1α/VEGF pathway. Aging (Albany NY) 14(7):3129–3142

    Article  PubMed  Google Scholar 

  103. Gao S, Gao H, Dai L, Han Y, Lei Z, Wang X et al (2021) miR-126 regulates angiogenesis in myocardial ischemia by targeting HIF-1α. Exp Cell Res 409(2):112925

    Article  CAS  PubMed  Google Scholar 

  104. Ma W, Zhang X, Liu Y (2021) miR-124 promotes apoptosis and inhibits the proliferation of vessel endothelial cells through P38/MAPK and PI3K/AKT pathways, making it a potential mechanism of vessel endothelial injury in acute myocardial infarction. Exp Ther Med 22(6):1383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Gui Y, Chen J, Hu J, Liao C, Ouyang M, Deng L et al (2020) Soluble epoxide hydrolase inhibitors improve angiogenic function of endothelial progenitor cells via ERK/p38-mediated miR-126 upregulation in myocardial infarction mice after exercise. Exp Cell Res 397(2):112360

    Article  CAS  PubMed  Google Scholar 

  106. Pang J, Ye L, Chen Q, Wang J, Yang X, He W et al (2020) The effect of MicroRNA-101 on angiogenesis of human umbilical vein endothelial cells during hypoxia and in mice with myocardial infarction. Biomed Res Int 2020:5426971

    Article  PubMed  PubMed Central  Google Scholar 

  107. Song W, Liang Q, Cai M, Tian Z (2020) HIF-1α-induced up-regulation of microRNA-126 contributes to the effectiveness of exercise training on myocardial angiogenesis in myocardial infarction rats. J Cell Mol Med 24(22):12970–12979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Li X, Wei C, Zhang Z, Jin Q, Xiao X (2020) MiR-134-5p regulates myocardial apoptosis and angiogenesis by directly targeting KDM2A after myocardial infarction. Int Heart J 61(4):815–821

    Article  CAS  PubMed  Google Scholar 

  109. Hong Y, He H, Jiang G, Zhang H, Tao W, Ding Y et al (2020) miR-155–5p inhibition rejuvenates aged mesenchymal stem cells and enhances cardioprotection following infarction. Aging Cell 19(4):13128

    Article  Google Scholar 

  110. Zaccagnini G, Maimone B, Fuschi P, Longo M, Da Silva D, Carrara M et al (2019) Hypoxia-induced miR-210 is necessary for vascular regeneration upon acute limb ischemia. Int J Mol Sci 21(1):129

    Article  PubMed  PubMed Central  Google Scholar 

  111. Wang X, Shang Y, Dai S, Wu W, Yi F, Cheng L (2020) MicroRNA-16-5p aggravates myocardial infarction injury by targeting the expression of insulin receptor substrates 1 and mediating myocardial apoptosis and angiogenesis. Curr Neurovasc Res 17(1):11–17

    Article  CAS  PubMed  Google Scholar 

  112. Li X, Xue X, Sun Y, Chen L, Zhao T, Yang W et al (2019) MicroRNA-326-5p enhances therapeutic potential of endothelial progenitor cells for myocardial infarction. Stem Cell Res Ther 10(1):323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Li S-N, Li P, Liu W-H, Shang J-J, Qiu S-L, Zhou M-X et al (2019) Danhong injection enhances angiogenesis after myocardial infarction by activating MiR-126/ERK/VEGF pathway. Biomed Pharmacother 120:109538

    Article  CAS  PubMed  Google Scholar 

  114. Yan M, Chen K, Sun R, Lin K, Qian X, Yuan M et al (2019) Glucose impairs angiogenesis and promotes ventricular remodelling following myocardial infarction via upregulation of microRNA-17. Exp Cell Res 381(2):191–200

    Article  CAS  PubMed  Google Scholar 

  115. Li CC, Qiu XT, Sun Q, Zhou JP, Yang HJ, Wu WZ et al (2019) Endogenous reduction of miR-185 accelerates cardiac function recovery in mice following myocardial infarction via targeting of cathepsin K. J Cell Mol Med 23(2):1164–1173

    Article  CAS  PubMed  Google Scholar 

  116. Dong J, Zhang Z, Huang H, Mo P, Cheng C, Liu J et al (2018) miR-10a rejuvenates aged human mesenchymal stem cells and improves heart function after myocardial infarction through KLF4. Stem Cell Res Ther 9(1):151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Yang LX, Wei CL, Guo ML, Zhang Y, Bai F, Ma SG (2017) Improvement of therapeutic effects of mesenchymal stem cells in myocardial infarction through genetic suppression of microRNA-142. Oncotarget 8(49):85549–85558

    Article  PubMed  PubMed Central  Google Scholar 

  118. Arif M, Pandey R, Alam P, Jiang S, Sadayappan S, Paul A et al (2017) MicroRNA-210-mediated proliferation, survival, and angiogenesis promote cardiac repair post myocardial infarction in rodents. J Mol Med (Berl) 95(12):1369–1385

    Article  CAS  PubMed  Google Scholar 

  119. Li K, Lin T, Chen L, Wang N (2017) MicroRNA-93 elevation after myocardial infarction is cardiac protective. Med Hypotheses 106:23–25

    Article  CAS  PubMed  Google Scholar 

  120. Zhu ML, Yin YL, Ping S, Yu HY, Wan GR, Jian X et al (2017) Berberine promotes ischemia-induced angiogenesis in mice heart via upregulation of microRNA-29b. Clin Exp Hypertens 39(7):672–679

    Article  CAS  PubMed  Google Scholar 

  121. Xiao L, He H, Ma L, Da M, Cheng S, Duan Y et al (2017) Effects of miR-29a and miR-101a expression on myocardial interstitial collagen generation after aerobic exercise in myocardial-infarcted rats. Arch Med Res 48(1):27–34

    Article  CAS  PubMed  Google Scholar 

  122. Garikipati VNS, Verma SK, Jolardarashi D, Cheng Z, Ibetti J, Cimini M et al (2017) Therapeutic inhibition of miR-375 attenuates post-myocardial infarction inflammatory response and left ventricular dysfunction via PDK-1-AKT signalling axis. Cardiovasc Res 113(8):938–949

    Article  CAS  PubMed  Google Scholar 

  123. Castellan RF, Vitiello M, Vidmar M, Johnstone S, Iacobazzi D, Mellis D et al (2020) miR-96 and miR-183 differentially regulate neonatal and adult postinfarct neovascularization. JCI Insight 5(14):e134888

    Article  PubMed  PubMed Central  Google Scholar 

  124. Templin C, Volkmann J, Emmert MY, Mocharla P, Müller M, Kraenkel N et al (2017) Increased proangiogenic activity of mobilized CD34+ progenitor cells of patients with acute ST-segment-elevation myocardial infarction: role of differential MicroRNA-378 expression. Arterioscler Thromb Vasc Biol 37(2):341–349

    Article  CAS  PubMed  Google Scholar 

  125. Fiedler J, Jazbutyte V, Kirchmaier BC, Gupta SK, Lorenzen J, Hartmann D et al (2011) MicroRNA-24 regulates vascularity after myocardial infarction. Circulation 124(6):720–730

    Article  CAS  PubMed  Google Scholar 

  126. Lu C, Wang X, Ha T, Hu Y, Liu L, Zhang X et al (2015) Attenuation of cardiac dysfunction and remodeling of myocardial infarction by microRNA-130a are mediated by suppression of PTEN and activation of PI3K dependent signaling. J Mol Cell Cardiol 89(Pt A):87–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Kang HJ, Kang WS, Hong MH, Choe N, Kook H, Jeong HC et al (2015) Involvement of miR-34c in high glucose-insulted mesenchymal stem cells leads to inefficient therapeutic effect on myocardial infarction. Cell Signal 27(11):2241–2251

    Article  CAS  PubMed  Google Scholar 

  128. Wen Z, Huang W, Feng Y, Cai W, Wang Y, Wang X et al (2014) MicroRNA-377 regulates mesenchymal stem cell-induced angiogenesis in ischemic hearts by targeting VEGF. PLoS ONE 9(9):104666

    Article  ADS  Google Scholar 

  129. Meloni M, Marchetti M, Garner K, Littlejohns B, Sala-Newby G, Xenophontos N et al (2013) Local inhibition of microRNA-24 improves reparative angiogenesis and left ventricle remodeling and function in mice with myocardial infarction. Mol Ther 21(7):1390–1402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. van Mil A, Vrijsen KR, Goumans MJ, Metz CH, Doevendans PA, Sluijter JP (2013) MicroRNA-1 enhances the angiogenic differentiation of human cardiomyocyte progenitor cells. J Mol Med (Berl) 91(8):1001–1012

    Article  PubMed  Google Scholar 

  131. Chen JJ, Zhou SH (2011) Mesenchymal stem cells overexpressing MiR-126 enhance ischemic angiogenesis via the AKT/ERK-related pathway. Cardiol J 18(6):675–681

    Article  PubMed  Google Scholar 

  132. Hu S, Huang M, Li Z, Jia F, Ghosh Z, Lijkwan MA et al (2010) MicroRNA-210 as a novel therapy for treatment of ischemic heart disease. Circulation 122(11 Suppl):S124–S131

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Bonauer A, Carmona G, Iwasaki M, Mione M, Koyanagi M, Fischer A et al (2009) MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science 324(5935):1710–1713

    Article  ADS  CAS  PubMed  Google Scholar 

  134. Huang F, Zhu X, Hu XQ, Fang ZF, Tang L, Lu XL et al (2013) Mesenchymal stem cells modified with miR-126 release angiogenic factors and activate Notch ligand Delta-like-4, enhancing ischemic angiogenesis and cell survival. Int J Mol Med 31(2):484–492

    Article  CAS  PubMed  Google Scholar 

  135. Bellera N, Barba I, Rodriguez-Sinovas A, Ferret E, Asín MA, Gonzalez-Alujas MT et al (2014) Single intracoronary injection of encapsulated antagomir-92a promotes angiogenesis and prevents adverse infarct remodeling. J Am Heart Assoc 3(5):e000946

    Article  PubMed  PubMed Central  Google Scholar 

  136. Wang S, Aurora AB, Johnson BA, Qi X, McAnally J, Hill JA et al (2008) The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell 15(2):261–271

    Article  PubMed  PubMed Central  Google Scholar 

  137. Ghosh G, Subramanian IV, Adhikari N, Zhang X, Joshi HP, Basi D et al (2010) Hypoxia-induced microRNA-424 expression in human endothelial cells regulates HIF-α isoforms and promotes angiogenesis. J Clin Invest 120(11):4141–4154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. McIntosh BE, Hogenesch JB, Bradfield CA (2010) Mammalian Per-Arnt-Sim proteins in environmental adaptation. Annu Rev Physiol 72:625–645

    Article  CAS  PubMed  Google Scholar 

  139. Shao A, Lang Y, Wang M, Qin C, Kuang Y, Mei Y et al (2020) Bclaf1 is a direct target of HIF-1 and critically regulates the stability of HIF-1α under hypoxia. Oncogene 39(13):2807–2818

