Skip to main content

Advertisement

Log in

A review of immune modulators and immunotherapy in infectious diseases

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The human immune system responds to harmful foreign invaders frequently encountered by the body and employs defense mechanisms to counteract such assaults. Various exogenous and endogenous factors play a prominent role in maintaining the balanced functioning of the immune system, which can result in immune suppression or immune stimulation. With the advent of different immune-modulatory agents, immune responses can be modulated or regulated to control infections and other health effects. Literature provides evidence on various immunomodulators from different sources and their role in modulating immune responses. Due to the limited efficacy of current drugs and the rise in drug resistance, there is a growing need for new therapies for infectious diseases. In this review, we aim to provide a comprehensive overview of different immune-modulating agents and immune therapies specifically focused on viral infectious diseases.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The authors declared that the research data referred to correctly cited in the manuscript's reference section.

References

  1. Baxter D (2007) Active and passive immunity, vaccine types, excipients and licensing. Occup Med 57(8):552–556

    Article  Google Scholar 

  2. Vesely MD, Kershaw MH, Schreiber RD et al (2011) Natural innate and adaptive immunity to cancer. Annu Rev Immunol 29:235–271

    Article  CAS  PubMed  Google Scholar 

  3. Florez-Sampedro L, Song S, Melgert BN (2018) The diversity of myeloid immune cells shaping wound repair and fibrosis in the lung. Regeneration 5(1):3–25

    Article  PubMed  PubMed Central  Google Scholar 

  4. Puri A, Saxena R, Saxena RP et al (1994) Immunostimulant activity of Nyctanthes arbor-tristis L. J Ethnopharmacol 42(1):31–37

    Article  CAS  PubMed  Google Scholar 

  5. Jantan I, Ahmad W, Bukhari SN (2015) Plant-derived immunomodulators: an insight on their preclinical evaluation and clinical trials. Front Plant Sci 25(6):655

    Article  Google Scholar 

  6. Wen CC, Chen HM, Yang NS (2012) Developing phytocompounds from medicinal plants as immunomodulators. Adv Bot Res 62:197–272. https://doi.org/10.1016/B978-0-12-394591-4.00004-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shashank K, Abhay KP (2013) Chemistry and biological activities of flavonoids: an overview. Sci World J 2013:1–6

    Google Scholar 

  8. Kumar S, Gupta P, Sharma S et al (2011) A review on immunostimulatory plants. Chin J Integr Med 9(2):117–128

    Article  Google Scholar 

  9. Germain RN (2010) Vaccines and the future of human immunology. Immunity 33(4):441–450

    Article  CAS  PubMed  Google Scholar 

  10. Brotherton JM (2015) HPV prophylactic vaccines: lessons learned from 10 years experience. Future Virol 10(8):999–1009

    Article  CAS  Google Scholar 

  11. Frazer IH (2014) Development and implementation of papillomavirus prophylactic vaccines. J Immunol Res 192(9):4007–4011

    CAS  Google Scholar 

  12. Plotkin SA (2003) Vaccines, vaccination, and vaccinology. JInfect Dis 187(9):1349–1359

    Article  CAS  Google Scholar 

  13. James E. CroweJr. Prevention of fetal and early life infections through maternal–neonatal immunization. In: Remington, Klien, Wilson, Nizet, Maldonado Eds. 7th ed. Philadelphia, PA: Saunders/Elsevier; 2011.pp.1212–1230

  14. Coffman RL, Sher A, Seder RA (2010) Vaccine adjuvants: putting innate immunity to work. Immunity 33(4):492–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pasquale AD, Preiss S, Silva FT et al (2015) Vaccine adjuvants: from 1920 to 2015 and beyond. Vaccines 3(2):320–343

    Article  PubMed  PubMed Central  Google Scholar 

  16. Nicholls EF, Madera L, Hancock RE (2010) Immunomodulators as adjuvants for vaccines and antimicrobial therapy. Ann N Y Acad Sci 1213(1):46–61

    Article  CAS  PubMed  Google Scholar 

  17. Ghimire TR, Benson RA, Garside P et al (2012) Alum increases antigen uptake, reduces antigen degradation and sustains antigen presentation by DCs in vitro. Immunol Lett 147(1–2):55–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vogel F. Immunologic adiuvants. Vaccines: Expert Consult. 2008:59–71.

  19. Marrack P, McKee AS, Munks MW (2009) Towards an understanding of the adjuvant action of aluminium. Nat Rev Immunol 9(4):287–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Grun JL, Maurer PH (1989) Different T helper cell subsets elicited in mice utilizing two different adjuvant vehicles: the role of endogenous interleukin 1 in proliferative responses. Cell Immunol 121(1):134–145

    Article  CAS  PubMed  Google Scholar 

  21. Metcalf D (2013) The colony-stimulating factors and cancer. Cancer Immunol Res 1(6):351–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Metcalf D, Nicola NA (1995) The hematopoietic colony-stimulating factors: From Biology to Clinical Applications. Cambridge University Press, Cambridge, UK, pp 1–327

    Book  Google Scholar 

  23. Chuang YM, He L, Pinn ML et al (2021) Albumin fusion with granulocyte-macrophage colony-stimulating factor acts as an immunotherapy against chronic tuberculosis. Cell Mol Immunol 18(10):2393–2401

    Article  CAS  PubMed  Google Scholar 

  24. O’Hagan DT, Ott GS, De Gregorio E, Seubert A (2012) The mechanism of action of MF59—an innately attractive adjuvant formulation. Vaccine 30:4341–4348. https://doi.org/10.1016/j.vaccine.2011.09.061

    Article  CAS  PubMed  Google Scholar 

  25. O’Hagan DT, Friedland LR, Hanon E, Didierlaurent AM (2017) Towards an evidence based approach for the development of adjuvanted vaccines. Curr Opin Immunol 47:93–102. https://doi.org/10.1016/j.coi.2017.07.010

    Article  CAS  PubMed  Google Scholar 

  26. Galli G, Hancock K, Hoschler K, DeVos J, Praus M, Bardelli M, Malzone C, Castellino F, Gentile C, McNally T et al (2009) Fast rise of broadly cross-reactive antibodies after boosting long-lived human memory B cells primed by an MF59 adjuvanted prepandemic vaccine. Proc Natl Acad Sci U S A 106:7962–7967. https://doi.org/10.1073/pnas.0903181106

    Article  PubMed  PubMed Central  Google Scholar 

  27. O’Hagan DT, Rappuoli R, De Gregorio E, Tsai T, Del Giudice G (2011) MF59 adjuvant: the best insurance against influenza strain diversity. Expert Rev Vaccines 10:447–462. https://doi.org/10.1586/erv.11.23

    Article  CAS  PubMed  Google Scholar 

  28. Ko EJ, Kang SM (2018) Immunology and efficacy of MF59-adjuvanted vaccines. Hum Vaccin Immunother 14(12):3041–3045

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kayraklioglu N, Horuluoglu B, Klinman DM (2021) CpG oligonucleotides as vaccine adjuvants. Methods Mol Biol 2197:51–85

