Skip to main content

Advertisement

Log in

Cardioprotective role of a magnolol and honokiol complex in the prevention of doxorubicin-mediated cardiotoxicity in adult rats

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Doxorubicin (DOXO) induces marked cardiotoxicity, though increased oxidative stress while there are some documents related with cardioprotective effects of some antioxidants against organ-toxicity during cancer treatment. Although magnolia bark has some antioxidant-like effects, its action in DOXO-induced heart dysfunction has not be shown clearly. Therefore, here, we aimed to investigate the cardioprotective action of a magnolia bark extract with active component magnolol and honokiol complex (MAHOC; 100 mg/kg) in DOXO-treated rat hearts. One group of adult male Wistar rats was injected with DOXO (DOXO-group; a cumulative dose of 15 mg/kg in 2-week) or saline (CON-group). One group of DOXO-treated rats was administered with MAHOC before DOXO (Pre-MAHOC group; 2-week) while another group was administered with MAHOC following the 2-week DOXO (Post-MAHOC group). MAHOC administration, before or after DOXO, provided full survival of animals during 12–14 weeks, and significant recoveries in the systemic parameters of animals such as plasma levels of manganese and zinc, total oxidant and antioxidant statuses, and also systolic and diastolic blood pressures. This treatment also significantly improved heart function including recoveries in end-diastolic volume, left ventricular end-systolic volume, heart rate, cardiac output, and prolonged P-wave duration. Furthermore, the MAHOC administrations improved the structure of left ventricles such as recoveries in loss of myofibrils, degenerative nuclear changes, fragmentation of cardiomyocytes, and interstitial edema. Biochemical analysis in the heart tissues provided the important cardioprotective effect of MAHOC on the redox regulation of the heart, such as improvements in activities of glutathione peroxidase and glutathione reductase, and oxygen radical-absorbing capacity of the heart together with recoveries in other systemic parameters of animals, while all of these benefits were observed in the Pre-MAHOC treatment group, more prominently. Overall, one can point out the beneficial antioxidant effects of MAHOC in chronic heart diseases as a supporting and complementing agent to the conventional therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Roger VL (2021) Epidemiology of heart failure: a contemporary perspective. Circ Res 128:1421–1434

    Article  CAS  PubMed  Google Scholar 

  2. Landmesser U, Spiekermann S, Dikalov S, Tatge H, Wilke R, Kohler C, Harrison DG, Hornig B, Drexler H (2002) Vascular oxidative stress and endothelial dysfunction in patients with chronic heart failure: role of xanthine-oxidase and extracellular superoxide dismutase. Circulation 106:3073–3078

    Article  CAS  PubMed  Google Scholar 

  3. Thomson MJ, Frenneaux MP, Kaski J (2009) Antioxidant treatment for heart failure: friend or foe? QJM 102:305–310

    Article  CAS  PubMed  Google Scholar 

  4. Goszcz K, Deakin SJ, Duthie GG, Stewart D, Leslie SJ, Megson IL (2015) Antioxidants in cardiovascular therapy: panacea or false hope? Front Cardiovasc Med 2:29

    Article  PubMed  PubMed Central  Google Scholar 

  5. van Duynhoven J, Vaughan EE, van Dorsten F, Gomez-Roldan V, de Vos R, Vervoort J, van der Hooft JJ, Roger L, Draijer R, Jacobs DM (2013) Interactions of black tea polyphenols with human gut microbiota: implications for gut and cardiovascular health. Am J Clin Nutr 98:1631S-1641S

    Article  PubMed  Google Scholar 

  6. Liu S, Manson J, Stampfer MJ, Hu FB, Giovannucci E, Colditz GA, Hennekens CH, Willett WC (2000) A prospective study of whole-grain intake and risk of type 2 diabetes mellitus in US women. Am J Public Health 90:1409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Biswas SK, Newby DE, Rahman I, Megson IL (2005) Depressed glutathione synthesis precedes oxidative stress and atherogenesis in Apo-E−/− mice. Biochem Biophys Res Commun 338:1368–1373

    Article  CAS  PubMed  Google Scholar 

  8. Moon GJ, Kim SJ, Cho YH, Ryoo S, Bang OY (2014) Antioxidant effects of statins in patients with atherosclerotic cerebrovascular disease. J Clin Neurol 10:140–147