    Article  CAS  PubMed  Google Scholar 

  140. Weidemann A, Johnson RS (2008) Biology of HIF-1alpha. Cell Death Differ 15(4):621–627

    Article  CAS  PubMed  Google Scholar 

  141. Gaete D, Rodriguez D, Watts D, Sormendi S, Chavakis T, Wielockx B (2021) HIF-prolyl hydroxylase domain proteins (PHDs) in cancer—potential targets for anti-tumor therapy? Cancers 13(5):988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Strowitzki MJ, Cummins EP, Taylor CT (2019) Protein hydroxylation by hypoxia-inducible factor (HIF) hydroxylases: unique or ubiquitous? Cells 8(5):384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Taguchi A, Yanagisawa K, Tanaka M, Cao K, Matsuyama Y, Goto H et al (2008) Identification of hypoxia-inducible factor-1 alpha as a novel target for miR-17-92 microRNA cluster. Cancer Res 68(14):5540–5545

    Article  CAS  PubMed  Google Scholar 

  144. Rane S, He M, Sayed D, Vashistha H, Malhotra A, Sadoshima J et al (2009) Downregulation of miR-199a derepresses hypoxia-inducible factor-1alpha and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes. Circ Res 104(7):879–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Gogiraju R, Xu X, Bochenek ML, Steinbrecher JH, Lehnart SE, Wenzel P et al (2015) Endothelial p53 deletion improves angiogenesis and prevents cardiac fibrosis and heart failure induced by pressure overload in mice. J Am Heart Assoc 4(2):89

    Article  Google Scholar 

  146. Li Y, Yan C, Fan J, Hou Z, Han Y (2021) MiR-221-3p targets Hif-1α to inhibit angiogenesis in heart failure. Lab Invest 101(1):104–115

    Article  CAS  PubMed  Google Scholar 

  147. Fan J, Li H, Nie X, Yin Z, Zhao Y, Zhang X et al (2018) MiR-665 aggravates heart failure via suppressing CD34-mediated coronary microvessel angiogenesis. Aging (Albany NY) 10(9):2459–2479

    Article  CAS  PubMed  Google Scholar 

  148. Zhao Y, Yan M, Chen C, Gong W, Yin Z, Li H et al (2018) MiR-124 aggravates failing hearts by suppressing CD151-facilitated angiogenesis in heart. Oncotarget 9(18):14382–14396

    Article  PubMed  PubMed Central  Google Scholar 

  149. Wang S, Wu J, You J, Shi H, Xue X, Huang J et al (2018) HSF1 deficiency accelerates the transition from pressure overload-induced cardiac hypertrophy to heart failure through endothelial miR-195a-3p-mediated impairment of cardiac angiogenesis. J Mol Cell Cardiol 118:193–207

    Article  CAS  PubMed  Google Scholar 

  150. Joladarashi D, Garikipati VNS, Thandavarayan RA, Verma SK, Mackie AR, Khan M et al (2015) Enhanced cardiac regenerative ability of stem cells after ischemia-reperfusion injury: role of human CD34+ cells deficient in MicroRNA-377. J Am Coll Cardiol 66(20):2214–2226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Duan Q, Yang L, Gong W, Chaugai S, Wang F, Chen C et al (2015) MicroRNA-214 Is upregulated in heart failure patients and suppresses XBP1-mediated endothelial cells angiogenesis. J Cell Physiol 230(8):1964–1973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Wang R, Bai Z, Wen X, Du H, Zhou L, Tang Z et al (2019) MiR-152-3p regulates cell proliferation, invasion and extracellular matrix expression through by targeting FOXF1 in keloid fibroblasts. Life Sci 234:116779

    Article  CAS  PubMed  Google Scholar 

  153. Łuczkowska K, Rogińska D, Ulańczyk Z, Machaliński B (2020) Effect of bortezomib on global gene expression in PC12-derived nerve cells. Int J Mol Sci 21(3):751

    Article  PubMed  PubMed Central  Google Scholar 

  154. Marcon BH, Rebelatto CK, Cofré AR, Dallagiovanna B, Correa A (2020) DDX6 helicase behavior and protein partners in human adipose tissue-derived stem cells during early adipogenesis and osteogenesis. Int J Mol Sci 21(7):2607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Nicklas S, Okawa S, Hillje A-L, González-Cano L, Del Sol A, Schwamborn JC (2015) The RNA helicase DDX6 regulates cell-fate specification in neural stem cells via miRNAs. Nucleic Acids Res 43(5):2638–2654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Chauderlier A, Gilles M, Spolcova A, Caillierez R, Chwastyniak M, Kress M et al (2018) Tau/DDX6 interaction increases microRNA activity. Biochim Biophys Acta (BBA) 1861(8):762–772

    Article  CAS  Google Scholar 

  157. de Vries S, Naarmann-de Vries IS, Urlaub H, Lue H, Bernhagen J, Ostareck DH et al (2013) Identification of DEAD-box RNA helicase 6 (DDX6) as a cellular modulator of vascular endothelial growth factor expression under hypoxia. J Biol Chem 288(8):5815–5827

    Article  PubMed  PubMed Central  Google Scholar 

  158. Karaman S, Leppänen V-M, Alitalo K (2018) Vascular endothelial growth factor signaling in development and disease. Development 145(14):151019

    Article  Google Scholar 

  159. Saito K, Kondo E, Matsushita M (2011) MicroRNA 130 family regulates the hypoxia response signal through the P-body protein DDX6. Nucleic Acids Res 39(14):6086–6099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Zhao Z, Wu C, He X, Zhao E, Hu S, Han Y et al (2021) miR-152-3p aggravates vascular endothelial cell dysfunction by targeting DEAD-box helicase 6 (DDX6) under hypoxia. Bioengineered 12(1):4899–4910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Choi GH, Ko KH, Kim JO, Kim J, Oh SH, Han IB et al (2016) Association of miR-34a, miR-130a, miR-150 and miR-155 polymorphisms with the risk of ischemic stroke. Int J Mol Med 38(1):345–356

    Article  CAS  PubMed  Google Scholar 

  162. He QW, Li Q, Jin HJ, Zhi F, Suraj B, Zhu YY et al (2016) MiR-150 regulates poststroke cerebral angiogenesis via vascular endothelial growth factor in rats. CNS Neurosci Ther 22(6):507–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Fang Z, He QW, Li Q, Chen XL, Baral S, Jin HJ et al (2016) MicroRNA-150 regulates blood-brain barrier permeability via Tie-2 after permanent middle cerebral artery occlusion in rats. FASEB J 30(6):2097–2107

    Article  CAS  PubMed  Google Scholar 

  164. Liu X, Xu Y, Han L, Yi Y (2018) Reassessing the potential of Myb-targeted anti-cancer therapy. J Cancer 9(7):1259

    Article  PubMed  PubMed Central  Google Scholar 

  165. Yang H, Zhang H, Ge S, Ning T, Bai M, Li J et al (2018) Exosome-derived miR-130a activates angiogenesis in gastric cancer by targeting C-MYB in vascular endothelial cells. Mol Ther 26(10):2466–2475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Wang W, Li C, Li W, Kong L, Qian A, Hu N et al (2014) MiR-150 enhances the motility of EPCs in vitro and promotes EPCs homing and thrombus resolving in vivo. Thromb Res 133(4):590–598

    Article  CAS  PubMed  Google Scholar 

  167. Sun X, Zhang C, Cao Y, Liu E (2019) miR-150 suppresses tumor growth in melanoma through downregulation of MYB. Oncol Res 27(3):317

    Article  PubMed  PubMed Central  Google Scholar 

  168. Zhang Y, Liu D, Chen X, Li J, Li L, Bian Z et al (2010) Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell 39(1):133–144

    Article  CAS  PubMed  Google Scholar 

  169. Zhang S, Chen A, Chen X (2021) A feedback loop involving microRNA-150 and MYB regulates VEGF expression in brain microvascular endothelial cells after oxygen glucose deprivation. Front Physiol 12:178

    Google Scholar 

  170. Zhang S, Chen A, Chen X (2021) A feedback loop involving MicroRNA-150 and MYB regulates VEGF expression in brain microvascular endothelial cells after oxygen glucose deprivation. Front Physiol 12:619904

    Article  PubMed  PubMed Central  Google Scholar 

  171. Zheng T, Shi Y, Zhang J, Peng J, Zhang X, Chen K et al (2019) MiR-130a exerts neuroprotective effects against ischemic stroke through PTEN/PI3K/AKT pathway. Biomed Pharmacother 117:109117

    Article  CAS  PubMed  Google Scholar 

  172. Wang Y, Wang MD, Xia YP, Gao Y, Zhu YY, Chen SC et al (2018) MicroRNA-130a regulates cerebral ischemia–induced blood–brain barrier permeability by targeting Homeobox A5. FASEB J 32(2):935–944

    Article  CAS  PubMed  Google Scholar 

  173. Dasari VR, Velpula KK, Kaur K, Fassett D, Klopfenstein JD, Dinh DH et al (2010) Cord blood stem cell-mediated induction of apoptosis in glioma downregulates X-linked inhibitor of apoptosis protein (XIAP). PLoS ONE 5(7):e11813

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  174. Obexer P, Ausserlechner MJ (2014) X-linked inhibitor of apoptosis protein–a critical death resistance regulator and therapeutic target for personalized cancer therapy. Front Oncol 4:197

    Article  PubMed  PubMed Central  Google Scholar 

  175. Siegel C, Li J, Liu F, Benashski SE, McCullough LD (2011) miR-23a regulation of X-linked inhibitor of apoptosis (XIAP) contributes to sex differences in the response to cerebral ischemia. Proc Natl Acad Sci 108(28):11662–11667

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  176. Xa Z, Huang L, Zhao Y, Tan W (2013) Downregulation of miR-130a contributes to cisplatin resistance in ovarian cancer cells by targeting X-linked inhibitor of apoptosis (XIAP) directly. Acta Biochim Biophys Sin 45(12):995–1001

    Article  Google Scholar 

  177. Jost PJ, Vucic D (2020) Regulation of cell death and immunity by XIAP. Cold Spring Harb Perspect Biol 12(8):a036426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Kairisalo M, Korhonen L, Sepp M, Pruunsild P, Kukkonen JP, Kivinen J et al (2009) NF-κB-dependent regulation of brain-derived neurotrophic factor in hippocampal neurons by X-linked inhibitor of apoptosis protein. Eur J Neurosci 30(6):958–966

    Article  PubMed  Google Scholar 

  179. Wang W, Wang Q, Yu W, Chen L, Li Z (2018) Efficacy of phosphocreatine pre-administration on XIAP and Smac in ischemic penumbra of rats with focal cerebral ischemia reperfusion injury. Acta Cir Bras 33:117–124

    Article  CAS  PubMed  Google Scholar 

  180. Deng W, Fan C, Zhao Y, Mao Y, Li J, Zhang Y et al (2020) MicroRNA-130a regulates neurological deficit and angiogenesis in rats with ischaemic stroke by targeting XIAP. J Cell Mol Med 24(18):10987–11000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Schutt RC, Burdick MD, Strieter RM, Mehrad B, Keeley EC (2012) Plasma CXCL12 levels as a predictor of future stroke. Stroke 43(12):3382–3386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Gu X-L, Liu L, Lu X-D, Liu Z-R (2016) Serum CXCL12 levels as a novel predictor of future stroke recurrence in patients with acute ischemic stroke. Mol Neurobiol 53(5):2807–2814

    Article  CAS  PubMed  Google Scholar 

  183. Mei J, Li MQ, Li DJ, Sun HX (2017) MicroRNA expression profiles and networks in CXCL12-stimulated human endometrial stromal cells. Mol Med Rep 15(1):249–255