    Article  CAS  PubMed  Google Scholar 

  30. Shirota H, Klinman DM (2014) Recent progress concerning CpG DNA and its use as a vaccine adjuvant. Expert Rev Vaccines 13:299–312. https://doi.org/10.1586/14760584.2014.863715

    Article  CAS  PubMed  Google Scholar 

  31. Wang S, Han Q, Zhang G et al (2011) CpG oligodeoxynucleotide-adjuvanted fusion peptide derived from HBcAg epitope and HIV-Tat may elicit favorable immune response in PBMCs from patients with chronic HBV infection in the immunotolerant phase. Int Immunopharmacol 11:406–411

    Article  CAS  PubMed  Google Scholar 

  32. Duggal S, Chugh TD, Duggal AK (2012) HIV and malnutrition: effects on immune system. ClinDev Immunol. https://doi.org/10.1155/2012/784740

    Article  Google Scholar 

  33. Sachan S, Dhama K, Latheef SK, et al. Immunomodulatory Potential of Tinospora cordifolia and CpG ODN [TLR21 Agonist] against the very virulent, infectious Bursal disease virus in SPF Chicks. Vaccines. 2019;7[3]:106.

  34. Seirafianpour F, Mozafarpoor S, Fattahi N et al (2020) Treatment of COVID-19 with pentoxifylline: Could it be a potential adjuvant therapy? Dermatol Ther. https://doi.org/10.1111/dth.13733

    Article  PubMed  PubMed Central  Google Scholar 

  35. Gensler LS (2013) Glucocorticoids: complications to anticipate and prevent. The Neurohospitalist 3(2):92–97

    Article  PubMed  PubMed Central  Google Scholar 

  36. Coutinho AE, Chapman KE (2011) The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol Cell Endocrinol 335(1):2–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Stockman LJ, Bellamy R, Garner P (2006) SARS: systematic review of treatment effects. PLoS Med 3(9):1525–1531

    Article  CAS  Google Scholar 

  38. Arabi Y.M., Mandourah Y., Al-Hameed F., Sindi A.A., Almekhlafi G.A., Hussein M.A., Jose J., Pinto R., Al-Omari A., Kharaba A., Almotairi A., Al Khatib K., Alraddadi B., Shalhoub S., Abdulmomen A., Qushmaq I., Mady A., Solaiman O., Al-Aithan A.M., Al-Raddadi R., Ragab A., Balkhy H.H., Al Harthy A., Deeb A.M., Al Mutairi H., Al-Dawood A., Merson L., Hayden F.G., Fowler R.A., Saudi Critical Care Trial G. Corticosteroid therapy for critically ill patients with middle east respiratory syndrome. Am. J. Respir. Crit. Care Med. 2018;197(6):757–767.

  39. Kudo K, Takasaki J, Manabe T, Uryu H, Yamada R, Kuroda E, Kobayashi N, Matsushita T (2012) Systemic corticosteroids and early administration of antiviral agents for pneumonia with acute wheezing due to influenza A(H1N1)pdm09 in Japan. PLoS ONE. https://doi.org/10.1371/journal.pone.0032280

    Article  PubMed  PubMed Central  Google Scholar 

  40. Romanelli A, Mascolo S (2020) Immunosuppression drug-related and clinical manifestation of Coronavirus disease 2019: a therapeutical hypothesis. Am J Transplant 20(7):1947–1948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Alexaki VI, Henneicke H (2021) The role of glucocorticoids in the management of COVID-19. Horm Metab Res 53(1):9–15

    Article  CAS  PubMed  Google Scholar 

  42. Galon J, Franchimont D, Hiroi N et al (2002) Gene profiling reveals unknown enhancing and suppressive actions of glucocorticoids on immune cells. FASEB J 16:61–71

    Article  CAS  PubMed  Google Scholar 

  43. Sarzani R, Spannella F, Giulietti F, Di Pentima C, Giordano P, Giacometti A (2022) Possible harm from glucocorticoid drugs misuse in the early phase of SARS-CoV-2 infection: a narrative review of the evidence. Intern Emerg Med 17(2):329–338. https://doi.org/10.1007/s11739-021-02860-3

    Article  PubMed  Google Scholar 

  44. Strehl C, Ehlers L, Gaber T et al (2019) Glucocorticoids-all-rounders tackling the versatile players of the immune system. Front Immunol 10:1744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cain DW, Cidlowski JA (2017) Immune regulation by glucocorticoids. Nat Rev Immunol 17(4):233–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kountouras J, Zavos C, Chatzopoulos D (2004) Immunomodulatory benefits of cyclosporine A in inflammatory bowel disease. J Cell Mol Med 8(3):317–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Russell G, Graveley R, Seid J, et al. Mechanisms of action of cyclosporine and effects on connective tissues. InSeminars in arthritis and rheumatism 1992 Jun 1 [Vol. 21, No. 6, pp. 16–22].

  48. Matsuda S, Koyasu S (2000) Mechanisms of action of cyclosporine. Immunopharmacology 47:119–125. https://doi.org/10.1016/s0162-3109(00)00192-

    Article  CAS  PubMed  Google Scholar 

  49. Glowacka P, Rudnicka L, Warszawik-Hendzel O, Sikora M, Goldust M, Gajda P, Stochmal A, Blicharz L, Rakowska A, Olszewska M (2020) The antiviral properties of cyclosporine. Focus on coronavirus, hepatitis C virus, influenza virus, and human immunodeficiency virus infections. Biology (Basel) 9(8):192. https://doi.org/10.3390/biology9080192

    Article  CAS  PubMed  Google Scholar 

  50. Wilde AH, Zevenhoven-Dobbe JC, van der Meer Y, Thiel V, Narayanan K, Makino S, Snijder EJ, van Hemert MJ (2011) Cyclosporin A inhibits the replication of diverse coronaviruses. J Gen Virol. https://doi.org/10.1099/vir.0.034983-0

    Article  PubMed  PubMed Central  Google Scholar 

  51. Fenizia C, Galbiati S, Vanetti C, Vago R, Clerici M, Tacchetti C, Daniele T (2022) Cyclosporine a inhibits viral infection and release as well as cytokine production in lung cells by three SARS-CoV-2 variants. Microbiol Spectr. https://doi.org/10.1128/spectrum.01504-21

    Article  PubMed  PubMed Central  Google Scholar 

  52. Williams JW, Xiao F, Foster PF, et al. Immunosuppressive effects of leflunomide in a cardiac allograft model. InTransplantation proceedings 1993 [Vol. 25, No. 1, pp. 745–746].

  53. Kuchie CA, Thoenes GH, Langer KH, et al Prevention of kidney and skin graft rejection in rats by leflunomide, a new immunomodulating agent. In Transplantation proceedings 1991 [Vol. 23, No. 1, pp. 1083–1086].

