Skip to main content
Log in

Cuproptosis and its application in different cancers: an overview

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Heavy metal ions are essential micronutrients for human health. They are also indispensable to maintaining health and regular operation of organs. Increasing or decreasing these metal ions will lead to cell death, such as ferroptosis. Tsvetkov et al. have recently proposed a novel cell death method called “Cuproptosis”. Many researchers have linked this form of death to the diagnosis, prognosis, microenvironment infiltration, and prediction of immunotherapeutic efficacy of various tumors to better understand these tumors. Similarly, with the proposal of this mechanism, the killing effect of copper ionophores on cancer cells has come to our attention again. We introduced the mechanism of cuproptosis in detail and described the establishment of the corresponding prognostic model and risk score for uveal melanoma through cuproptosis. In addition, we describe the current progress in the study of cancer in other organs through cuproptosis and summarize the treatment of tumours by copper ionophore and its future research direction. With further research, the concept of cuproptosis may help us understand cancer and guide its clinical treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Ge EJ, Bush AI, Casini A, Cobine PA, Cross JR, DeNicola GM, Dou QP, Franz KJ, Gohil VM, Gupta S, Kaler SG, Lutsenko S, Mittal V, Petris MJ, Polishchuk R, Ralle M, Schilsky ML, Tonks NK, Vahdat LT, Van Aelst L, Chang CJ (2022) Connecting copper and cancer: from transition metal signalling to metalloplasia. Nat Rev Cancer 22(2):102–113. https://doi.org/10.1038/s41568-021-00417-2

    Article  CAS  PubMed  Google Scholar 

  2. Hunsaker EW, Franz KJ (2019) Emerging opportunities to manipulate metal trafficking for therapeutic benefit. Inorg Chem 58(20):13528–13545. https://doi.org/10.1021/acs.inorgchem.9b01029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hasinoff BB, Yadav AA, Patel D, Wu X (2014) The cytotoxicity of the anticancer drug elesclomol is due to oxidative stress indirectly mediated through its complex with Cu(II). J Inorg Biochem 137:22–30. https://doi.org/10.1016/j.jinorgbio.2014.04.004

    Article  CAS  PubMed  Google Scholar 

  4. Kirshner JR, He S, Balasubramanyam V, Kepros J, Yang CY, Zhang M, Du Z, Barsoum J, Bertin J (2008) Elesclomol induces cancer cell apoptosis through oxidative stress. Mol Cancer Ther 7(8):2319–2327. https://doi.org/10.1158/1535-7163.MCT-08-0298

    Article  CAS  PubMed  Google Scholar 

  5. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516. https://doi.org/10.1080/01926230701320337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Oliveri V (2020) Biomedical applications of copper ionophores. Coordin Chem Rev. https://doi.org/10.1016/j.ccr.2020.213474

    Article  Google Scholar 

  7. Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, Rossen J, Joesch-Cohen L, Humeidi R, Spangler RD, Eaton JK, Frenkel E, Kocak M, Corsello SM, Lutsenko S, Kanarek N, Santagata S, Golub TR (2022) Copper induces cell death by targeting lipoylated TCA cycle proteins. Science 375(6586):1254–1261. https://doi.org/10.1126/science.abf0529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Solmonson A, DeBerardinis RJ (2018) Lipoic acid metabolism and mitochondrial redox regulation. J Biol Chem 293(20):7522–7530. https://doi.org/10.1074/jbc.TM117.000259