    Article  CAS  PubMed  Google Scholar 

  184. Jiang D, Sun X, Wang S, Man H (2019) Upregulation of miR-874-3p decreases cerebral ischemia/reperfusion injury by directly targeting BMF and BCL2L13. Biomed Pharmacother 117:108941

    Article  CAS  PubMed  Google Scholar 

  185. Wang W, Li M, Wang Y, Li Q, Deng G, Wan J et al (2016) GSK-3β inhibitor TWS119 attenuates rtPA-induced hemorrhagic transformation and activates the Wnt/β-catenin signaling pathway after acute ischemic stroke in rats. Mol Neurobiol 53(10):7028–7036

    Article  CAS  PubMed  Google Scholar 

  186. Xu Y, Zhang G, Kang Z, Xu Y, Jiang W, Zhang S (2016) Cornin increases angiogenesis and improves functional recovery after stroke via the Ang1/Tie2 axis and the Wnt/β-catenin pathway. Arch Pharmacal Res 39(1):133–142

    Article  CAS  Google Scholar 

  187. Cai J, Guan H, Fang L, Yang Y, Zhu X, Yuan J et al (2013) MicroRNA-374a activates Wnt/β-catenin signaling to promote breast cancer metastasis. J Clin Invest 123(2):36

    Google Scholar 

  188. Xie K, Cai Y, Yang P, Du F, Wu K (2020) Upregulating microRNA-874-3p inhibits CXCL12 expression to promote angiogenesis and suppress inflammatory response in ischemic stroke. Am J Physiol Cell Physiol 319(3):C579–C588

    Article  CAS  PubMed  Google Scholar 

  189. Bruderer M, Alini M, Stoddart MJ (2013) Role of HOXA9 and VEZF1 in endothelial biology. J Vasc Res 50(4):265–278

    Article  CAS  PubMed  Google Scholar 

  190. Sugiyama A, Hirashima M (2022) Fetal nuchal edema and developmental anomalies caused by gene mutations in mice. Front Cell Dev Biol 10:949013

    Article  PubMed  PubMed Central  Google Scholar 

  191. Du K, Zhao C, Wang L, Wang Y, Zhang K-Z, Shen X-Y et al (2019) MiR-191 inhibit angiogenesis after acute ischemic stroke targeting VEZF1. Aging (Albany NY) 11(9):2762

    Article  CAS  PubMed  Google Scholar 

  192. Zhao P, Xu S, Huang Z, Deng P, Zhang Y (2021) Identify specific gene pairs for subarachnoid hemorrhage based on wavelet analysis and genetic algorithm. PLoS ONE 16(6):e0253219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. AlAbdi L, He M, Yang Q, Norvil AB, Gowher H (2018) The transcription factor Vezf1 represses the expression of the antiangiogenic factor Cited2 in endothelial cells. J Biol Chem 293(28):11109–11118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Zou Z, Ocaya PA, Sun H, Kuhnert F, Stuhlmann H (2010) Targeted Vezf1-null mutation impairs vascular structure formation during embryonic stem cell differentiation. Arterioscler Thromb Vasc Biol 30(7):1378–1388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Zhang T, Xu D, Trefts E, Lv M, Inuzuka H, Song G et al (2023) Metabolic orchestration of cell death by AMPK-mediated phosphorylation of RIPK1. Science 380(6652):1372–1380

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  196. Lin SC, Hardie DG (2018) AMPK: sensing glucose as well as cellular energy status. Cell Metab 27(2):299–313

    Article  CAS  PubMed  Google Scholar 

  197. Green DR, Galluzzi L, Kroemer G (2014) Cell biology. Metab Control Cell Death Sci 345(6203):1250256

    Google Scholar 

  198. Yuan Y, Zhang Z, Wang Z, Liu J (2019) MiRNA-27b Regulates angiogenesis by targeting AMPK in mouse ischemic stroke model. Neuroscience 398:12–22

    Article  CAS  PubMed  Google Scholar 

  199. Yuan J, Amin P, Ofengeim D (2019) Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases. Nat Rev Neurosci 20(1):19–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Green DR (2019) The coming decade of cell death research: five riddles. Cell 177(5):1094–1107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Wang H, Sun L, Su L, Rizo J, Liu L, Wang LF et al (2014) Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol Cell 54(1):133–146

    Article  CAS  PubMed  Google Scholar 

  202. Henry CM, Martin SJ (2017) Caspase-8 acts in a non-enzymatic role as a scaffold for assembly of a pro-inflammatory “FADDosome” complex upon TRAIL stimulation. Mol Cell 65(4):715–29.e5

    Article  CAS  PubMed  Google Scholar 

  203. Pan G, Ni J, Wei YF, Yu G, Gentz R, Dixit VM (1997) An antagonist decoy receptor and a death domain-containing receptor for TRAIL. Science 277(5327):815–818

    Article  CAS  PubMed  Google Scholar 

  204. Linkermann A, Bräsen JH, Darding M, Jin MK, Sanz AB, Heller JO et al (2013) Two independent pathways of regulated necrosis mediate ischemia-reperfusion injury. Proc Natl Acad Sci U S A 110(29):12024–12029

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  205. Feng N, Wang Z, Wu Y, Zheng H, Jiang X, Wang Z et al (2022) ADAMTS9-AS2 promotes angiogenesis of brain microvascular endothelial cells through regulating miR-185-5p/IGFBP-2 axis in ischemic stroke. Mol Neurobiol 59(4):2593–2604

    Article  CAS  PubMed  Google Scholar 

  206. Sun Y, Ding S, Fan Y, Shen F, Dong Q, Zhao B et al (2021) MiR-429 inhibits the angiogenesis of human brain microvascular endothelial cells through SNAI2-mediated GSK-3β/β-catenin pathway. Comput Math Methods Med 2021:6753926

    Article  PubMed  PubMed Central  Google Scholar 

  207. Sun P, Ma F, Xu Y, Zhou C, Stetler RA, Yin K-J (2021) Genetic deletion of endothelial microRNA-15a/16-1 promotes cerebral angiogenesis and neurological recovery in ischemic stroke through Src signaling pathway. J Cereb Blood Flow Metab 41(10):2725–2742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Liang C, Ni GX, Shi XL, Jia L, Wang YL (2020) Astragaloside IV regulates the HIF/VEGF/Notch signaling pathway through miRNA-210 to promote angiogenesis after ischemic stroke. Restor Neurol Neurosci 38(3):271–282

    CAS  PubMed  Google Scholar 

  209. Li J, Lv H, Che Y (2020) microRNA-381-3p confers protection against ischemic stroke through promoting angiogenesis and inhibiting inflammation by suppressing Cebpb and Map3k8. Cell Mol Neurobiol 40(8):1307–1319

    Article  CAS  PubMed  Google Scholar 

  210. Sun P, Zhang K, Hassan SH, Zhang X, Tang X, Pu H et al (2020) Endothelium-targeted deletion of microRNA-15a/16-1 promotes poststroke angiogenesis and improves long-term neurological recovery. Circ Res 126(8):1040–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Fan J, Xu W, Nan S, Chang M, Zhang Y (2020) MicroRNA-384-5p promotes endothelial progenitor cell proliferation and angiogenesis in cerebral ischemic stroke through the delta-likeligand 4-mediated notch signaling pathway. Cerebrovasc Dis 49(1):39–54

    Article  CAS  PubMed  Google Scholar 

  212. Peng H, Yang H, Xiang X, Li S (2020) ΜicroRNA-221 participates in cerebral ischemic stroke by modulating endothelial cell function by regulating the PTEN/PI3K/AKT pathway. Exp Ther Med 19(1):443–450

    CAS  PubMed  Google Scholar 

  213. Liang Z, Chi YJ, Lin GQ, Luo SH, Jiang QY, Chen YK (2018) MiRNA-26a promotes angiogenesis in a rat model of cerebral infarction via PI3K/AKT and MAPK/ERK pathway. Eur Rev Med Pharmacol Sci 22(11):3485–3492

    CAS  PubMed  Google Scholar 

  214. Pan Q, Zheng J, Du D, Liao X, Ma C, Yang Y et al (2018) MicroRNA-126 priming enhances functions of endothelial progenitor cells under physiological and hypoxic conditions and their therapeutic efficacy in cerebral ischemic damage. Stem Cells Int 2018:2912347

    Article  PubMed  PubMed Central  Google Scholar 

  215. Shi F-P, Wang X-H, Zhang H-X, Shang M-M, Liu X-X, Sun H-M et al (2018) MiR-103 regulates the angiogenesis of ischemic stroke rats by targeting vascular endothelial growth factor (VEGF). Iran J Basic Med Sci 21(3):318–324

    PubMed  PubMed Central  Google Scholar 

  216. Shan C, Ma Y (2018) MicroRNA-126/stromal cell-derived factor 1/C-X-C chemokine receptor type 7 signaling pathway promotes post-stroke angiogenesis of endothelial progenitor cell transplantation. Mol Med Rep 17(4):5300–5305

    CAS  PubMed  Google Scholar 

  217. Su ZF, Sun ZW, Zhang Y, Wang S, Yu QG, Wu ZB (2017) Regulatory effects of miR-146a/b on the function of endothelial progenitor cells in acute ischemic stroke in mice. Kaohsiung J Med Sci 33(8):369–378

    Article  PubMed  Google Scholar 

  218. Fan Y, Ding S, Sun Y, Zhao B, Pan Y, Wan J (2018) MiR-377 regulates inflammation and angiogenesis in rats after cerebral ischemic injury. J Cell Biochem 119(1):327–337

    Article  CAS  PubMed  Google Scholar 

  219. Zeng L-L, He X-S, Liu J-R, Zheng C-B, Wang Y-T, Yang G-Y (2016) Lentivirus-mediated overexpression of microRNA-210 improves long-term outcomes after focal cerebral ischemia in mice. CNS Neurosci Ther 22(12):961–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Sun J, Tao S, Liu L, Guo D, Xia Z, Huang M (2016) miR-140-5p regulates angiogenesis following ischemic stroke by targeting VEGFA. Mol Med Rep 13(5):4499–4505

    Article  CAS  PubMed  Google Scholar 

  221. Li Q, He Q, Baral S, Mao L, Li Y, Jin H et al (2016) MicroRNA-493 regulates angiogenesis in a rat model of ischemic stroke by targeting MIF. Febs J 283(9):1720–1733

    Article  CAS  PubMed  Google Scholar 

  222. Caballero-Garrido E, Pena-Philippides JC, Lordkipanidze T, Bragin D, Yang Y, Erhardt EB et al (2015) In vivo inhibition of miR-155 promotes recovery after experimental mouse stroke. J Neurosci 35(36):12446–12464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Li Y, Mao L, Gao Y, Baral S, Zhou Y, Hu B (2015) MicroRNA-107 contributes to post-stroke angiogenesis by targeting Dicer-1. Sci Rep 5:13316

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  224. Feng N, Wang Z, Zhang Z, He X, Wang C, Zhang L (2015) miR-487b promotes human umbilical vein endothelial cell proliferation, migration, invasion and tube formation through regulating THBS1. Neurosci Lett 591:1–7