  54. Dimitrova P, Kalden JR, Schulze-Koops H (2002) Leflunomide: an immunosuppressive drug with multiple effects on T cell function. Mod Rheumatol 12(3):195–200

    Article  CAS  PubMed  Google Scholar 

  55. Van der Heijden EH, Hartgring SA et al (2019) Additive immunosuppressive effect of leflunomide and hydroxychloroquine supports rationale for combination therapy for Sjögren’s syndrome. Expert Rev Clin Immunol 15(7):801–808

    Article  PubMed  Google Scholar 

  56. Moliva JI, Turner J, Torrelles JB (2017) Immune responses to bacillus Calmette-Guérin vaccination: why do they fail to protect against Mycobacterium tuberculosis? Front Immunol 8:407

    Article  PubMed  PubMed Central  Google Scholar 

  57. Read SW, DeGrezia M, Ciccone EJ, DerSimonian R, Higgins J, Adelsberger JW, Starling JM, Rehm C, Sereti I (2010) The effect of leflunomide on cycling and activation of T-cells in HIV-1-infected participants. PLoS ONE. https://doi.org/10.1371/journal.pone.0011937

    Article  PubMed  PubMed Central  Google Scholar 

  58. Alamri RD, Elmeligy MA, Albalawi GA, Alquayr SM, Alsubhi SS, El-Ghaiesh SH (2021) Leflunomide an immunomodulator with antineoplastic and antiviral potentials but drug-induced liver injury: A comprehensive review. Int Immunopharmacol. https://doi.org/10.1016/j.intimp.2021.107398

    Article  PubMed  PubMed Central  Google Scholar 

  59. M. Millis, L. Perea, Leflunomide in Mild COVID-19 Patients. In.: https://ClinicalTrials.gov/show/NCT04361214, 2020

  60. Mattar T, Kochhar K, Bartlett R, Bremer EG, Finnegan A (1993) Inhibition of the epidermal growth factor receptor tyrosine kinase activity by leflunomide. FEBS Lett 334(2):161–164

    Article  CAS  PubMed  Google Scholar 

  61. Chacko B, John GT (2012) Leflunomide for cytomegalovirus: bench to bedside. Transplant Infect Dis. 14(2):111–120

    Article  CAS  Google Scholar 

  62. Pandey S, Cabot PJ, Shaw PN, Hewavitharana AK. Anti-inflammatory and immunomodulatory properties of Carica papaya. J Immunotoxicol. 2016 ;13(4):590–602. doi: https://doi.org/10.3109/1547691X.2016.1149528. Epub 2016 Jul 14. PMID: 27416522 and documented to be effective against dengue virus

  63. Ahmad N, Fazal H, Ayaz M, Abbasi BH, Mohammad I, Fazal L (2011) Dengue fever treatment with Carica papaya leaves extracts. Asian Pac J Trop Biomed 1(4):330–333. https://doi.org/10.1016/S2221-1691(11)60055-5

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lalani S, Poh CL. Flavonoids as antiviral agents for Enterovirus A71 [EV-A71]. Viruses. 2020; 12[2]:184.

  65. Mendes LF, Gaspar VM, Conde TA, et al. Flavonoid-mediated immunomodulation of human macrophages involves key metabolites and metabolic pathways. Sci Rep. 2019; 9[1]:1.

  66. Middleton E, Kandaswami C, Theoharides TC (2000) The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev 52(4):673–751

    CAS  PubMed  Google Scholar 

  67. Sun X, Yamasaki M, Katsube T et al (2015) Effects of quercetin derivatives from mulberry leaves: Improved gene expression related hepatic lipid and glucose metabolism in short-term high-fat fed mice. Nutr Res Pract 9(2):137–143

    Article  PubMed  Google Scholar 

  68. Middleton E Jr (1998) Effect of plant flavonoids on immune and inflammatory cell function. Adv Exp Med Biol 439:175–182. https://doi.org/10.1007/978-1-4615-5335-9_13

    Article  CAS  PubMed  Google Scholar 

  69. Hosseinzade A, Sadeghi O, Naghdipour Biregani A et al (2019) Immunomodulatory effects of flavonoids: possible induction of T CD4+ regulatory cells through suppression of mTOR pathway signaling activity. Front Immunol 10:51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Schwartz A, Sutton SL, Middleton E Jr (1982) Quercetin inhibition of the induction and function of cytotoxic T lymphocytes. Immunopharmacol 4(2):125–138

    Article  CAS  Google Scholar 

  71. Rogerio AP, Dora CL, Andrade EL, Chaves JS, Silva LF, Lemos-Senna E, Calixto JB (2010) Anti-inflammatory effect of quercetin-loaded microemulsion in the airways allergic inflammatory model in mice. Pharmacol Res 61(4):288–297

    Article  CAS  PubMed  Google Scholar 

  72. Chirumbolo S (2010) The role of quercetin, flavonols and flavones in modulating inflammatory cell function. Inflamm Allergy Drug Targets 9(4):263–285

    Article  CAS  PubMed  Google Scholar 

  73. Lee KM, Hwang MK, Lee DE, Lee KW, Lee HJ (2010) Protective effect of quercetin against arsenite-induced COX-2 expression by targeting PI3K in rat liver epithelial cells. J Agric Food Chem 58:5815–5820

    Article  CAS  PubMed  Google Scholar 

  74. Li Y, Yao J, Han C, Yang J, Chaudhry MT, Wang S, Liu H, Yin Y (2016) Quercetin, Inflammation and Immunity. Nutrients 8(3):167

    Article  PubMed  PubMed Central  Google Scholar 

  75. Doishorobi FM, Nisa FY, Saha S, Chowdhury MAH, Srisuphanunt M, Hossain KH, Rahman MA (2023) Quercetin: a functional food-flavonoid incredibly attenuates emerging and re-emerging viral infections through immunomodulatory actions. Molecules 28(3):938. https://doi.org/10.3390/molecules28030938

    Article  CAS  Google Scholar 

  76. DiNicolantonio JJ, McCarty MF (2020) Targeting Casein kinase 2 with quercetin or enzymatically modified isoquercitrin as a strategy for boosting the type 1 interferon response to viruses and promoting cardiovascular health. Med Hypotheses 142:109800

    Article  CAS  PubMed  Google Scholar 

  77. Komaravelli N, Kelley JP, Garofalo MP, Wu H, Casola A, Kolli D (2015) Role of dietary antioxidants in human metapneumovirus infection. Virus Res 200:19–23

    Article  CAS  PubMed  Google Scholar 

  78. Di Pierro F, Derosa G, Maffioli P, Bertuccioli A, Togni S, Riva A, Allegrini P, Khan A, Khan S, Khan BA et al (2021) Possible therapeutic effects of adjuvant quercetin supplementation against early-stage COVID-19 infection: a prospective, randomized, controlled, and open-label study. Int J Gen Med 14:2359–2366