    Article  PubMed  PubMed Central  Google Scholar 

  9. Anderson EJ, Thayne KA, Harris M, Shaikh SR, Darden TM, Lark DS, Williams JM, Chitwood WR, Kypson AP and Rodriguez E (2014) Do fish oil omega-3 fatty acids enhance antioxidant capacity and mitochondrial fatty acid oxidation in human atrial myocardium via PPARγ activation? Antioxid Redox Signal 21(8):1156–1163. https://doi.org/10.1089/ars.2014.5888

  10. Holmquist C, Larsson S, Wolk A, De Faire U (2003) Multivitamin supplements are inversely associated with risk of myocardial infarction in men and women—Stockholm heart epidemiology program (SHEEP). J Nutr 133:2650–2654

    Article  CAS  PubMed  Google Scholar 

  11. Leopold JA (2015) Antioxidants and coronary artery disease: from pathophysiology to preventive therapy. Coron Artery Dis 26:176

    Article  PubMed  PubMed Central  Google Scholar 

  12. Klimczak-Tomaniak D, de Bakker M, Bouwens E, Akkerhuis KM, Baart S, Rizopoulos D, Mouthaan H, van Ramshorst J, Germans T, Constantinescu A (2022) Dynamic personalized risk prediction in chronic heart failure patients: a longitudinal, clinical investigation of 92 biomarkers (Bio-SHiFT study). Sci Rep 12:1–10

    Article  ADS  Google Scholar 

  13. Shrivastava A, Haase T, Zeller T, Schulte C (2020) Biomarkers for heart failure prognosis: proteins, genetic scores and non-coding RNAs. Front Cardiovasc Med 7:601364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shite J, Qin F, Mao W, Kawai H, Stevens SY, Liang C-s (2001) Antioxidant vitamins attenuate oxidative stress and cardiac dysfunction in tachycardia-induced cardiomyopathy. J Am Coll Cardiol 38:1734–1740

    Article  CAS  PubMed  Google Scholar 

  15. Cai Y, Luo Q, Sun M, Corke H (2004) Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci 74:2157–2184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jiang Y, Zhao Q, Li L, Huang S, Yi S, Hu Z (2022) Effect of traditional Chinese medicine on the cardiovascular diseases. Front Pharmacol. https://doi.org/10.3389/fphar.2022.806300

    Article  PubMed  PubMed Central  Google Scholar 

  17. Maruyama Y, Kuribara H, Morita M, Yuzurihara M, Weintraub ST (1998) Identification of magnolol and honokiol as anxiolytic agents in extracts of saiboku-to, an oriental herbal medicine. J Nat Prod 61:135–138

    Article  CAS  PubMed  Google Scholar 

  18. Xie Z, Zhao J, Wang H, Jiang Y, Yang Q, Fu Y, Zeng H, Hölscher C, Xu J, Zhang Z (2020) Magnolol alleviates Alzheimer’s disease-like pathology in transgenic C. elegans by promoting microglia phagocytosis and the degradation of beta-amyloid through activation of PPAR-γ. Biomed Pharmacother 124:1886

    Article  Google Scholar 

  19. Zhang GS, Wang RJ, Zhang HN, Zhang GP, Luo MS, Luo JD (2010) Effects of chronic treatment with honokiol in spontaneously hypertensive rats. Biol Pharm Bull 33:427–431. https://doi.org/10.1248/bpb.33.427

    Article  CAS  PubMed  Google Scholar 

  20. Zhao C, Liu Z-Q (2011) Comparison of antioxidant abilities of magnolol and honokiol to scavenge radicals and to protect DNA. Biochimie 93:1755–1760

    Article  CAS  PubMed  Google Scholar 

  21. Oh S, Gadde UD, Bravo D, Lillehoj EP, Lillehoj HS (2018) Growth-promoting and antioxidant effects of magnolia bark extract in chickens uninfected or co-infected with Clostridium perfringens and Eimeria maxima as an experimental model of necrotic enteritis. Curr Dev Nutr 2:nzy009