    Article  CAS  PubMed  Google Scholar 

  225. Lou YL, Guo F, Liu F, Gao FL, Zhang PQ, Niu X et al (2012) miR-210 activates notch signaling pathway in angiogenesis induced by cerebral ischemia. Mol Cell Biochem 370(1–2):45–51

    Article  CAS  PubMed  Google Scholar 

  226. Ahmadi R, Heidarian E, Fadaei R, Moradi N, Malek M, Fallah S (2018) miR-342–5p expression levels in coronary artery disease patients and its association with inflammatory cytokines. Clin Lab 64(4):84

    Google Scholar 

  227. Wei Y, Nazari-Jahantigh M, Chan L, Zhu M, Heyll K, Corbalán-Campos J et al (2013) The microRNA-342-5p fosters inflammatory macrophage activation through an Akt1-and microRNA-155–dependent pathway during atherosclerosis. Circulation 127(15):1609–1619

    Article  CAS  PubMed  Google Scholar 

  228. Qu Y, Liu D, Jia H, Yang Z (2019) Circular RNA rno_circ_0004002 regulates cell proliferation, apoptosis, and epithelial-mesenchymal transition through targeting miR-342-5p and Wnt3a in anorectal malformations. J Cell Biochem 120(9):15483–15493

    Article  CAS  PubMed  Google Scholar 

  229. Luis TC, Weerkamp F, Naber BA, Baert MR, de Haas EF, Nikolic T et al (2009) Wnt3a deficiency irreversibly impairs hematopoietic stem cell self-renewal and leads to defects in progenitor cell differentiation. Blood J Am Soc Hematol 113(3):546–554

    CAS  Google Scholar 

  230. Sun X, Zhang R, Lin X, Xu X (2008) Wnt3a regulates the development of cardiac neural crest cells by modulating expression of cysteine-rich intestinal protein 2 in rhombomere 6. Circ Res 102(7):831–839

    Article  CAS  PubMed  Google Scholar 

  231. Ramsey SA, Vengrenyuk Y, Menon P, Podolsky I, Feig JE, Aderem A et al (2014) Epigenome-guided analysis of the transcriptome of plaque macrophages during atherosclerosis regression reveals activation of the Wnt signaling pathway. PLoS Genet 10(12):e1004828

    Article  PubMed  PubMed Central  Google Scholar 

  232. Wu X, Wang J, Jiang H, Hu Q, Chen J, Zhang J et al (2014) Wnt3a activates β1-integrin and regulates migration and adhesion of vascular smooth muscle cells. Mol Med Rep 9(4):1159–1164

    Article  CAS  PubMed  Google Scholar 

  233. Sun H, Feng J, Ma Y, Cai D, Luo Y, Wang Q et al (2021) Down-regulation of microRNA-342-5p or up-regulation of Wnt3a Inhibits angiogenesis and maintains atherosclerotic plaque stability in atherosclerosis mice. Nanoscale Res Lett 16(1):165

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  234. Di M, Zhang Y, Zeng R, Liu X, Chen W, Zhang M et al (2021) The pro-angiogenesis effect of miR33a-5p/Ets-1/DKK1 signaling in ox-LDL induced HUVECs. Int J Biol Sci 17(15):4122–4139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Zhang Y, Liu Y, Zhang H, Wang M, Zhang J (2015) Mmu-miR-351 attenuates the survival of cardiac arterial endothelial cells through targeting STAT3 in the atherosclerotic mice. Biochem Biophys Res Commun 468(1–2):300–305

    Article  CAS  PubMed  Google Scholar 

  236. Liang T, Gao F, Jiang J, Lu YW, Zhang F, Wang Y et al (2020) Loss of phosphatase and tensin homolog promotes cardiomyocyte proliferation and cardiac repair after myocardial infarction. Circulation 142(22):2196–2199

    Article  PubMed  PubMed Central  Google Scholar 

  237. Wang K, Liu J, Li Y-L, Li J-P, Zhang R (2022) Ubiquitination/de-ubiquitination: a promising therapeutic target for PTEN reactivation in cancer. Biochim Biophys Acta (BBA) 1877(3):188723

    CAS  Google Scholar 

  238. Shao C, Li Z, Ahmad N, Liu X (2017) Regulation of PTEN degradation and NEDD4-1 E3 ligase activity by Numb. Cell Cycle 16(10):957–967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Huang S, Li X, Zheng H, Si X, Li B, Wei G et al (2019) Loss of super-enhancer-regulated circRNA Nfix induces cardiac regeneration after myocardial infarction in adult mice. Circulation 139(25):2857–2876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Bersell K, Arab S, Haring B, Kühn B (2009) Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell 138(2):257–270

    Article  CAS  PubMed  Google Scholar 

  241. Vasjari L, Bresan S, Biskup C, Pai G, Rubio I (2019) Ras signals principally via Erk in G1 but cooperates with PI3K/Akt for Cyclin D induction and S-phase entry. Cell Cycle 18(2):204–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Skotheim JM, Di Talia S, Siggia ED, Cross FR (2008) Positive feedback of G1 cyclins ensures coherent cell cycle entry. Nature 454(7202):291–296

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  243. Santos SD, Wollman R, Meyer T, Ferrell JE Jr (2012) Spatial positive feedback at the onset of mitosis. Cell 149(7):1500–1513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Araujo AR, Gelens L, Sheriff RS, Santos SD (2016) Positive feedback keeps duration of mitosis temporally insulated from upstream cell-cycle events. Mol Cell 64(2):362–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Li M, Zheng H, Han Y, Chen Y, Li B, Chen G et al (2021) LncRNA Snhg1-driven self-reinforcing regulatory network promoted cardiac regeneration and repair after myocardial infarction. Theranostics 11(19):9397–9414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Lee S, Kopp F, Chang TC, Sataluri A, Chen B, Sivakumar S et al (2016) Noncoding RNA NORAD regulates genomic stability by sequestering PUMILIO proteins. Cell 164(1–2):69–80

    Article  CAS  PubMed  Google Scholar 

  247. Yang Z, Zhao Y, Lin G, Zhou X, Jiang X, Zhao H (2019) Noncoding RNA activated by DNA damage (NORAD): biologic function and mechanisms in human cancers. Clin Chim Acta 489:5–9

    Article  CAS  PubMed  Google Scholar 

  248. Soghli N, Yousefi T, Abolghasemi M, Qujeq D (2021) NORAD, a critical long non-coding RNA in human cancers. Life Sci 264:118665

    Article  CAS  PubMed  Google Scholar 

  249. Miao Z, Guo X, Tian L (2019) The long noncoding RNA NORAD promotes the growth of gastric cancer cells by sponging miR-608. Gene 687:116–124

    Article  CAS  PubMed  Google Scholar 

  250. Shi P, Zhang J, Li X, Li W, Li H, Fu P (2021) Long non-coding RNA NORAD inhibition upregulates microRNA-323a-3p to suppress tumorigenesis and development of breast cancer through the PUM1/eIF2 axis. Cell Cycle 20(13):1295–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Kawasaki N, Miwa T, Hokari S, Sakurai T, Ohmori K, Miyauchi K et al (2018) Long noncoding RNA NORAD regulates transforming growth factor-β signaling and epithelial-to-mesenchymal transition-like phenotype. Cancer Sci 109(7):2211–2220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Ekhteraei-Tousi S, Mohammad-Soltani B, Sadeghizadeh M, Mowla SJ, Parsi S, Soleimani M (2015) Inhibitory effect of hsa-miR-590-5p on cardiosphere-derived stem cells differentiation through downregulation of TGFB signaling. J Cell Biochem 116(1):179–191

    Article  CAS  PubMed  Google Scholar 

  253. Jafarzadeh M, Soltani BM (2016) Hsa-miR-590-5p interaction with SMAD3 transcript supports its regulatory effect on the TGFβ signaling pathway. Cell J 18(1):7–12

    PubMed  PubMed Central  Google Scholar 

  254. Nallamshetty S, Chan SY, Loscalzo J (2013) Hypoxia: a master regulator of microRNA biogenesis and activity. Free Radic Biol Med 64:20–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Zhao X, Wei X, Wang X, Qi G (2020) Long non-coding RNA NORAD regulates angiogenesis of human umbilical vein endothelial cells via miR-590-3p under hypoxic conditions. Mol Med Rep 21(6):2560–2570

    CAS  PubMed  PubMed Central  Google Scholar 

  256. Peng B, Wu D, Sun J, Huang S, Wu F, Gu X et al (2016) The correlation between mirnas levels and collateral pathway in patients with Acute Cerebral Infraction. Apoplexy Nervous Dis 33(2):79–80

    Google Scholar 

  257. Fang Y, Davies PF (2012) Site-specific microRNA-92a regulation of Krüppel-like factors 4 and 2 in atherosusceptible endothelium. Arterioscler Thromb Vasc Biol 32(4):979–987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Sangwung P, Zhou G, Nayak L, Chan ER, Kumar S, Kang D-W et al (2017) KLF2 and KLF4 control endothelial identity and vascular integrity. JCI Insight 2(4):65

    Article  Google Scholar 

  259. Zhang X, Wang L, Han Z, Dong J, Pang D, Fu Y et al (2020) KLF4 alleviates cerebral vascular injury by ameliorating vascular endothelial inflammation and regulating tight junction protein expression following ischemic stroke. J Neuroinflammation 17(1):1–16

    Article  Google Scholar 

  260. Yang H, Xi X, Zhao B, Su Z, Wang Z (2018) KLF4 protects brain microvascular endothelial cells from ischemic stroke induced apoptosis by transcriptionally activating MALAT1. Biochem Biophys Res Commun 495(3):2376–2382

    Article  CAS  PubMed  Google Scholar 

  261. Wang C, Dong J, Sun J, Huang S, Wu F, Zhang X et al (2021) Silencing of lncRNA XIST impairs angiogenesis and exacerbates cerebral vascular injury after ischemic stroke. Mol Ther Nucleic Acids 26:148–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Nurnberg ST, Guerraty MA, Wirka RC, Rao HS, Pjanic M, Norton S et al (2020) Genomic profiling of human vascular cells identifies TWIST1 as a causal gene for common vascular diseases. PLoS Genet 16(1):e1008538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Mammoto A, Hendee K, Muyleart M, Mammoto T (2020) Endothelial Twist1-PDGFB signaling mediates hypoxia-induced proliferation and migration of αSMA-positive cells. Sci Rep 10(1):1–12

    Article  Google Scholar 

  264. Mahmoud MM, Kim HR, Xing R, Hsiao S, Mammoto A, Chen J et al (2016) TWIST1 integrates endothelial responses to flow in vascular dysfunction and atherosclerosis. Circ Res 119(3):450–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Li J, Liu C-H, Sun Y, Gong Y, Fu Z, Evans LP et al (2014) Endothelial TWIST1 promotes pathological ocular angiogenesis. Invest Ophthalmol Vis Sci 55(12):8267–8277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Mammoto T, Jiang A, Jiang E, Mammoto A (2016) Role of Twist1 phosphorylation in angiogenesis and pulmonary fibrosis. Am J Respir Cell Mol Biol 55(5):633–644

    Article  CAS  PubMed  Google Scholar 

  267. Mammoto T, Jiang E, Jiang A, Lu Y, Juan AM, Chen J et al (2013) Twist1 controls lung vascular permeability and endotoxin-induced pulmonary edema by altering Tie2 expression. PLoS ONE 8(9):e73407