    Article  PubMed  PubMed Central  Google Scholar 

  79. Te Velthuis, A.J.; Fodor, E. Influenza virus RNA polymerase: Insights into the mechanisms of viral RNA synthesis. Nat. Rev Microbiol. 2016, 14, 479–493. [CrossRef] [PubMed]

  80. Parvez, M.K.; Rehman, T.; Alam, P.; Al-Dosari, M.S.; Alqasoumi, S.I.; Alajmi, M.F. Plant-derived antiviral drugs as novel hepatitisB virus inhibitors: Cell culture and molecular docking study. Saudi Pharm. J. 2018, 27, 389–400. [CrossRef] [PubMed]

  81. Yang, X.; Zhu, X.; Ji, H.; Deng, J.; Lu, P.; Jiang, Z.; Li, X.;Wang, Y.;Wang, C.; Zhao, J.; et al. Quercetin synergistically reactivateshuman immunodeficiency virus type 1 latency by activating nuclear factor-_B. Mol. Med. Rep. 2017, 17, 2501–2508. [CrossRef]

  82. Fatima K, Mathew S, Suhail M, Ali A, Damanhouri G, Azhar E, Qadri I (2014) Docking studies of Pakistani HCV NS3 helicase: Apossible antiviral drug target. PLoS ONE 9:e106339

    Article  PubMed  PubMed Central  Google Scholar 

  83. Hung, P.-Y.; Ho, B.-C.; Lee, S.-Y.; Chang, S.-Y.; Kao, C.-L.; Lee, S.-S.; Lee, C.-N. Houttuynia cordata Targets the Beginning Stage ofHerpes Simplex Virus Infection. PLoS ONE 2015, 10, e0115475. [CrossRef] [PubMed].

  84. Liu HJ, Fan YL, Liao HH et al (2017) Apigenin alleviates STZ-induced diabetic cardiomyopathy. Mol Cell Bio chem 428(1–2):9–21

    CAS  Google Scholar 

  85. Critchfield JW, Butera ST, Folks TM (1996) Inhibition of HIV activation in latently infected cells by flavonoid compounds. AIDS Res Hum Retroviruses 12(1):39–46

    Article  CAS  PubMed  Google Scholar 

  86. Shibata C, Ohno M, Otsuka M, Kishikawa T, Goto K, Muroyama R, Kato N, Yoshikawa T, Takata A, Koike K (2014) The flavonoid apigenin inhibits hepatitis C virus replication by decreasing mature microRNA122 levels. Virology 462–463:42–48. https://doi.org/10.1016/j.virol.2014.05.024. (Epub 2014 Jun 14 PMID: 25092460)

    Article  CAS  PubMed  Google Scholar 

  87. Lv X, Qiu M, Chen D, Zheng N, Jin Y, Wu Z (2014) Apigenin inhibits enterovirus 71 replication through suppressing viral IRES activity and modulating cellular JNK pathway. Antiviral Res 109:30–41. https://doi.org/10.1016/j.antiviral.2014.06.004. (Epub 2014 Jun 24 PMID: 24971492)

    Article  CAS  PubMed  Google Scholar 

  88. Zhang W, Qiao H, Lv Y, Wang J, Chen X, Hou Y, Tan R, Li E. Apigenin inhibits enterovirus-71 infection by disrupting viral RNA association with trans-acting factors. PLoS One. 2014 Oct 16;9(10):e110429. doi: https://doi.org/10.1371/journal.pone.0110429. PMID: 25330384; PMCID: PMC4199717.-

  89. .Xu X, Miao J, Shao Q, Gao Y, Hong L. (2020) Apigenin suppresses influenza A virus-induced RIG-I activation and viral replication. J Med Virol 92(12):3057–3066

    Article  Google Scholar 

  90. Acchioni C, Acchioni M, Mancini F, Amendola A, Marsili G, Tirelli V, Gwee CP, Chan KW, Sandini S, Bisbocci M, Mysara M, ElHefnawi M, Sanchez M, Venturi G, Barreca ML, Manfroni G, Bresciani A, Vasudevan SG, Sgarbanti M (2023) A cellular screening platform, stably expressing DENV2 NS5, defines a novel anti-DENV mechanism of action of Apigenin based on STAT2 activation. Virology 583:1–13. https://doi.org/10.1016/j.virol.2023.03.016. (Epub 2023 Apr 5 PMID: 37060797)

    Article  CAS  PubMed  Google Scholar 

  91. bdizadeh R, Hadizadeh F, Abdizadeh T. Evaluation of apigenin-based biflavonoid derivatives as potential therapeutic agents against viral protease (3CLpro) of SARS-CoV-2 via molecular docking, molecular dynamics and quantum mechanics studies. J BiomolStructDyn. 2022. doi: https://doi.org/10.1080/07391102.2022.2098821

  92. Cardenas H, Arango D, Nicholas C, Duarte S, Nuovo GJ, He W, et al. Dietary apigenin exerts immune-regulatory activity in vivo by reducing NF-κB activity, halting leukocyte infiltration and restoring normal metabolic function. Int J Mol Sci. 2016;17[3]:323.

  93. Wang J, Liu YT, Xiao L, Zhu L et al (2014) Anti-inflammatory effects of apigenin in lipopolysaccharide-induced inflammatory in acute lung injury by suppressing COX-2 and NF-kB pathway. Inflammation 37(6):2085–2090

    Article  CAS  PubMed  Google Scholar 

  94. Che DN, Cho BO, Shin JY, Kang HJ, Kim Shukla S, Bajpai VK, Kim M (2014) Plants as potential sources of natural immunomodulators. Rev Environ SciBiotechnol 13(1):17–33

    Google Scholar 

  95. Roszkowski W, Roszkowski K, Ko HL et al (1990) Immunomodulation by propionibacteria. Zentralblatt für Bakteriologie 274(3):289–298

    Article  CAS  PubMed  Google Scholar 

  96. Marinova S, Tchorbadjiiska L, Petrunov B et al (2000) Immunostimulating and protective effects of an oral polybacterial immunomodulator ‘Dentavax’in a rabbit experimental model. Int J Immunopharmacol 22(11):843–854

    Article  CAS  PubMed  Google Scholar 

  97. Talib WH, Saleh S. Propionibacterium acnes augments antitumor, anti-angiogenesis and immunomodulatory effects of melatonin on breast cancer implanted in mice. PloS one. 2015;10[4]:e0124384.