    Article  PubMed  PubMed Central  Google Scholar 

  22. Deng Y, Han X, Tang S, Li C, Xiao W, Tan Z (2018) Magnolol and honokiol attenuate apoptosis of enterotoxigenic Escherichia coli-induced intestinal epithelium by maintaining secretion and absorption homeostasis and protecting mucosal integrity. Med Sci Monit 24:3348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lin Y, Li Y, Zeng Y, Tian B, Qu X, Yuan Q, Song Y (2021) Pharmacology, toxicity, bioavailability, and formulation of magnolol: an update. Front Pharmacol 12:632767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lo Y-C, Che-Ming T, Chieh-Fu C, Chien-Chih C, Chuang-Ye H (1994) Magnolol and honokiol isolated from Magnolia officinalis protect rat heart mitochondria against lipid peroxidation. Biochem Pharmacol 47:549–553

    Article  CAS  PubMed  Google Scholar 

  25. Hong C, Huang S, Tsai S (1996) Magnolol reduces infarct size and suppresses ventricular arrhythmia in rats subjected to coronary ligation. Clin Exp Pharmacol Physiol 23:660–664

    Article  CAS  PubMed  Google Scholar 

  26. Xiang D, Liu Y, Zhou S, Zhou E, Wang Y (2021) Protective effects of estrogen on cardiovascular disease mediated by oxidative stress. Oxid Med Cell Longev 2021:5523516. https://doi.org/10.1155/2021/5523516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Walker JR, Sharma A, Lytwyn M, Bohonis S, Thliveris J, Singal PK, Jassal DS (2011) The cardioprotective role of probucol against anthracycline and trastuzumab-mediated cardiotoxicity. J Am Soc Echocardiogr 24:699–705

    Article  PubMed  Google Scholar 

  28. Goyal V, Bews H, Cheung D, Premecz S, Mandal S, Shaikh B, Best R, Bhindi R, Chaudhary R, Ravandi A (2016) The cardioprotective role of N-acetyl cysteine amide in the prevention of doxorubicin and trastuzumab-mediated cardiac dysfunction. Can J Cardiol 32:1513–1519

    Article  PubMed  Google Scholar 

  29. Kalaiselvi P, Pragasam V, Chinnikrishnan S, Veena CK, Sundarapandiyan R, Varalakshmi P (2005) Counteracting adriamycin-induced oxidative stress by administration of N-acetyl cysteine and vitamin E. Clin Chem Lab Med (CCLM) 43:834–840

    Article  CAS  PubMed  Google Scholar 

  30. Afsar T, Razak S, Almajwal A, Al-Disi D (2020) Doxorubicin-induced alterations in kidney functioning, oxidative stress, DNA damage, and renal tissue morphology; Improvement by Acacia hydaspica tannin-rich ethyl acetate fraction. Saudi J Biol Sci 27:2251–2260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Güntürk I, Yazici C, Köse SK, Dağli F, Yücel B, Yay AH (2019) The effect of N-acetylcysteine on inflammation and oxidative stress in cisplatin-induced nephrotoxicity: a rat model. Turkish J Med Sci 49:1789–1799

    Google Scholar 

  32. Gokcimen A, Cim A, Tola H, Bayram D, Kocak A, Özgüner F, Ayata A (2007) Protective effect of N-acetylcysteine, caffeic acid and vitamin E on doxorubicin hepatotoxicity. Hum Exp Toxicol 26:519–525

    Article  CAS  PubMed  Google Scholar 

  33. Su Z, Ye J, Qin Z, Ding X (2015) Protective effects of madecassoside against Doxorubicin induced nephrotoxicity in vivo and in vitro. Sci Rep 5:1–14

    Article  Google Scholar 

  34. Aydemir-Koksoy A, Bilginoglu A, Sariahmetoglu M, Schulz R, Turan B (2010) Antioxidant treatment protects diabetic rats from cardiac dysfunction by preserving contractile protein targets of oxidative stress. J Nutr Biochem 21:827–833

    Article  CAS  PubMed  Google Scholar 

  35. Akolkar G, da Silva DD, Ayyappan P, Bagchi AK, Jassal DS, Salemi VMC, Irigoyen MC, De Angelis K, Singal PK (2017) Vitamin C mitigates oxidative/nitrosative stress and inflammation in doxorubicin-induced cardiomyopathy. Am J Physiol-Heart Circ Physiol 313:H795–H809

    Article  CAS  PubMed  Google Scholar 

  36. Chatterjee K, Zhang J, Honbo N, Karliner JS (2010) Doxorubicin cardiomyopathy. Cardiology 115:155–162

    Article  CAS  PubMed  Google Scholar 

  37. Singal PK, Deally CM, Weinberg LE (1987) Subcellular effects of adriamycin in the heart: a concise review. J Mol Cell Cardiol 19:817–828. https://doi.org/10.1016/s0022-2828(87)80392-9