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  268. Kaushik K, Das A (2020) TWIST1-Reprogrammed endothelial cell transplantation potentiates neovascularization-mediated diabetic wound tissue regeneration. Diabetes 69(6):1232–1247

    Article  CAS  PubMed  Google Scholar 

  269. Chen H-F, Huang C-H, Liu C-J, Hung J-J, Hsu C-C, Teng S-C et al (2014) Twist1 induces endothelial differentiation of tumour cells through the Jagged1-KLF4 axis. Nat Commun 5(1):1–13

    ADS  Google Scholar 

  270. Hendee K, Hunyenyiwa T, Matus K, Toledo M, Mammoto A, Mammoto T (2021) Twist1 signaling in age-dependent decline in angiogenesis and lung regeneration. Aging (Albany NY) 13(6):7781

    Article  CAS  PubMed  Google Scholar 

  271. Mammoto T, Muyleart M, Konduri GG, Mammoto A (2018) Twist1 in hypoxia-induced pulmonary hypertension through transforming growth factor-β–Smad signaling. Am J Respir Cell Mol Biol 58(2):194–207

    Article  CAS  PubMed  Google Scholar 

  272. Yang M-H, Wu K-J (2008) TWIST activation by hypoxia inducible factor-1 (HIF-1): implications in metastasis and development. Cell Cycle 7(14):2090–2096

    Article  CAS  PubMed  Google Scholar 

  273. Guo Y, Zi X, Koontz Z, Kim A, Xie J, Gorlick R et al (2007) Blocking Wnt/LRP5 signaling by a soluble receptor modulates the epithelial to mesenchymal transition and suppresses met and metalloproteinases in osteosarcoma Saos-2 cells. J Orthop Res 25(7):964–971

    Article  CAS  PubMed  Google Scholar 

  274. Wirrig EE, Yutzey KE (2014) Conserved transcriptional regulatory mechanisms in aortic valve development and disease. Arterioscler Thromb Vasc Biol 34(4):737–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Cheng GZ, Zhang W, Wang L-H (2008) Regulation of cancer cell survival, migration, and invasion by Twist: AKT2 comes to interplay. Can Res 68(4):957–960

    Article  CAS  Google Scholar 

  276. Xue G, Restuccia DF, Lan Q, Hynx D, Dirnhofer S, Hess D et al (2012) Akt/PKB-mediated phosphorylation of twist1 promotes tumor metastasis via mediating cross-talk between PI3K/Akt and TGF-β signaling axestwist1 phosphorylation promotes cancer cell invasion. Cancer Discov 2(3):248–259

    Article  CAS  PubMed  Google Scholar 

  277. Yan G, Zhao H, Hong X (2020) LncRNA MACC1-AS1 attenuates microvascular endothelial cell injury and promotes angiogenesis under hypoxic conditions via modulating miR-6867-5p/TWIST1 in human brain microvascular endothelial cells. Ann Transl Med 8(14):876

    Article  PubMed  PubMed Central  Google Scholar 

  278. Liu H, Li J, Koirala P, Ding X, Chen B, Wang Y et al (2016) Long non-coding RNAs as prognostic markers in human breast cancer. Oncotarget 7(15):20584

    Article  PubMed  PubMed Central  Google Scholar 

  279. Michalik KM, You X, Manavski Y, Doddaballapur A, Zörnig M, Braun T et al (2014) Long noncoding RNA MALAT1 regulates endothelial cell function and vessel growth. Circ Res 114(9):1389–1397

    Article  CAS  PubMed  Google Scholar 

  280. Hutter R, Speidl WS, Valdiviezo C, Sauter B, Corti R, Fuster V et al (2013) Macrophages transmit potent proangiogenic effects of oxLDL in vitro and in vivo involving HIF-1α activation: a novel aspect of angiogenesis in atherosclerosis. J Cardiovasc Transl Res 6(4):558–569

    Article  PubMed  PubMed Central  Google Scholar 

  281. Perrotta I, Moraca FM, Sciangula A, Aquila S, Mazzulla S (2015) HIF-1α and VEGF: immunohistochemical profile and possible function in human aortic valve stenosis. Ultrastruct Pathol 39(3):198–206

    Article  PubMed  Google Scholar 

  282. Deng W, Feng X, Li X, Wang D, Sun L (2016) Hypoxia-inducible factor 1 in autoimmune diseases. Cell Immunol 303:7–15

    Article  CAS  PubMed  Google Scholar 

  283. Bao MH, Li GY, Huang XS, Tang L, Dong LP, Li JM (2018) Long Noncoding RNA LINC00657 acting as a miR-590-3p sponge to facilitate low concentration oxidized low-density lipoprotein-induced angiogenesis. Mol Pharmacol 93(4):368–375

    Article  CAS  PubMed  Google Scholar 

  284. Chen ZL, Chen YX, Zhou J, Li Y, Gong CY, Wang XB (2020) LncRNA HULC alleviates HUVEC inflammation and improves angiogenesis after myocardial infarction through down-regulating miR-29b. Eur Rev Med Pharmacol Sci 24(11):6288–6298

    PubMed  Google Scholar 

  285. Li X, Sun Y, Huang S, Chen Y, Chen X, Li M et al (2019) Inhibition of AZIN2-sv induces neovascularization and improves prognosis after myocardial infarction by blocking ubiquitin-dependent talin1 degradation and activating the Akt pathway. EBioMedicine 39:69–82

    Article  CAS  PubMed  Google Scholar 

  286. Gao Q, Wang Y (2021) LncRNA FTX regulates angiogenesis through miR-342-3p/SPI1 axis in stroke. Neuropsychiatr Dis Treat 17:3617–3625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Huang Y, Wang Y, Liu X, Ouyang Y (2021) Silencing lncRNA HOTAIR improves the recovery of neurological function in ischemic stroke via the miR-148a-3p/KLF6 axis. Brain Res Bull 176:43–53

    Article  CAS  PubMed  Google Scholar 

  288. Sui S, Sun L, Zhang W, Li J, Han J, Zheng J et al (2021) LncRNA MEG8 attenuates cerebral ischemia after ischemic stroke through targeting miR-130a-5p/VEGFA signaling. Cell Mol Neurobiol 41(6):1311–1324

    Article  CAS  PubMed  Google Scholar 

  289. Gao C, Zhang CC, Yang HX, Hao YN (2020) MALAT1 protected the angiogenesis function of human brain microvascular endothelial cells (HBMECs) under oxygen glucose deprivation/re-oxygenation (OGD/R) challenge by interacting with miR-205-5p/VEGFA pathway. Neuroscience 435:135–145

    Article  CAS  PubMed  Google Scholar 

  290. Zhang M, Tang M, Wu Q, Wang Z, Chen Z, Ding H et al (2020) LncRNA DANCR attenuates brain microvascular endothelial cell damage induced by oxygen-glucose deprivation through regulating of miR-33a-5p/XBP1s. Aging (Albany NY) 12(2):1778–1791

    Article  CAS  PubMed  Google Scholar 

  291. Hu C, Bai X, Liu C, Hu Z (2019) Long noncoding RNA XIST participates hypoxia-induced angiogenesis in human brain microvascular endothelial cells through regulating miR-485/SOX7 axis. Am J Transl Res 11(10):6487–6497

    CAS  PubMed  PubMed Central  Google Scholar 

  292. Long FQ, Su QJ, Zhou JX, Wang DS, Li PX, Zeng CS et al (2018) LncRNA SNHG12 ameliorates brain microvascular endothelial cell injury by targeting miR-199a. Neural Regen Res 13(11):1919–1926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Zhao M, Wang J, Xi X, Tan N, Zhang L (2018) SNHG12 promotes angiogenesis following ischemic stroke via regulating miR-150/VEGF Pathway. Neuroscience 390:231–240

    Article  CAS  PubMed  Google Scholar 

  294. Wang Z, Wang R, Wang K, Liu X (2018) Upregulated long noncoding RNA Snhg1 promotes the angiogenesis of brain microvascular endothelial cells after oxygen-glucose deprivation treatment by targeting miR-199a. Can J Physiol Pharmacol 96(9):909–915

    Article  CAS  PubMed  Google Scholar 

  295. Li L, Wang M, Mei Z, Cao W, Yang Y, Wang Y et al (2017) lncRNAs HIF1A-AS2 facilitates the up-regulation of HIF-1α by sponging to miR-153-3p, whereby promoting angiogenesis in HUVECs in hypoxia. Biomed Pharmacother 96:165–172

    Article  CAS  PubMed  Google Scholar 

  296. Cheng X, Liu Z, Zhang H, Lian Y (2021) Inhibition of LOXL1-AS1 alleviates oxidative low-density lipoprotein induced angiogenesis via downregulation of miR-590–5p mediated KLF6/VEGF signaling pathway. Cell Cycle 8:1–18

    Article  CAS  Google Scholar 

  297. Tzavlaki K, Moustakas A (2020) TGF-β Signaling. Biomolecules 10(3):487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Benn A, Hiepen C, Osterland M, Schütte C, Zwijsen A, Knaus P (2017) Role of bone morphogenetic proteins in sprouting angiogenesis: differential BMP receptor-dependent signaling pathways balance stalk vs. tip cell competence. FASEB J 31(11):4720–4733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Seystahl K, Tritschler I, Szabo E, Tabatabai G, Weller M (2015) Differential regulation of TGF-β–induced, ALK-5–mediated VEGF release by SMAD2/3 versus SMAD1/5/8 signaling in glioblastoma. Neuro Oncol 17(2):254–265

    Article  CAS  PubMed  Google Scholar 

  300. Zhu Q, Kim YH, Wang D, Oh SP, Luo K (2013) SnoN facilitates ALK1–Smad1/5 signaling during embryonic angiogenesis. J Cell Biol 202(6):937–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Benn A, Alonso F, Mangelschots J, Génot E, Lox M, Zwijsen A (2020) BMP-SMAD1/5 signaling regulates retinal vascular development. Biomolecules 10(3):488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Long X, Qiu Z, Li C, Wang Y, Li J, Zhao R et al (2022) CircERBB2IP promotes post-infarction revascularization via the miR-145a-5p/Smad5 axis. Mol Ther Nucleic Acids 28:573–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Moroishi T, Park HW, Qin B, Chen Q, Meng Z, Plouffe SW et al (2015) A YAP/TAZ-induced feedback mechanism regulates Hippo pathway homeostasis. Genes Dev 29(12):1271–1284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J et al (2007) Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev 21(21):2747–2761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Park GS, Oh H, Kim M, Kim T, Johnson RL, Irvine KD et al (2016) An evolutionarily conserved negative feedback mechanism in the Hippo pathway reflects functional difference between LATS1 and LATS2. Oncotarget 7(17):24063–24075

    Article  PubMed  PubMed Central  Google Scholar 

  306. Zhao B, Lei QY, Guan KL (2008) The Hippo-YAP pathway: new connections between regulation of organ size and cancer. Curr Opin Cell Biol 20(6):638–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Murakami H, Mizuno T, Taniguchi T, Fujii M, Ishiguro F, Fukui T et al (2011) LATS2 is a tumor suppressor gene of malignant mesothelioma. Cancer Res 71(3):873–883