  98. Frediansyah, A.; Sofyantoro, F.; Alhumaid, S.; Al Mutair, A.; Albayat, H.; Altaweil, H.I.; Al-Afghani, H.M.; AlRamadhan, A.A.; AlGhazal, M.R.; Turkistani, S.A.; Abuzaid, A.A.; Rabaan, A.A. Microbial natural products with antiviral activities, including anti-SARS-CoV-2: a review. Molecules 2022, 27, 4305. https://doi.org/10.3390/molecules27134305

  99. Galdeano CM, Perdigon G (2004) Role of viability of probiotic strains in their persistence in the gut and in mucosal immune stimulation. J Appl Microbiol 97(4):673–681

    Article  PubMed  Google Scholar 

  100. Foligné B, Dewulf J, Breton J et al (2010) Probiotic properties of non-conventional lactic acid bacteria: immunomodulation by Oenococcus oeni. Int J Food Microbiol 140(2–3):136–145

    Article  PubMed  Google Scholar 

  101. Bodera P, Chcialowski A (2009) Immunomodulatory effect of probiotic bacteria. Recent Pat Inflamm Allergy Drug Discov 3(1):58–64

    Article  CAS  PubMed  Google Scholar 

  102. Azad M, Kalam A, Sarker M et al (2018) Probiotic species in the modulation of gut microbiota: an overview. BioMed Res Int 2018:1–8

    Google Scholar 

  103. Jounai K, Sugimura T, Ohshio K, et al. Oral administration of Lactococcus lactis subsp. lactis JCM5805 enhances lung immune response resulting in protection from murine parainfluenza virus infection. PloS one. 2015; doi: https://doi.org/10.1371/journal.pone.0119055

  104. Wells JM, Mercenier A (2008) Mucosal delivery of therapeutic and prophylactic molecules using lactic acid bacteria. Nat Rev Microbiol 6(5):349–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Rosenberg H F., B Domachowske J. Inflammatory responses to respiratory syncytial virus (RSV) infection and the development of immunomodulatory pharmacotherapeutics. Curr Med Chem. 2012;19:1424–1431.

  106. Baud D, Agri VD, Gibson GR, Reid G, Giannoni E (2020) Using probiotics to flatten the curve of coronavirus disease COVID-2019 pandemic. Front Public Health. https://doi.org/10.3389/fpubh.2020.00186

    Article  PubMed  PubMed Central  Google Scholar 

  107. Kobayashi N, Saito T, Uematsu T, Kishi K, Toba M, Kohda N, Suzuki T (2011) Oral administration of heat-killed Lactobacillus pentosus strain b240 augments protection against influenza virus infection in mice. Int Immunopharmacol 11:199–203

    Article  CAS  PubMed  Google Scholar 

  108. Yasui H, Kiyoshima J, Hori T, Shida K (1999) Protection against influenza virus infection of mice fed Bifidobacterium breve YIT4064. Clin Diagn Lab Immunol 6:186–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Jiao Q, Li L, Mu Q, Zhang Q (2014) Immunomodulation of nanoparticles in nanomedicine applications. Biomed Res Int 2014:426028

    Article  PubMed  PubMed Central  Google Scholar 

  110. De Nicola M, Gattia DM, Traversa E et al (2013) Maturation and demise of human primary monocytes by carbon nanotubes. J Nanopart Res 15(6):1–5

    Article  Google Scholar 

  111. Hoshino A, Hanada S, Manabe N (2009) Immune response induced by fluorescent nanocrystal quantum dots in vitro and in vivo. IEEE Trans Nano Biosci 8(1):51–57

    Article  Google Scholar 

  112. Müller K, Skepper JN, Posfai M et al (2007) Effect of ultrasmallsuperparamagnetic iron oxide nanoparticles [Ferumoxtran-10] on human monocyte-macrophages in vitro. Biomaterials 28(9):1629–1642

    Article  PubMed  Google Scholar 

  113. Shen CC, Liang HJ, Wang CC, Liao MH, Jan TR (2012) Iron oxide nanoparticles suppressed T helper 1 cell-mediated immunity in a murine model of delayed-type hypersensitivity. Int J Nanomedicine 7:2729–2737. https://doi.org/10.2147/IJN.S31054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Draz MS, Wang YJ, Chen FF, Xu Y, Shafiee H (2017) Electrically oscillating plasmonic nanoparticles for enhanced DNA vaccination against hepatitis C virus. Adv Funct Mater. https://doi.org/10.1002/adfm.201604139

    Article  PubMed  Google Scholar 

  115. Vetro M, Safari D, Fallarini S, Salsabila K, Lahmann M, Penadés S, Lay L, Marradi M, Compostella F (2017) Preparation and immunogenicity of gold glyco-nanoparticles as antipneumococcal vaccine model. Nanomedicine (Lond) 12(1):13–23. https://doi.org/10.2217/nnm-2016-0306

    Article  CAS  PubMed  Google Scholar 

  116. Liu Y, Wang H, Li D, Tian Y, Liu W, Zhang L, Zheng W, Hao Y, Liu J, Yang Z, Shao Y, Jiang X (2016) In situ formation of peptidic nanofibers can fundamentally optimize the quality of immune responses against HIV vaccine. Nanoscale Horiz 1(2):135–143. https://doi.org/10.1039/c5nh00064e

    Article  CAS  PubMed  Google Scholar 

  117. Deng L, Mohan T, Chang TZ, Gonzalez GX, Wang Y, Kwon YM, Kang SM, Compans RW, Champion JA, Wang BZ (2018) Double-layered protein nanoparticles induce broad protection against divergent influenza A viruses. Nat Commun 9(1):359. https://doi.org/10.1038/s41467-017-02725-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Yang J, Shim SM, Nguyen TQ, Kim EH, Kim K, Lim YT, Sung MH, Webby R, Poo H (2017) Poly-γ-glutamic acid/chitosan nanogel greatly enhances the efficacy and heterosubtypic cross-reactivity of H1N1 pandemic influenza vaccine. Sci Rep 7:44839. https://doi.org/10.1038/srep44839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Feng X, Xu W, Li Z, Song W, Ding J, Chen X (2019) Immunomodulatory Nanosystems. Adv Sci (Weinh). https://doi.org/10.1002/advs.201900101

    Article  PubMed  PubMed Central  Google Scholar 

  120. Zhang G, Campbell GR, Zhang Q, Maule E, Hanna J, Gao W, Zhang L, Spector SA (2020) CD4+ t cell-mimicking nanoparticles broadly neutralize hiv-1 and suppress viral replication through autophagy. MBio 11:e45

    Article  Google Scholar 

  121. Morris D, Ansar M, Speshock J, et al. Antiviral and immunomodulatory activity of silver nanoparticles in experimental RSV infection. Viruses. 2019 ;11[8]:732.

  122. Kumar NG, Contaifer D, Madurantakam P, et al Dietary bioactive fatty acids as modulators of immune function: implications on human health. Nutrients. 2019;11:2974. doi: https://doi.org/10.3390/nu11122974

  123. Parnham MJ, Englberger W. Lipid mediators and lymphocyte function. In: Michael A. Bray, John Morley (Eds) The Pharmacology of Lymphocytes 1988 [pp. 385–414]. Springer, Berlin Heidelberg.