    Article  CAS  PubMed  Google Scholar 

  38. Swain SM, Whaley FS, Ewer MS (2003) Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer 97:2869–2879. https://doi.org/10.1002/cncr.11407

    Article  CAS  PubMed  Google Scholar 

  39. Lončar-Turukalo T, Vasić M, Tasić T, Mijatović G, Glumac S, Bajić D, Japunžić-Žigon N (2015) Heart rate dynamics in doxorubicin-induced cardiomyopathy. Physiol Meas 36:727

    Article  PubMed  Google Scholar 

  40. Cappetta D, Esposito G, Coppini R, Piegari E, Russo R, Ciuffreda LP, Rivellino A, Santini L, Rafaniello C, Scavone C (2017) Effects of ranolazine in a model of doxorubicin-induced left ventricle diastolic dysfunction. Br J Pharmacol 174:3696–3712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ahmad S, Panda BP, Kohli K, Fahim M, Dubey K (2017) Folic acid ameliorates celecoxib cardiotoxicity in a doxorubicin heart failure rat model. Pharm Biol 55:1295–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Elhadidy MG, Elmasry A, Rabei MR, Eladel AE (2019) Effect of ghrelin on VEGF-B and connexin-43 in a rat model of doxorubicin-induced cardiomyopathy. J Basic Clin Physiol Pharmacol 31:20180212

    Article  Google Scholar 

  43. Merlet N, Piriou N, Rozec B, Grabherr A, Lauzier B, Trochu J-N, Gauthier C (2013) Increased beta2-adrenoceptors in doxorubicin-induced cardiomyopathy in rat. PLoS ONE 8:e64711

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  44. Flanigan TJ, Anderson JE, Elayan I, Allen AR, Ferguson SA (2018) Effects of cyclophosphamide and/or doxorubicin in a murine model of postchemotherapy cognitive impairment. Toxicol Sci 162:462–474. https://doi.org/10.1093/toxsci/kfx267

    Article  CAS  PubMed  Google Scholar 

  45. Spivak M, Bubnov R, Yemets I, Lazarenko L, Timoshok N, Vorobieva A, Mohnatyy S, Ulberg Z, Reznichenko L, Grusina T, Zhovnir V, Zholobak N (2013) Doxorubicin dose for congestive heart failure modeling and the use of general ultrasound equipment for evaluation in rats. Longit in vivo Study Med Ultrason 15:23–28. https://doi.org/10.11152/mu.2013.2066.151.ms1ddc2

    Article  Google Scholar 

  46. van Deel E, Ridwan Y, van Vliet JN, Belenkov S, Essers J (2016) In vivo quantitative assessment of myocardial structure, function, perfusion and viability using cardiac micro-computed tomography. JoVE 108:e53603

    Google Scholar 

  47. Dittmar MS, Fehm NP, Vatankhah B, Horn M (2004) Ketamine/xylazine anesthesia for radiologic imaging of neurologically impaired rats: dose response, respiratory depression, and management of complications. Comp Med 54:652–655

    CAS  PubMed  Google Scholar 

  48. Billur D, Olgar Y, Turan B (2022) Intracellular redistribution of left ventricular connexin 43 contributes to the remodeling of electrical properties of the heart in insulin-resistant elderly rats. J Histochem Cytochem. https://doi.org/10.1369/00221554221101661

    Article  PubMed  PubMed Central  Google Scholar 

  49. Carvalho RA, Sousa RP, Cadete VJ, Lopaschuk GD, Palmeira CM, Bjork JA, Wallace KB (2010) Metabolic remodeling associated with subchronic doxorubicin cardiomyopathy. Toxicology 270:92–98

    Article  CAS  PubMed  Google Scholar 

  50. Durak A, Olgar Y, Tuncay E, Karaomerlioglu I, Kayki Mutlu G, Arioglu Inan E, Altan VM, Turan B (2017) Onset of decreased heart work is correlated with increased heart rate and shortened QT interval in high-carbohydrate fed overweight rats. Can J Physiol Pharmacol 95:1335–1342

    Article  CAS  PubMed  Google Scholar 

  51. Takemura G, Fujiwara H (2007) Doxorubicin-induced cardiomyopathy: from the cardiotoxic mechanisms to management. Prog Cardiovasc Dis 49:330–352