    Article  CAS  PubMed  Google Scholar 

  308. Li J, Chen X, Ding X, Cheng Y, Zhao B, Lai ZC et al (2013) LATS2 suppresses oncogenic Wnt signaling by disrupting β-catenin/BCL9 interaction. Cell Rep 5(6):1650–1663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Yao F, Liu H, Li Z, Zhong C, Fang W (2015) Down-regulation of LATS2 in non-small cell lung cancer promoted the growth and motility of cancer cells. Tumour Biol 36(3):2049–2057

    Article  CAS  PubMed  Google Scholar 

  310. Ji T, Liu D, Shao W, Yang W, Wu H, Bian X (2012) Decreased expression of LATS1 is correlated with the progression and prognosis of glioma. J Exp Clin Cancer Res 31(1):67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Zhang H, Sun J, Ju W, Li B, Lou Y, Zhang G et al (2019) Apatinib suppresses breast cancer cells proliferation and invasion via angiomotin inhibition. Am J Transl Res 11(7):4460–4469

    CAS  PubMed  PubMed Central  Google Scholar 

  312. Moroishi T, Hayashi T, Pan WW, Fujita Y, Holt MV, Qin J et al (2016) The Hippo pathway kinases LATS1/2 suppress cancer immunity. Cell 167(6):1525–39.e17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Gao WQ, Hu XM, Zhang Q, Yang L, Lv XZ, Chen S et al (2020) Downregulation of circFASTKD1 ameliorates myocardial infarction by promoting angiogenesis. Aging (Albany NY) 13(3):3588–3604

    Article  PubMed  Google Scholar 

  314. Fu J, Bai P, Chen Y, Yu T, Li F (2019) Inhibition of miR-495 improves both vascular remodeling and angiogenesis in pulmonary hypertension. J Vasc Res 56(2):97–106

    Article  CAS  PubMed  Google Scholar 

  315. Gerald D, Adini I, Shechter S, Perruzzi C, Varnau J, Hopkins B et al (2013) RhoB controls coordination of adult angiogenesis and lymphangiogenesis following injury by regulating VEZF1-mediated transcription. Nat Commun 4:2824

    Article  ADS  PubMed  Google Scholar 

  316. Jin F, Xing J (2017) Circulating pro-angiogenic and anti-angiogenic microRNA expressions in patients with acute ischemic stroke and their association with disease severity. Neurol Sci 38(11):2015–2023

    Article  PubMed  Google Scholar 

  317. Jin F, Xing J (2018) Circulating miR-126 and miR-130a levels correlate with lower disease risk, disease severity, and reduced inflammatory cytokine levels in acute ischemic stroke patients. Neurol Sci 39(10):1757–1765

    Article  PubMed  Google Scholar 

  318. Li J, Wang J, Wang Z (2021) Circ_0006768 upregulation attenuates oxygen-glucose deprivation/reoxygenation-induced human brain microvascular endothelial cell injuries by upregulating VEZF1 via miR-222-3p inhibition. Metab Brain Dis 36(8):2521–2534

    Article  PubMed  Google Scholar 

  319. Cao X, He W, Pang Y, Cao Y, Qin A (2020) Redox-dependent and independent effects of thioredoxin interacting protein. Biol Chem 401(11):1215–1231

    Article  CAS  PubMed  Google Scholar 

  320. Chistiakov DA, Orekhov AN, Bobryshev YV (2017) Effects of shear stress on endothelial cells: go with the flow. Acta Physiol 219(2):382–408

    Article  CAS  Google Scholar 

  321. Mohamed IN, Ishrat T, Fagan SC, El-Remessy AB (2015) Role of inflammasome activation in the pathophysiology of vascular diseases of the neurovascular unit. Antioxid Redox Signal 22(13):1188–1206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  322. Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J (2010) Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol 11(2):136–140

    Article  CAS  PubMed  Google Scholar 

  323. Masola V, Carraro A, Granata S, Signorini L, Bellin G, Violi P et al (2019) In vitro effects of interleukin (IL)-1 beta inhibition on the epithelial-to-mesenchymal transition (EMT) of renal tubular and hepatic stellate cells. J Transl Med 17(1):12

    Article  PubMed  PubMed Central  Google Scholar 

  324. Ushio-Fukai M, Nakamura Y (2008) Reactive oxygen species and angiogenesis: NADPH oxidase as target for cancer therapy. Cancer Lett 266(1):37–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  325. Xiao X, Chen M, Xu Y, Huang S, Liang J, Cao Y et al (2020) Sodium butyrate inhibits neovascularization partially via TNXIP/VEGFR2 pathway. Oxid Med Cell Longev 2020:6415671

    Article  PubMed  PubMed Central  Google Scholar 

  326. Li J, Yue Z, Xiong W, Sun P, You K, Wang J (2017) TXNIP overexpression suppresses proliferation and induces apoptosis in SMMC7221 cells through ROS generation and MAPK pathway activation. Oncol Rep 37(6):3369–3376

    Article  CAS  PubMed  Google Scholar 

  327. Byon CH, Han T, Wu J, Hui ST (2015) Txnip ablation reduces vascular smooth muscle cell inflammation and ameliorates atherosclerosis in apolipoprotein E knockout mice. Atherosclerosis 241(2):313–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  328. Wang J, Wang X-J, Zhang Y, Shi W-J, Lei Z-D, Jiao X-Y (2022) TXNIP knockout improves cardiac function after myocardial infarction by promoting angiogenesis and reducing cardiomyocyte apoptosis. Cardiovasc Diagnosis Therapy 12(3):289

    Article  CAS  Google Scholar 

  329. Lei X, Yang Y (2022) Oxidized low-density lipoprotein contributes to injury of endothelial cells via the circ_0090231/miR-9-5p/TXNIP axis. Cent Eur J Immunol 47(1):41–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  330. Su X, Wang J, Chen W, Li Z, Fu X, Yang A (2016) Overexpression of TRIM14 promotes tongue squamous cell carcinoma aggressiveness by activating the NF-κB signaling pathway. Oncotarget 7(9):9939

    Article  PubMed  PubMed Central  Google Scholar 

  331. Huang X, Li Y, Li X, Fan D, Xin HB, Fu M (2020) TRIM14 promotes endothelial activation via activating NF-κB signaling pathway. J Mol Cell Biol 12(3):176–189

    Article  CAS  PubMed  Google Scholar 

  332. Zhang C, Wang L, Shen Y (2021) Circ_0004104 knockdown alleviates oxidized low-density lipoprotein-induced dysfunction in vascular endothelial cells through targeting miR-328-3p/TRIM14 axis in atherosclerosis. BMC Cardiovasc Disord 21(1):207

    Article  PubMed  PubMed Central  Google Scholar 

  333. Liang H, Liao M, Zhao W, Zheng X, Xu F, Wang H et al (2018) CXCL16/ROCK1 signaling pathway exacerbates acute kidney injury induced by ischemia-reperfusion. Biomed Pharmacother 98:347–356

    Article  CAS  PubMed  Google Scholar 

  334. Qiao CY, Qiao TY, Jin H, Liu LL, Zheng MD, Wang ZL (2020) LncRNA KCNQ1OT1 contributes to the cisplatin resistance of tongue cancer through the KCNQ1OT1/miR-124-3p/TRIM14 axis. Eur Rev Med Pharmacol Sci 24(1):200–212

    PubMed  Google Scholar 

  335. Wang T, Ren Y, Liu R, Ma J, Shi Y, Zhang L et al (2017) miR-195-5p suppresses the proliferation, migration, and invasion of oral squamous cell carcinoma by targeting TRIM14. Biomed Res Int 2017:7378148

    Article  PubMed  PubMed Central  Google Scholar 

  336. Deng Y, Zhu H, Xiao L, Liu C, Meng X (2020) Circ_0005198 enhances temozolomide resistance of glioma cells through miR-198/TRIM14 axis. Aging (Albany NY) 13(2):2198–2211

    Article  PubMed  Google Scholar 

  337. Nenasheva VV, Kovaleva GV, Khaidarova NV, Novosadova EV, Manuilova ES, Antonov SA et al (2014) Trim14 overexpression causes the same transcriptional changes in mouse embryonic stem cells and human HEK293 cells. In Vitro Cell Dev Biol Anim 50(2):121–128

    Article  CAS  PubMed  Google Scholar 

  338. Si X, Zheng H, Wei G, Li M, Li W, Wang H et al (2020) circRNA Hipk3 induces cardiac regeneration after myocardial infarction in mice by binding to Notch1 and miR-133a. Mol Therapy Nucleic Acsids 21:636–655

    Article  CAS  Google Scholar 

  339. Zhang M, Wang Z, Cheng Q, Wang Z, Lv X, Wang Z et al (2020) Circular RNA (circRNA) CDYL Induces myocardial regeneration by ceRNA after myocardial infarction. Med Sci Monit 26:e923188

    CAS  PubMed  PubMed Central  Google Scholar 

  340. Liu J, Zhang H, Di K, Hou L, Yu S (2022) Circular noncoding RNA circ_0007865, serves as a competing endogenous RNA, targeting the miR-214-3p/FKBP5 axis to regulate oxygen-glucose deprivation-induced injury in brain microvascular endothelial cells. NeuroReport 33(4):163–172

    Article  CAS  PubMed  Google Scholar 

  341. Bai X, Liu X, Wu H, Feng J, Chen H, Zhou D (2022) CircFUNDC1 knockdown alleviates oxygen-glucose deprivation-induced human brain microvascular endothelial cell injuries by inhibiting PTEN via miR-375. Neurosci Lett 770:136381

    Article  CAS  PubMed  Google Scholar 

  342. Yang J (2022) Mmu_circ_0000271 regulated the growth of ox-LDL-stimulated mouse vascular smooth muscle cells via sponging miR-5123. Genes Genomics 44(9):1099–1108

    Article  CAS  PubMed  Google Scholar 

  343. Wang P, Zhang H, Wang Y (2022) Circ_0003423 alleviates oxidized low-density lipoprotein-induced endothelial cell injury by sponging miR-142-3p and activating sirtuin 3/superoxide dismutase 2 pathway. J Surg Res 277:384–397

    Article  CAS  PubMed  Google Scholar 

  344. Li X, Kang X, Di Y, Sun S, Yang L, Wang B et al (2022) CircCHMP5 contributes to Ox-LDL-induced endothelial cell injury through the regulation of MiR-532–5p/ROCK2 axis. Cardiovasc Drugs Ther 4(9):1099–1108

    Google Scholar 

  345. Zhang D, Zhang G, Yu K, Zhang X, Jiang A (2022) Circ_0003204 knockdown protects endothelial cells against oxidized low-density lipoprotein-induced injuries by targeting the miR-491-5p-ICAM1 pathway. J Thromb Thrombolysis 53(2):302–312

    Article  CAS  PubMed  Google Scholar 

  346. Chang W, Wang J (2019) Exosomes and their noncoding RNA cargo are emerging as new modulators for diabetes mellitus. Cells 8(8):853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  347. Yoon YJ, Kim OY, Gho YS (2014) Extracellular vesicles as emerging intercellular communicasomes. BMB Rep 47(10):531–539

    Article  PubMed  PubMed Central  Google Scholar 

  348. Mathieu M, Martin-Jaular L, Lavieu G, Théry C (2019) Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol 21(1):9–17

    Article  CAS  PubMed  Google Scholar 

  349. Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200(4):373–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  350. van Niel G, D’Angelo G, Raposo G (2018) Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 19(4):213–228