  124. Anderson M, Fritsche KL (2002) [n-3] Fatty acids and infectious disease resistance. J Nutr 132(12):3566–3576

    Article  CAS  PubMed  Google Scholar 

  125. Shapiro H, Lev S, Cohen J et al (2009) Polyphenols in the prevention and treatment of sepsis syndromes: rationale and pre-clinical evidence. Nutrition 25(10):981–997

    Article  CAS  PubMed  Google Scholar 

  126. Khan NA (2010) Polyunsaturated fatty acids in the modulation of T-cell signalling. Prostaglandins Leukot Essent Fatty Acids 82(4–6):179–187

    Article  Google Scholar 

  127. Husson MO, Ley D, Portal C et al (2016) Modulation of host defence against bacterial and viral infections by omega-3 polyunsaturated fatty acids. J Infect 73(6):523–535. https://doi.org/10.1016/j.jinf.2016.10.001

    Article  PubMed  Google Scholar 

  128. Hancock RE, Nijnik A, Philpott DJ (2012) Modulating immunity as a therapy for bacterial infections. Nat Rev Microbiol 10(4):243–254

    Article  CAS  PubMed  Google Scholar 

  129. Nijnik A (2013) Immunomodulatory approaches for prevention and treatment of infectious diseases. Curr Opin Microbiol 16(5):590–595

    Article  CAS  PubMed  Google Scholar 

  130. Masihi KN (2001) Fighting infection using immunomodulatory agents. Expert Opin Biol Ther 1(4):641–653

    Article  CAS  PubMed  Google Scholar 

  131. Shapiro H, Lev S, Cohen J, Singer P (2009) Polyphenols in the prevention and treatment of sepsis syndromes: rationale and pre-clinical evidence. Nutrition 25(10):981–997

    Article  CAS  PubMed  Google Scholar 

  132. Tas SW, Baeten DL (2016) Recent advances in the treatment of immune-mediated inflammatory diseases. Methods Mol Biol 1371:143–155

    Article  CAS  PubMed  Google Scholar 

  133. Bedoui Y, Guillot X, Sélambarom J et al (2020) Methotrexate an old drug with new tricks. J Mol Sci 20:5023

    Article  Google Scholar 

  134. Casadevall A (2018) Antibody-based vaccine strategies against intracellular pathogens. Curr Opin Immunol 53:74–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Webster NR, Galley HF (2009) Immunomodulation in the critically ill. Br J Anaesth 103(1):70–81

    Article  CAS  PubMed  Google Scholar 

  136. National Research Council [US] Committee on New Directions in the Study of Antimicrobial Therapeutics: New Classes of Antimicrobials; National Research Council [US] Committee on New Directions in the Study of Antimicrobial Therapeutics: Immunomodulation. Treating Infectious Diseases in a Microbial World: Report of Two Workshops on Novel Antimicrobial Therapeutics. Washington, DC: National Academies Press [US]

  137. Rizk JG, Kalantar-Zadeh K, Mehra MR et al (2020) Pharmaco-immunomodulatory therapy in COVID-19. Drugs 21:1–26

    Google Scholar 

  138. Masihi KN (2000) Immunomodulators in infectious diseases: panoply of possibilites. IntImmunopharmacol 22(12):1083–1091

    Article  CAS  Google Scholar 

  139. Lee SJ, Chinen J, Kavanaugh A (2010) Immunomodulator therapy: monoclonal antibodies, fusion proteins, cytokines, and immunoglobulins. J Allergy Clin Immunol 125(2 Suppl 2):S314–S323

    Article  PubMed  Google Scholar 

  140. Pelfrene E, Mura M, Sanches AC et al (2019) Monoclonal antibodies as anti-infective products: a promising future? Clin Microbiol Infect 25(1):60–64

    Article  CAS  PubMed  Google Scholar 

  141. Fenton C, Scott LJ, Plosker GL (2004) Palivizumab. Paediatr Drugs 6(3):177–197

    Article  PubMed  Google Scholar 

  142. Mejías A, Chávez-Bueno S, Ríos AM, et al. Anti-respiratory syncytial virus [RSV] neutralizing antibody decreases lung inflammation, airway obstruction, and airway hyperresponsiveness in a murine RSV model. Antimicrob Agents Chemother. 2004;48[5]:1811-

  143. Jacob SA, Iacob DG (2017) Ibalizumab targeting CD4 receptors, an emerging molecule in HIV therapy. Front microbiol 8:2323

    Article  Google Scholar 

  144. Subramanian GM, Cronin PW, Poley G et al (2005) A phase 1 study of PAmAb, a fully human monoclonal antibody against Bacillus anthracis protective antigen, in healthy volunteers. Clin Infect Dis 41:12–20

    Article  CAS  PubMed  Google Scholar 

  145. U.S. Food and Drug Administration. Coronavirus COVID-19 Update FDA Authorizes Monoclonal Antibodies Treatment COVID-19]. Available online: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fdaauthorizes-monoclonal-antibodies-treatment-covid-19

  146. Roberts A, Thomas WD, Guarner J et al (2006) Therapy with a severe acute respiratory syndrome-associated coronavirus-neutralizing human monoclonal antibody reduces disease severity and viral burden in golden Syrian hamsters. J Infect Dis 193:685–692

    Article  CAS  PubMed  Google Scholar 

  147. Pachl J, Svoboda P, Jacobs F et al (2006) A randomized, blinded, multicenter trial of lipid-associated amphotericin B alone versus in combination with an antibody-based inhibitor of heat shock protein 90 in patients with invasive candidiasis. Clin Infect Dis 42:1404–1413

    Article  CAS  PubMed  Google Scholar 

  148. Matthews RC, Burnie JP (2005) Human recombinant antibody to HSP90: a natural partner in combination therapy. Curr Mol Med 5(4):403–411

    Article  CAS  PubMed  Google Scholar 

  149. Bootz F, Neri D (2016) Immunocytokines: a novel class of products for the treatment of chronic inflammation and autoimmune conditions. Drug Discov Today 21:180–218

    Article  CAS  PubMed  Google Scholar 

  150. Lange CM, Jacobson IM, Rice CM, Zeuzem S (2014) Emerging therapies for the treatment of hepatitis C. EMBO Mol Med 6:4

    Article  CAS  PubMed  Google Scholar 

  151. Ferreira VL, Borba HH, Bonetti AF, et al. Cytokines and Interferons: Types and Functions, Autoantibodies and Cytokines. Wahid Ali Khan: Intech Open. 2018

  152. Chang J, Guo JT (2015) Treatment of chronic hepatitis B with pattern recognition receptor agonists: Current status and potential for a cure. Antiviral Res 121:152–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Manishi J (1994) Interferon-alpha, beta, gamma. Gan to kagakuryoho. Cancer Chemother 21:2853

    Google Scholar 

  154. Masihi KN, Schäfer H (2011) Overview of biologic response modifiers in infectious disease. Infect Dis Clin 25(4):723–731