    Article  CAS  PubMed  Google Scholar 

  52. Bansal N, Adams MJ, Ganatra S, Colan SD, Aggarwal S, Steiner R, Amdani S, Lipshultz ER, Lipshultz SE (2019) Strategies to prevent anthracycline-induced cardiotoxicity in cancer survivors. Cardiooncology 5:18. https://doi.org/10.1186/s40959-019-0054-5

    Article  PubMed  PubMed Central  Google Scholar 

  53. Von Hoff DD, Layard MW, Basa P, Davis HL Jr, Von Hoff AL, Rozencweig M, Muggia FM (1979) Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med 91:710–717. https://doi.org/10.7326/0003-4819-91-5-710

    Article  Google Scholar 

  54. Beleni̇chev I, Pavlo B, Popazova O, Ryzhenko V, Bukhtiyarova N, Puzyrenko A (2023) Integrative and biochemical parameters in rats in the simulation of doxorubicin chronic heart failure and during the use of Β-adrenergic blockers. J Faculty Pharm Ankara Univ 47:21–21

    Google Scholar 

  55. Albini A, Pennesi G, Donatelli F, Cammarota R, De Flora S, Noonan DM (2010) Cardiotoxicity of anticancer drugs: the need for cardio-oncology and cardio-oncological prevention. J Natl Cancer Inst 102:14–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jordon M (2002) Anti-cancer agents. Curr Med Chem 2:1–17

    Google Scholar 

  57. Ferdinandy P, Danial H, Ambrus I, Rothery RA, Schulz R (2000) Peroxynitrite is a major contributor to cytokine-induced myocardial contractile failure. Circ Res 87:241–247

    Article  CAS  PubMed  Google Scholar 

  58. Asselin CY, Lam A, Cheung DY, Eekhoudt CR, Zhu A, Mittal I, Mayba A, Solati Z, Edel A, Austria JA (2020) The cardioprotective role of flaxseed in the prevention of doxorubicin-and trastuzumab-mediated cardiotoxicity in C57BL/6 mice. J Nutr 150:2353–2363

    Article  PubMed  Google Scholar 

  59. Broder H, Gottlieb RA, Lepor NE (2008) Chemotherapy and cardiotoxicity. Rev Cardiovasc Med 9:75

    PubMed  PubMed Central  Google Scholar 

  60. Davies K, Doroshow J (1986) Redox cycling of anthracyclines by cardiac mitochondria. I. Anthracycline radical formation by NADH dehydrogenase. J Biol Chem 261:3060–3067

    Article  CAS  PubMed  Google Scholar 

  61. Kalyanaraman B (2020) Teaching the basics of the mechanism of doxorubicin-induced cardiotoxicity: Have we been barking up the wrong tree? Redox Biol 29:101394

    Article  CAS  PubMed  Google Scholar 

  62. Eekhoudt CR, Bortoluzzi T, Varghese SS, Cheung DY, Christie S, Eastman S, Mittal I, Austria JA, Aukema HM, Ravandi A (2022) Comparing flaxseed and perindopril in the prevention of doxorubicin and trastuzumab-induced cardiotoxicity in C57Bl/6 mice. Curr Oncol 29:2941–2953

    Article  PubMed  PubMed Central  Google Scholar 

  63. Adıyaman MŞ, Adıyaman ÖA, Dağlı AF, Karahan MZ, Dağlı MN (2022) Prevention of doxorubicin-induced experimental cardiotoxicity by Nigella sativa in rats. Rev Port Cardiol 41:99–105

    Article  PubMed  Google Scholar 

  64. Öz E, İlhan MN (2006) Effects of melatonin in reducing the toxic effects of doxorubicin. Mol Cell Biochem 286:11–15

    Article  PubMed  Google Scholar 

  65. Ayza MA, Zewdie KA, Yigzaw EF, Ayele SG, Tesfaye BA, Tafere GG, Abrha MG (2022) Potential protective effects of antioxidants against cyclophosphamide-induced nephrotoxicity. Int J Nephrol 2022:1–2

    Article  Google Scholar 

  66. Woodbury A, Yu SP, Wei L, García P (2013) Neuro-modulating effects of honokiol: a review. Front Neurol 4:130. https://doi.org/10.3389/fneur.2013.00130