    Article  PubMed  Google Scholar 

  351. Jafari A, Babajani A, Abdollahpour-Alitappeh M, Ahmadi N, Rezaei-Tavirani M (2021) Exosomes and cancer: from molecular mechanisms to clinical applications. Med Oncol 38(4):45

    Article  CAS  PubMed  Google Scholar 

  352. Lee JH, Song J, Kim IG, You G, Kim H, Ahn JH et al (2022) Exosome-mediated delivery of transforming growth factor-β receptor 1 kinase inhibitors and toll-like receptor 7/8 agonists for combination therapy of tumors. Acta Biomater 141:354–363

    Article  CAS  PubMed  Google Scholar 

  353. Xiong F, Mao R, Zhao R, Zhang L, Tan K, Liu C et al (2022) Plasma exosomal S1PR5 and CARNS1 as potential non-invasive screening biomarkers of coronary heart disease. Front Cardiovasc Med 9:845673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  354. Brennan K, Martin K, FitzGerald SP, O’Sullivan J, Wu Y, Blanco A et al (2020) A comparison of methods for the isolation and separation of extracellular vesicles from protein and lipid particles in human serum. Sci Rep 10(1):1039

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  355. Zaborowski MP, Balaj L, Breakefield XO, Lai CP (2015) Extracellular vesicles: composition, biological relevance, and methods of study. Bioscience 65(8):783–797

    Article  PubMed  PubMed Central  Google Scholar 

  356. Dai J, Su Y, Zhong S, Cong L, Liu B, Yang J et al (2020) Exosomes: key players in cancer and potential therapeutic strategy. Signal Transduct Target Ther 5(1):145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  357. Urbanelli L, Magini A, Buratta S, Brozzi A, Sagini K, Polchi A et al (2013) Signaling pathways in exosomes biogenesis, secretion and fate. Genes 4(2):152–170

    Article  PubMed  PubMed Central  Google Scholar 

  358. Kalluri R, LeBleu VS (2020) The biology, function, and biomedical applications of exosomes. Science 367(6478):6977

    Article  Google Scholar 

  359. Saad MG, Beyenal H, Dong WJ (2021) Exosomes as Powerful engines in cancer: isolation, characterization and detection techniques. Biosensors 11(12):518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  360. Zhang Y, Liu Y, Liu H, Tang WH (2019) Exosomes: biogenesis, biologic function and clinical potential. Cell Biosci 9:19

    Article  PubMed  PubMed Central  Google Scholar 

  361. Record M, Carayon K, Poirot M, Silvente-Poirot S (2014) Exosomes as new vesicular lipid transporters involved in cell-cell communication and various pathophysiologies. Biochem Biophys Acta 1841(1):108–120

    CAS  PubMed  Google Scholar 

  362. Turchinovich A, Drapkina O, Tonevitsky A (2019) Transcriptome of extracellular vesicles: state-of-the-art. Front Immunol 10:202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  363. Chen Y, Zhao Y, Yin Y, Jia X, Mao L (2021) Mechanism of cargo sorting into small extracellular vesicles. Bioengineered 12(1):8186–8201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  364. Willms E, Johansson HJ, Mäger I, Lee Y, Blomberg KE, Sadik M et al (2016) Cells release subpopulations of exosomes with distinct molecular and biological properties. Sci Rep 6:22519

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  365. Barile L, Moccetti T, Marbán E, Vassalli G (2017) Roles of exosomes in cardioprotection. Eur Heart J 38(18):1372–1379

    CAS  PubMed  Google Scholar 

  366. Fu L, Wu SS (2021) Advances in studies on exosomes and microvesicles as markers of cardiovascular disease. Eur Rev Med Pharmacol Sci 25(6):2622–2629

    MathSciNet  CAS  PubMed  Google Scholar 

  367. Guo D, Xu Y, Ding J, Dong J, Jia N, Li Y et al (2020) Roles and clinical applications of exosomes in cardiovascular disease. Biomed Res Int 2020:5424281

    Article  PubMed  PubMed Central  Google Scholar 

  368. Sahoo S, Losordo DW (2014) Exosomes and cardiac repair after myocardial infarction. Circ Res 114(2):333–344

    Article  CAS  PubMed  Google Scholar 

  369. Su Q, Lv X-W, Xu Y-L, Cai R-P, Dai R-X, Yang X-H et al (2021) Exosomal LINC00174 derived from vascular endothelial cells attenuates myocardial I/R injury via p53-mediated autophagy and apoptosis. Mol Therapy-Nucleic Acids 23:1304–1322

    Article  CAS  Google Scholar 

  370. Yuan Z, Huang W (2021) New developments in exosomal lncRNAs in cardiovascular diseases. Front Cardiovasc Med 8:709169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  371. Peng M, Sun R, Hong Y, Wang J, Xie Y, Zhang X et al (2022) Extracellular vesicles carrying proinflammatory factors may spread atherosclerosis to remote locations. Cell Mol Life Sci 79(8):430

    Article  CAS  PubMed  Google Scholar 

  372. Henning RJ (2021) Cardiovascular exosomes and MicroRNAs in cardiovascular physiology and pathophysiology. J Cardiovasc Transl Res 14(2):195–212

    Article  PubMed  Google Scholar 

  373. Pironti G, Strachan RT, Abraham D, Mon-Wei YuS, Chen M, Chen W et al (2015) Circulating exosomes induced by cardiac pressure overload contain functional angiotensin ii type 1 receptors. Circulation 131(24):2120–2130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  374. Sluijter JP, Verhage V, Deddens JC, van den Akker F, Doevendans PA (2014) Microvesicles and exosomes for intracardiac communication. Cardiovasc Res 102(2):302–311

    Article  CAS  PubMed  Google Scholar 

  375. Cambier L, Giani JF, Liu W, Ijichi T, Echavez AK, Valle J et al (2018) Angiotensin II-induced end-organ damage in mice is attenuated by human exosomes and by an exosomal Y RNA fragment. Hypertension 72(2):370–380

    Article  CAS  PubMed  Google Scholar 

  376. Davidson SM, Riquelme JA, Takov K, Vicencio JM, Boi-Doku C, Khoo V et al (2018) Cardioprotection mediated by exosomes is impaired in the setting of type II diabetes but can be rescued by the use of non-diabetic exosomes in vitro. J Cell Mol Med 22(1):141–151

    Article  CAS  PubMed  Google Scholar 

  377. Malik ZA, Kott KS, Poe AJ, Kuo T, Chen L, Ferrara KW et al (2013) Cardiac myocyte exosomes: stability, HSP60, and proteomics. Am J Physiol Heart Circ Physiol 304(7):H954–H965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  378. Xu MY, Ye ZS, Song XT, Huang RC (2019) Differences in the cargos and functions of exosomes derived from six cardiac cell types: a systematic review. Stem Cell Res Ther 10(1):194

    Article  PubMed  PubMed Central  Google Scholar 

  379. Bai S, Yin Q, Dong T, Dai F, Qin Y, Ye L et al (2020) Endothelial progenitor cell-derived exosomes ameliorate endothelial dysfunction in a mouse model of diabetes. Biomed Pharmacother 131:110756

    Article  CAS  PubMed  Google Scholar 

  380. Wang Y, Zhao R, Liu W, Wang Z, Rong J, Long X, et al. (2019) Exosomal circHIPK3 released from hypoxia-pretreated cardiomyocytes regulates oxidative damage in cardiac microvascular endothelial cells via the miR-29a/IGF-1 pathway. Oxidative medicine and cellular longevity

  381. Wang Y, Zhao R, Shen C, Liu W, Yuan J, Li C, et al. (2020) Exosomal CircHIPK3 released from hypoxia-induced cardiomyocytes regulates cardiac angiogenesis after myocardial infarction. Oxidative medicine and cellular longevity

  382. Ni Y-Q, Lin X, Zhan J-K, Liu Y-S (2020) Roles and functions of exosomal non-coding RNAs in vascular aging. Aging Dis 11(1):164

    Article  PubMed  PubMed Central  Google Scholar 

  383. Vizcaíno C, Mansilla S, Portugal J (2015) Sp1 transcription factor: a long-standing target in cancer chemotherapy. Pharmacol Ther 152:111–124

    Article  PubMed  Google Scholar 

  384. Schüttler D, Clauss S, Weckbach LT, Brunner S (2019) Molecular mechanisms of cardiac remodeling and regeneration in physical exercise. Cells 8(10):1128

    Article  PubMed  PubMed Central  Google Scholar 

  385. Li R, Geng HH, Xiao J, Qin XT, Wang F, Xing JH et al (2016) miR-7a/b attenuates post-myocardial infarction remodeling and protects H9c2 cardiomyoblast against hypoxia-induced apoptosis involving Sp1 and PARP-1. Sci Rep 6:29082

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  386. Su F, Geng J, Li X, Qiao C, Luo L, Feng J et al (2017) SP1 promotes tumor angiogenesis and invasion by activating VEGF expression in an acquired trastuzumab-resistant ovarian cancer model. Oncol Rep 38(5):2677–2684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  387. Huang Y, Chen L, Feng Z, Chen W, Yan S, Yang R et al (2021) EPC-Derived exosomal miR-1246 and miR-1290 regulate phenotypic changes of fibroblasts to endothelial cells to exert protective effects on myocardial infarction by targeting ELF5 and SP1. Front Cell Dev Biol 9:647763

    Article  PubMed  PubMed Central  Google Scholar 

  388. Chan HS, Chang SJ, Wang TY, Ko HJ, Lin YC, Lin KT et al (2012) Serine protease PRSS23 is upregulated by estrogen receptor α and associated with proliferation of breast cancer cells. PLoS ONE 7(1):e30397

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  389. Wang Z, Gao D, Wang S, Lin H, Wang Y, Xu W (2021) Exosomal microRNA-1246 from human umbilical cord mesenchymal stem cells potentiates myocardial angiogenesis in chronic heart failure. Cell Biol Int 45(11):2211–2225

    Article  CAS  PubMed  Google Scholar 

  390. Nie X, Su L, Zhou Y, Zhao Y, Shi D, Liu Y et al (2014) Association between plasma levels of microRNA-126 and coronary collaterals in patients with coronary artery disease. Zhonghua Xin Xue Guan Bing Za Zhi 42(7):561–565

    CAS  PubMed  Google Scholar 

  391. Jakob P, Doerries C, Briand S, Mocharla P, Kränkel N, Besler C et al (2012) Loss of angiomiR-126 and 130a in angiogenic early outgrowth cells from patients with chronic heart failure: role for impaired in vivo neovascularization and cardiac repair capacity. Circulation 126(25):2962–2975

    Article  CAS  PubMed  Google Scholar 

  392. Duan S, Wang C, Xu X, Zhang X, Su G, Li Y et al (2022) Peripheral serum exosomes isolated from patients with acute myocardial infarction promote endothelial cell angiogenesis via the miR-126-3p/TSC1/mTORC1/HIF-1α pathway. Int J Nanomed 17:1577–1592

    Article  CAS  Google Scholar 

  393. Yang Y, Cai Y, Zhang Y, Liu J, Xu Z (2018) Exosomes secreted by adipose-derived stem cells contribute to angiogenesis of brain microvascular endothelial cells following oxygen-glucose deprivation in vitro through microRNA-181b/TRPM7 axis. J Mol Neurosci 65(1):74–83