    Article  Google Scholar 

  155. Friedman RM, Contente S (2010) Treatment of hepatitis C infections with interferon: a historical perspective. Hepat Res Treat. 2010:323–326

    Google Scholar 

  156. Strannegård Ö (1999) Interferons and their therapeutic applications. EJIFCC 11:52

    PubMed  PubMed Central  Google Scholar 

  157. Nakane A, Minagawa T, Yasuda I et al (1988) Prevention by gamma interferon of fatal infection with Listeria monocytogenes infection. Infect Immun 56:2011–2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Leiby DA, Fortier AH, Crawford RM et al (1992) In vivo modulation of the murine immune response to Francisellatularensis LVS by administration of anticytokine antibodies. Infect Immun 60:84–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Subauste CS, Remington JS (1991) Role of gamma interferon in Toxoplasma gondii infection. Eur J Clin Microbiol Infect Dis 10(2):58–67

    Article  CAS  PubMed  Google Scholar 

  160. Beck JM, Brunette EN, Fuchs HJ et al (1991) Reduction in intensity of Pneumocystis carinii pneumonia in mice by aerosol administration of gamma interferon. Infect Immun 59:3859–3862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Kumaratilake LM, Ferrante A, Rzepczyk C (1991) The role of T lymphocytes in immunity to Plasmodium falciparum. Enhancement of neutrophil-mediated parasite killing by lymhotoxin and IFN-gamma: comparisons with tumor necrosis factor effects. J Immunol 146:762–767

    Article  CAS  PubMed  Google Scholar 

  162. Williams DM, Byrne GI, Grubbs B et al (1988) Role in vivo for gamma interferon in control of pneumonia caused by Clamydia trachomatis. Infect Immun 56:3004–3006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Li H, Jerrells TR, Spitalny GL et al (1987) Gamma interferon as a crucial host defense against Rikettsiaconorii in vivo. Infect Immun 55:1252–1255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Cano LE, Kashino SS, Arruda C et al (1998) Protective role of gamma interferon in experimental pulmonary paracoccidioidomycosis. Infect Immun 66:800–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Way SS, Borczuk AC, Dominitz R et al (1998) An essential role for gamma interferon in innate resistance to Shigellaflexneri infection. Infect Immun 66:1342–1348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Meng Z, Chen Y, Lu M (2020) Advances in targeting the innate and adaptive immune systems to cure chronic hepatitis B virus infection. Front Immunol 10:3127

    Article  PubMed  PubMed Central  Google Scholar 

  167. Brocker C, Thompson D, Matsumoto A et al (2010) Evolutionary divergence and functions of the human interleukin [IL] gene family. Hum Genomics 5(1):1–26

    Article  Google Scholar 

  168. Oppmann B, Lesley R, Blom B et al (2000) Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 13(5):715–725

    Article  CAS  PubMed  Google Scholar 

  169. Montaner LJ, Bailer RT, Gordon S (1997) IL-13 acts on macrophages to block the completion of reverse transcription, inhibit virus production, and reduce virus infectivity. J Leukoc Biol 62(1):126–132

    Article  CAS  PubMed  Google Scholar 

  170. Montaner LJ, Doyle AG, Collin M et al (1993) Interleukin 13 inhibits human immunodeficiency virus type 1 production in primary blood-derived human macrophages in vitro. J Exp Med 178:743–747

    Article  CAS  PubMed  Google Scholar 

  171. Lester SN, Li K (2014) Toll-like receptors in antiviral innate immunity. J Mol Biol 426(6):1246–1264

    Article  CAS  PubMed  Google Scholar 

  172. Kumar H, Kawai T, Akira S (2011) Pathogen recognition by the innate immune system. Int Rev Immunol 30(1):16–34

    Article  CAS  PubMed  Google Scholar 

  173. Hennessy EJ, Parker AE, O'neill LA. Targeting Toll-like receptors: emerging therapeutics? Nat Rev Drug Discov. 2010; 9[4]:293–307

  174. Rozy A, Chorostowska-Wynimko J (2008) Bacterial immunostimulants — mechanism of action and clinical application in respiratory diseases. Pneumonol Alergol Pol 76:353–359

    PubMed  Google Scholar 

  175. Ruah SB, Ruah C, van Aubel A, Abel S, Elsasser U (2001) Efficacy of a polyvalent bacterial lysate in children with recurrent respiratory tract infections. Adv Ther 18:151–162

    Article  CAS  PubMed  Google Scholar 

  176. Kasturi SP, Skountzou I, Albrecht RA et al (2011) Programming the magnitude and persistence of antibody responses with innate immunity. Nature 470:543–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Carty M, Bowie AG (2010) Recent insights into the role of Toll-like receptors in viral infection. Clin Exp Immunol 161(3):397–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Cannon MJ, Stott EJ, Taylor G et al (1987) Clearance of persistent respiratory syncytial virus infections immune deficient mice following transfer primed. T cells Immunology 62(1):133–138

    CAS  PubMed  Google Scholar 

  179. Wykes MN, Lewin SR (2018) Immune checkpoint blockade in infectious diseases. Nat Rev Immunol 18(2):91–104. https://doi.org/10.1038/nri.2017.112

    Article  CAS  PubMed  Google Scholar 

  180. Singh BP, Vij S, Hati S (2014) Functional significance of bioactive peptides derived from soybean. Peptides 54:171–179

    Article  CAS  PubMed  Google Scholar 

  181. Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395

    Article  CAS  PubMed  Google Scholar 

  182. Lei J, Sun L, Huang S et al (2019) The antimicrobial peptides and their potential clinical applications. Am J Transl Res 11:3919

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Arnett E, Seveau S (2011) The multifaceted activities of mammalian defensins. Curr Pharm Des 17:4254–4426

    Article  CAS  PubMed  Google Scholar 

  184. Hilchie AL et al (2013) Immune modulation by multifaceted cationic host defense [antimicrobial] peptides. Nat Chem Biol 9:761–768

    Article  CAS  PubMed  Google Scholar 

  185. Harder J, Bartels J, Christophers E et al (2001) Isolation and characterization of human β-defensin-3, a novel human inducible peptide antibiotic. J BiolChem 276:5707–5713

    CAS  Google Scholar 

  186. Ganz T, Selsted ME, Szklarek D et al (1985) Defensins. Natural peptide antibiotics of human neutrophils. J Clin Investig 76:1427–1435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Daher KA, Selsted ME, Lehrer RI (1986) Direct inactivation of viruses by human granulocyte defensins. J Virol 60:1068–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Soruri A, Grigat J, Forssmann U et al (2007) β-Defensins chemoattract macrophages and mast cells but not lymphocytes and dendritic cells. Eur J Immunol 37:2474–2486

    Article  CAS  PubMed  Google Scholar 

  189. Yang D, Chertov O, Bykovskaia SN et al (1999) β-Defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science 286:525–528