    Article  CAS  PubMed  Google Scholar 

  9. Li SR, Bu LL, Cai L (2022) Cuproptosis: lipoylated TCA cycle proteins-mediated novel cell death pathway. Signal Transduct Target Ther 7(1):158. https://doi.org/10.1038/s41392-022-01014-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tsvetkov P, Detappe A, Cai K, Keys HR, Brune Z, Ying W, Thiru P, Reidy M, Kugener G, Rossen J, Kocak M, Kory N, Tsherniak A, Santagata S, Whitesell L, Ghobrial IM, Markley JL, Lindquist S, Golub TR (2019) Mitochondrial metabolism promotes adaptation to proteotoxic stress. Nat Chem Biol 15(7):681–689. https://doi.org/10.1038/s41589-019-0291-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rowland EA, Snowden CK, Cristea IM (2018) Protein lipoylation: an evolutionarily conserved metabolic regulator of health and disease. Curr Opin Chem Biol 42:76–85. https://doi.org/10.1016/j.cbpa.2017.11.003

    Article  CAS  PubMed  Google Scholar 

  12. Hu H, Xu Q, Mo Z, Hu X, He Q, Zhang Z, Xu Z (2022) New anti-cancer explorations based on metal ions. J Nanobiotechnol 20(1):457. https://doi.org/10.1186/s12951-022-01661-w

    Article  Google Scholar 

  13. Duan WJ, He RR (2022) Cuproptosis: copper-induced regulated cell death. Sci China Life sci 65(8):1680–1682. https://doi.org/10.1007/s11427-022-2106-6

    Article  CAS  PubMed  Google Scholar 

  14. Tajima K, Ikeda K, Chang HY, Chang CH, Yoneshiro T, Oguri Y, Jun H, Wu J, Ishihama Y, Kajimura S (2019) Mitochondrial lipoylation integrates age-associated decline in brown fat thermogenesis. Nat Metab 1(9):886–898. https://doi.org/10.1038/s42255-019-0106-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ji Y, Dai F, Zhou B (2018) Designing salicylaldehyde isonicotinoyl hydrazones as Cu(II) ionophores with tunable chelation and release of copper for hitting redox Achilles heel of cancer cells. Free Radic Biol Med 129:215–226. https://doi.org/10.1016/j.freeradbiomed.2018.09.017

    Article  CAS  PubMed  Google Scholar 

  16. Tardito S, Barilli A, Bassanetti I, Tegoni M, Bussolati O, Franchi-Gazzola R, Mucchino C, Marchiò L (2012) Copper-dependent cytotoxicity of 8-hydroxyquinoline derivatives correlates with their hydrophobicity and does not require caspase activation. J Med Chem 55(23):10448–10459. https://doi.org/10.1021/jm301053a

    Article  CAS  PubMed  Google Scholar 

  17. Dai F, Yan WJ, Du YT, Bao XZ, Li XZ, Zhou B (2017) Structural basis, chemical driving forces and biological implications of flavones as Cu(II) ionophores. Free Radic Biol Med 108:554–563. https://doi.org/10.1016/j.freeradbiomed.2017.04.023

    Article  CAS  PubMed  Google Scholar 

  18. Bock FJ, Tait S (2020) Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol 21(2):85–100. https://doi.org/10.1038/s41580-019-0173-8

    Article  CAS  PubMed  Google Scholar 

  19. Zischka H, Lichtmannegger J, Schmitt S, Jägemann N, Schulz S, Wartini D, Jennen L, Rust C, Larochette N, Galluzzi L, Chajes V, Bandow N, Gilles VS, DiSpirito AA, Esposito I, Goettlicher M, Summer KH, Kroemer G (2011) Liver mitochondrial membrane crosslinking and destruction in a rat model of Wilson disease. J Clin Investig 121(4):1508–1518. https://doi.org/10.1172/JCI45401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ercal N, Gurer-Orhan H, Aykin-Burns N (2001) Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. Curr Top Med Chem 1(6):529–539. https://doi.org/10.2174/1568026013394831

    Article  CAS  PubMed  Google Scholar 

  21. Patteson JB, Putz AT, Tao L, Simke WC, Bryant LH 3rd, Britt RD, Li B (2021) Biosynthesis of fluopsin C, a copper-containing antibiotic from Pseudomonas aeruginosa. Science 374(6570):1005–1009. https://doi.org/10.1126/science.abj6749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Członkowska A, Litwin T, Dusek P, Ferenci P, Lutsenko S, Medici V, Rybakowski JK, Weiss KH, Schilsky ML (2018) Wilson disease. Nat Rev Dis Primers 4(1):21. https://doi.org/10.1038/s41572-018-0018-3