    Article  CAS  PubMed  Google Scholar 

  394. Cao S, Xiao L, Rao JN, Zou T, Liu L, Zhang D et al (2014) Inhibition of Smurf2 translation by miR-322/503 modulates TGF-β/Smad2 signaling and intestinal epithelial homeostasis. Mol Biol Cell 25(8):1234–1243

    Article  PubMed  PubMed Central  Google Scholar 

  395. Hassan MO, Duarte R, Dix-Peek T, Dickens C, Naidoo S, Vachiat A et al (2018) Transforming Growth Factor-β Protects against Inflammation-Related Atherosclerosis in South African CKD Patients. Int J Nephrol 2018:8702372

    Article  PubMed  PubMed Central  Google Scholar 

  396. Huang SS, Liu IH, Chen CL, Chang JM, Johnson FE, Huang JS (2017) 7-Dehydrocholesterol (7-DHC), but not cholesterol, causes suppression of canonical TGF-β signaling and is likely involved in the development of atherosclerotic cardiovascular disease (ASCVD). J Cell Biochem 118(6):1387–1400

    Article  CAS  PubMed  Google Scholar 

  397. Wei L, Zhao S, Wang G, Zhang S, Luo W, Qin Z et al (2018) SMAD7 methylation as a novel marker in atherosclerosis. Biochem Biophys Res Commun 496(2):700–705

    Article  CAS  PubMed  Google Scholar 

  398. Gu W, Hong X, Le Bras A, Nowak WN, Issa Bhaloo S, Deng J et al (2018) Smooth muscle cells differentiated from mesenchymal stem cells are regulated by microRNAs and suitable for vascular tissue grafts. J Biol Chem 293(21):8089–8102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  399. Wang Y, Xu Z, Wang X, Zheng J, Peng L, Zhou Y et al (2021) Extracellular-vesicle containing miRNA-503-5p released by macrophages contributes to atherosclerosis. Aging (Albany NY) 13(8):12239–12257

    Article  CAS  PubMed  Google Scholar 

  400. Reiss AB, Ahmed S, Johnson M, Saeedullah U, De Leon J (2023) Exosomes in cardiovascular disease: from mechanism to therapeutic target. Metabolites 13(4):479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  401. Ke X, Yang R, Wu F, Wang X, Liang J, Hu X et al (2021) Exosomal miR-218-5p/miR-363-3p from endothelial progenitor cells ameliorate myocardial infarction by targeting the p53/JMY signaling pathway. Oxid Med Cell Longev 2021:5529430

    Article  PubMed  PubMed Central  Google Scholar 

  402. Yang M, Liu X, Jiang M, Li J, Tang Y, Zhou L (2021) miR-543 in human mesenchymal stem cell-derived exosomes promotes cardiac microvascular endothelial cell angiogenesis after myocardial infarction through COL4A1. IUBMB Life 73(7):927–940

    Article  CAS  PubMed  Google Scholar 

  403. Ning W, Li S, Yang W, Yang B, Xin C, Ping X et al (2021) Blocking exosomal miRNA-153-3p derived from bone marrow mesenchymal stem cells ameliorates hypoxia-induced myocardial and microvascular damage by targeting the ANGPT1-mediated VEGF/PI3k/Akt/eNOS pathway. Cell Signal 77:109812

    Article  CAS  PubMed  Google Scholar 

  404. Liu Y, Xu J, Gu R, Li Z, Wang K, Qi Y et al (2020) Circulating exosomal miR-144-3p inhibits the mobilization of endothelial progenitor cells post myocardial infarction via regulating the MMP9 pathway. Aging (Albany NY) 12(16):16294–16303

    Article  CAS  PubMed  Google Scholar 

  405. Wang Y, Zhao R, Shen C, Liu W, Yuan J, Li C et al (2020) Exosomal CircHIPK3 Released from Hypoxia-Induced Cardiomyocytes Regulates Cardiac Angiogenesis after Myocardial Infarction. Oxid Med Cell Longev 2020:8418407

    PubMed  PubMed Central  Google Scholar 

  406. Chen Y, Li S, Zhang Y, Wang M, Li X, Liu S et al (2021) The lncRNA Malat1 regulates microvascular function after myocardial infarction in mice via miR-26b-5p/Mfn1 axis-mediated mitochondrial dynamics. Redox Biol 41:101910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  407. Huang P, Wang L, Li Q, Tian X, Xu J, Xu J et al (2020) Atorvastatin enhances the therapeutic efficacy of mesenchymal stem cells-derived exosomes in acute myocardial infarction via up-regulating long non-coding RNA H19. Cardiovasc Res 116(2):353–367

    Article  CAS  PubMed  Google Scholar 

  408. Sun L, Zhu W, Zhao P, Zhang J, Lu Y, Zhu Y et al (2020) Down-regulated exosomal MicroRNA-221 - 3p derived from senescent mesenchymal stem cells impairs heart repair. Front Cell Dev Biol 8:263

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  409. Geng T, Song Z-Y, Xing J-X, Wang B-X, Dai S-P, Xu Z-S (2020) Exosome derived from coronary serum of patients with myocardial infarction promotes angiogenesis through the miRNA-143/IGF-IR Pathway. Int J Nanomed 15:2647–2658

    Article  CAS  Google Scholar 

  410. Liu S, Chen J, Shi J, Zhou W, Wang L, Fang W et al (2020) M1-like macrophage-derived exosomes suppress angiogenesis and exacerbate cardiac dysfunction in a myocardial infarction microenvironment. Basic Res Cardiol 115(2):22

    Article  CAS  PubMed  Google Scholar 

  411. Chen C-H, Hsu S-Y, Chiu C-C, Leu S (2019) MicroRNA-21 mediates the protective effect of cardiomyocyte-derived conditioned medium on ameliorating myocardial infarction in rats. Cells 8(8):935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  412. Youn S-W, Li Y, Kim Y-M, Sudhahar V, Abdelsaid K, Kim HW et al (2019) Modification of cardiac progenitor cell-derived exosomes by miR-322 provides protection against myocardial infarction through Nox2-dependent angiogenesis. Antioxidants (Basel) 8(1):18

    Article  PubMed  Google Scholar 

  413. Ma T, Chen Y, Chen Y, Meng Q, Sun J, Shao L et al (2018) MicroRNA-132, delivered by mesenchymal stem cell-derived exosomes, promote angiogenesis in myocardial infarction. Stem Cells Int 2018:3290372

    Article  PubMed  PubMed Central  Google Scholar 

  414. Namazi H, Mohit E, Namazi I, Rajabi S, Samadian A, Hajizadeh-Saffar E et al (2018) Exosomes secreted by hypoxic cardiosphere-derived cells enhance tube formation and increase pro-angiogenic miRNA. J Cell Biochem 119(5):4150–4160

    Article  CAS  PubMed  Google Scholar 

  415. Luo Q, Guo D, Liu G, Chen G, Hang M, Jin M (2017) Exosomes from MiR-126-overexpressing adscs are therapeutic in relieving acute myocardial ischaemic injury. Cell Physiol Biochem 44(6):2105–2116

    Article  CAS  PubMed  Google Scholar 

  416. Ribeiro-Rodrigues TM, Laundos TL, Pereira-Carvalho R, Batista-Almeida D, Pereira R, Coelho-Santos V et al (2017) Exosomes secreted by cardiomyocytes subjected to ischaemia promote cardiac angiogenesis. Cardiovasc Res 113(11):1338–1350

    Article  CAS  PubMed  Google Scholar 

  417. Wang N, Chen C, Yang D, Liao Q, Luo H, Wang X et al (2017) Mesenchymal stem cells-derived extracellular vesicles, via miR-210, improve infarcted cardiac function by promotion of angiogenesis. Biochim Biophys Acta (BBA) 1863(8):2085–2092

    Article  CAS  Google Scholar 

  418. Wang K, Jiang Z, Webster KA, Chen J, Hu H, Zhou Y et al (2017) Enhanced cardioprotection by human endometrium mesenchymal stem cells driven by exosomal MicroRNA-21. Stem Cells Transl Med 6(1):209–222

    Article  CAS  PubMed  Google Scholar 

  419. Wang N, Chen C, Yang D, Liao Q, Luo H, Wang X et al (2017) Mesenchymal stem cells-derived extracellular vesicles, via miR-210, improve infarcted cardiac function by promotion of angiogenesis. Biochim Biophys Acta Mol Basis Dis 1863(8):2085–2092

    Article  CAS  PubMed  Google Scholar 

  420. Sánchez-Sánchez R, Gómez-Ferrer M, Reinal I, Buigues M, Villanueva-Bádenas E, Ontoria-Oviedo I et al (2021) miR-4732-3p in extracellular vesicles from mesenchymal stromal cells is cardioprotective during myocardial ischemia. Front Cell Dev Biol 9:734143

    Article  PubMed  PubMed Central  Google Scholar 

  421. Li Q, Xu Y, Lv K, Wang Y, Zhong Z, Xiao C et al (2021) Small extracellular vesicles containing miR-486–5p promote angiogenesis after myocardial infarction in mice and nonhuman primates. Sci Transl Med 13(584):0202

    Article  Google Scholar 

  422. Zhu D, Wang Y, Thomas M, McLaughlin K, Oguljahan B, Henderson J et al (2022) Exosomes from adipose-derived stem cells alleviate myocardial infarction via microRNA-31/FIH1/HIF-1α pathway. J Mol Cell Cardiol 162:10–19

    Article  CAS  PubMed  Google Scholar 

  423. Xuan W, Wang L, Xu M, Weintraub NL, Ashraf M (2019) miRNAs in extracellular vesicles from iPS-derived cardiac progenitor cells effectively reduce fibrosis and promote angiogenesis in infarcted heart. Stem Cells Int 2019:3726392

    Article  PubMed  PubMed Central  Google Scholar 

  424. Yang M, Liao M, Liu R, Zhang Q, Zhang S, He Y et al (2022) Human umbilical cord mesenchymal stem cell-derived extracellular vesicles loaded with miR-223 ameliorate myocardial infarction through P53/S100A9 axis. Genomics 114(3):110319

    Article  CAS  PubMed  Google Scholar 

  425. Ottaviani L, Juni RP, de Abreu RC, Sansonetti M, Sampaio-Pinto V, Halkein J et al (2022) Intercellular transfer of miR-200c-3p impairs the angiogenic capacity of cardiac endothelial cells. Mol Ther 30(6):2257–2273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  426. Qiao L, Hu S, Liu S, Zhang H, Ma H, Huang K et al (2019) microRNA-21-5p dysregulation in exosomes derived from heart failure patients impairs regenerative potential. J Clin Investig 129(6):2237–2250

    Article  PubMed  PubMed Central  Google Scholar 

  427. Xu C, Yu H, Chen B, Ma Y, Lv P (2022) Serum exosomal mir-340-5p promotes angiogenesis in brain microvascular endothelial cells during oxygen-glucose deprivation. Neurochem Res 47(4):907–920

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

JZ involved to manuscript drafting and data collection.

Corresponding author

Correspondence to Jie Zhang.

Ethics declarations

Competing interest

The authors declare no conflict of interest.

Consent for publication

Not applicable.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J. Non-coding RNAs and angiogenesis in cardiovascular diseases: a comprehensive review. Mol Cell Biochem (2024). https://doi.org/10.1007/s11010-023-04919-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11010-023-04919-5

Keywords

Navigation