    Article  CAS  PubMed  Google Scholar 

  190. Chertov O, Michiel DF, Xu L et al (1996) Identification of defensin-1, defensin-2, and CAP37/azurocidin as T-cell chemoattractant proteins released from interleukin-8- stimulated neutrophils. J Biol Chem 271:2935–2940

    Article  CAS  PubMed  Google Scholar 

  191. Holly MK, Diaz K, Smith JG (2017) Defensins in viral infection and pathogenesis. Annu Rev Virol 4:369–391

    Article  CAS  PubMed  Google Scholar 

  192. Chessa C, Bodet C, Jousselin C et al (2020) Antiviral and immunomodulatory properties of antimicrobial peptides produced by human keratinocytes. Fron microbiol 11:1155

    Article  Google Scholar 

  193. Sørensen OE, Follin P, Johnsen AH et al (2001) Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase 3. Blood 97(12):3951–3959

    Article  PubMed  Google Scholar 

  194. Rivas-Santiago B, Castañeda-Delgado JE, Rivas Santiago CE, et al. Ability of innate defence regulator peptides IDR-1002, IDR-HH2 and IDR-1018 to protect against Mycobacterium tuberculosis infections in animal models. PloS one. 2013;8[3]:e59119.

  195. SteinstraesserL, Hirsch T, Schulte M, et al. Innate defense regulator peptide 1018 in wound healing and wound infection. PLoS One. 2012;7[8]:e39373

  196. Bolouri H, Sävman K, Wang W et al (2014) Innate defense regulator peptide 1018 protects against perinatal brain injury. Ann Neurol 75(3):395–410

    Article  CAS  PubMed  Google Scholar 

  197. Shestakov A, Jenssen H, Hancock RE et al (2013) Synthetic analogues of bovine bactenecindodecapeptide reduces herpes simplex virus type 2 infectivity in mice. Antiviral Res 100(2):455–459

    Article  CAS  PubMed  Google Scholar 

  198. Cotter PD, Hill C, Ross RP (2005) Bacteriocins: developing innate immunity for food. Nat Rev Microbiol 3:777–778

    Article  CAS  PubMed  Google Scholar 

  199. A specific peptide with immunomodulatory activity from Pseudostellaria heterophylla and the action mechanism

  200. Cai J, Li X, Du H, Jiang C et al (2020) Immunomodulatory significance of natural peptides in mammalians: Promising agents for medical application. Immunobiology 225:151936

    Article  CAS  PubMed  Google Scholar 

  201. Ahmed A, Siman-Tov G, Hall G et al (2019) Human Antimicrobial Peptides as Therapeutics for Viral Infections. Viruses 11:704. https://doi.org/10.3390/v11080704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Paucek RD, Baltimore D, Li G (2019) The cellular immunotherapy revolution: arming the immune system for precision therapy. Trends Immunol 40(4):292–309

    Article  CAS  PubMed  Google Scholar 

  203. Saha K, Wong PK (1992) Protective role of cytotoxic lymphocytes against murine leukaemia virus-induced neurologic disease and immunodeficiency is enhanced by the presence of helper T cells. Virol 188(2):921–925

    Article  CAS  Google Scholar 

  204. Sautto GA, Wisskirchen K, Clementi N et al (2016) Chimeric antigen receptor [CAR]-engineered T cells redirected against hepatitis C virus [HCV] E2 glycoprotein. Gut 65:512–523

    Article  CAS  PubMed  Google Scholar 

  205. Proff J, Brey CU, Ensser A et al (2018) Turning the tables on cytomegalovirus: targeting viral Fc receptors by CARs containing mutated CH2–CH3 IgG spacer domains. J Transl Med 16(1):1–2

    Article  Google Scholar 

  206. Carrillo MA, Zhen A, Zack JA et al (2017) New approaches for the enhancement of chimeric antigen receptors for the treatment of HIV. Transl Res 187:83–92

    Article  CAS  PubMed  Google Scholar 

  207. Olbrich H, Theobald SJ, Slabik C et al (2020) Adult and cord blood-derived high-affinity gB-CAR-T cells effectively react against human Cytomegalovirus infections. Hum Gene Ther 31(7–8):423–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Lamontagne L, Jolicoeur P, Decarie D et al (1996) Effect of adoptive transfer of CD4, CD8 and B cells on recovery from MHV3-induced immune deficiencies. Immunology 88(20):220–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Parida SK, Poiret T, Zhenjiang L, et al... T-cell therapy: options for infectious diseases. Arch Clin Infect Dis. 2015;61[suppl_3]:S217–24

  210. Hegde NR, Rao PP, Bayry J et al (2009) Immunotherapy of viral infections. Immunotherapy 1(4):691–711

    Article  CAS  PubMed  Google Scholar 

  211. Masson F, Mount AM, Wilson NS et al (2008) Dendritic cells: driving the differentiation programme of T cells in viral infections. Immunol Cell Biol 86(4):333–342

    Article  CAS  PubMed  Google Scholar 

  212. Lyse Darwish, Samira Mubareka & W Conrad Liles Immunomodulatory therapy for severe influenza. Expert Rev Anti Infect Ther. 2011:7, 807–822

  213. Khoury M, Cuenca J, Cruz FF et al (2020) Current status of cell-based therapies for respiratory virus infections: applicability to COVID-19. Eur Respir J. https://doi.org/10.1183/13993003.00858-2020

    Article  PubMed  PubMed Central  Google Scholar 

  214. Sleem A, Saleh F (2020) Mesenchymal stem cells in the fight against viruses: Face to face with the invisible enemy. Curr Res Transl Med 68(3):105–110

    PubMed  PubMed Central  Google Scholar 

  215. Zhen A, Peterson CW, Carrillo MA, et al. Correction: Long-term persistence and function of hematopoietic stem cell-derived chimeric antigen receptor T cells in a nonhuman primate model of HIV/AIDS. PLoS Pathog. 2018;14[3]:e1006891.

Download references

Acknowledgements

Authors wish to express their thanks to the Director and Head, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology [Govt. of India], Trivandrum, Kerala, India for their support and providing the infrastructure to carry out this work.

Funding

There is no funding from outside agencies. The infrastructure support is provided by the parent Institute.

Author information

Authors and Affiliations

Authors

Contributions

Sangetha: Design, draft, literature search, data collection, data analysis, interpretation. Joseph: data collection, data analysis. Mohanan: Design, data analysis, interpretation, final approval of the manuscript.

Corresponding author

Correspondence to Mohanan Parayanthala Valappil.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Consent or publication

All the authors agreed to submit the manuscript in the journal. The same has approved by the parent Institute.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sangeetha Vijayan, P., Xavier, J. & Valappil, M.P. A review of immune modulators and immunotherapy in infectious diseases. Mol Cell Biochem (2023). https://doi.org/10.1007/s11010-023-04825-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11010-023-04825-w

Keywords

Navigation