    Article  PubMed  PubMed Central  Google Scholar 

  67. Rajgopal A, Missler SR, Scholten JD (2016) Magnolia officinalis (Hou Po) bark extract stimulates the Nrf2-pathway in hepatocytes and protects against oxidative stress. J Ethnopharmacol 193:657–662. https://doi.org/10.1016/j.jep.2016.10.016

    Article  PubMed  Google Scholar 

  68. Zhang Z, Chen J, Jiang X, Wang J, Yan X, Zheng Y, Conklin DJ, Kim KS, Kim KH, Tan Y, Kim YH, Cai L (2014) The magnolia bioactive constituent 4-O-methylhonokiol protects against high-fat diet-induced obesity and systemic insulin resistance in mice. Oxid Med Cell Longev 2014:965954. https://doi.org/10.1155/2014/965954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Szałabska-Rąpała K, Borymska W, Kaczmarczyk-Sedlak I (2021) Effectiveness of magnolol, a lignan from Magnolia bark, in diabetes, its complications and comorbidities—a review. Int J Mol Sci 22:10050

    Article  PubMed  PubMed Central  Google Scholar 

  70. Hu X, Gao X, Gao G, Wang Y, Cao H, Li D, Hua H (2021) Discovery of β-carboline-(phenylsulfonyl) furoxan hybrids as potential anti-breast cancer agents. Bioorg Med Chem Lett 40:127952

    Article  CAS  PubMed  Google Scholar 

  71. Liang X, Xing W, He J, Fu F, Zhang W, Su F, Liu F, Ji L, Gao F, Su H (2015) Magnolol administration in normotensive young spontaneously hypertensive rats postpones the development of hypertension: role of increased PPAR gamma, reduced TRB3 and resultant alleviative vascular insulin resistance. PLoS ONE 10:e0120366

    Article  PubMed  PubMed Central  Google Scholar 

  72. Magnani JW, Gorodeski EZ, Johnson VM, Sullivan LM, Hamburg NM, Benjamin EJ, Ellinor PT (2011) P wave duration is associated with cardiovascular and all-cause mortality outcomes: the national health and nutrition examination survey. Heart Rhythm 8:93–100. https://doi.org/10.1016/j.hrthm.2010.09.020

    Article  PubMed  Google Scholar 

  73. Maheshwari A, Norby FL, Soliman EZ, Alraies MC, Adabag S, O’Neal WT, Alonso A, Chen LY (2017) Relation of prolonged P-wave duration to risk of sudden cardiac death in the general population (from the atherosclerosis risk in communities study). Am J Cardiol 119:1302–1306. https://doi.org/10.1016/j.amjcard.2017.01.012

    Article  PubMed  PubMed Central  Google Scholar 

  74. Chen LY, Soliman EZ (2019) P wave indices-advancing our understanding of atrial fibrillation-related cardiovascular outcomes. Front Cardiovasc Med 6:53. https://doi.org/10.3389/fcvm.2019.00053

    Article  PubMed  PubMed Central  Google Scholar 

  75. Pillai VB, Samant S, Sundaresan NR, Raghuraman H, Kim G, Bonner MY, Arbiser JL, Walker DI, Jones DP, Gius D (2015) Honokiol blocks and reverses cardiac hypertrophy in mice by activating mitochondrial Sirt3. Nat Commun 6:1–16

    Article  Google Scholar 

  76. Tsai SK, Huang CH, Huang SS, Hung LM, Hong CY (1999) Antiarrhythmic effect of magnolol and honokiol during acute phase of coronary occlusion in anesthetized rats: influence of L-NAME and aspirin. Pharmacology 59:227–233

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work is supported by Lokman Hekim University Scientific Research Projects Coordination Unit. Project No.: 202AP404, 2022.

Author information

Authors and Affiliations

Authors

Contributions

IA, CVB, YO, DB, and AD conducted all experiments. ET, CVB, YO, and DB analyzed the data. KCA contributed to the interpretation of the results. BT conceived, designed, and interpreted the data and wrote, edited, and approved the manuscript.

Corresponding author

Correspondence to Belma Turan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aktay, I., Bitirim, C.V., Olgar, Y. et al. Cardioprotective role of a magnolol and honokiol complex in the prevention of doxorubicin-mediated cardiotoxicity in adult rats. Mol Cell Biochem 479, 337–350 (2024). https://doi.org/10.1007/s11010-023-04728-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-023-04728-w

Keywords

Navigation