    Article  PubMed  PubMed Central  Google Scholar 

  23. Tang D, Chen X, Kroemer G (2022) Cuproptosis: a copper-triggered modality of mitochondrial cell death. Cell Res 32(5):417–418. https://doi.org/10.1038/s41422-022-00653-7

    Article  PubMed  PubMed Central  Google Scholar 

  24. Llovet JM, Kelley RK, Villanueva A, Singal AG, Pikarsky E, Roayaie S, Lencioni R, Koike K, Zucman-Rossi J, Finn RS (2021) Hepatocellular carcinoma. Nat Rev Dis Primers 7(1):6. https://doi.org/10.1038/s41572-020-00240-3

    Article  PubMed  Google Scholar 

  25. El-Serag HB (2011) Hepatocellular carcinoma. N Engl J Med 365(12):1118–1127. https://doi.org/10.1056/NEJMra1001683

    Article  CAS  PubMed  Google Scholar 

  26. Zhang YJ, Zhao DH, Huang CX (1994) The changes in copper contents and its clinical significance in patients with liver cirrhosis and hepatocarcinoma. Zhonghua nei ke za zhi 33(2):113–116

    CAS  PubMed  Google Scholar 

  27. Koizumi M, Fujii J, Suzuki K, Inoue T, Inoue T, Gutteridge JM, Taniguchi N (1998) A marked increase in free copper levels in the plasma and liver of LEC rats: an animal model for Wilson disease and liver cancer. Free Radic Res 28(5):441–450. https://doi.org/10.3109/10715769809066881

    Article  CAS  PubMed  Google Scholar 

  28. Zhang Z, Zeng X, Wu Y, Liu Y, Zhang X, Song Z (2022) Cuproptosis-related risk score predicts prognosis and characterizes the tumor microenvironment in hepatocellular carcinoma. Front Immunol. https://doi.org/10.3389/fimmu.2022.925618

    Article  PubMed  PubMed Central  Google Scholar 

  29. Mayr JA, Feichtinger RG, Tort F, Ribes A, Sperl W (2014) Lipoic acid biosynthesis defects. J Inherit Metab Dis 37(4):553–563. https://doi.org/10.1007/s10545-014-9705-8

    Article  CAS  PubMed  Google Scholar 

  30. Bingham PM, Stuart SD, Zachar Z (2014) Lipoic acid and lipoic acid analogs in cancer metabolism and chemotherapy. Expert Rev Clin Pharmacol 7(6):837–846. https://doi.org/10.1586/17512433.2014.966816

    Article  CAS  PubMed  Google Scholar 

  31. Novotny L, Rauko P, Cojocel C (2008) Alpha-lipoic acid-the potential for use in cancer therapy minireview. Neoplasma-Bratislava 55(2):81

    CAS  Google Scholar 

  32. Yan C, Niu Y, Ma L, Tian L, Ma J (2022) System analysis based on the cuproptosis-related genes identifies LIPT1 as a novel therapy target for liver hepatocellular carcinoma. J Transl Med 20(1):452. https://doi.org/10.1186/s12967-022-03630-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Siegel RL, Miller KD, Jemal A (2019) Cancer statistics, 2019. CA Cancer J Clin 69(1):7–34. https://doi.org/10.3322/caac.21551

    Article  PubMed  Google Scholar 

  34. Zhu JH, Yan QL, Wang JW, Chen Y, Ye QH, Wang ZJ, Huang T (2020) The key genes for perineural invasion in pancreatic ductal adenocarcinoma identified with Monte-Carlo feature selection method. Front Genet. https://doi.org/10.3389/fgene.2020.554502

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kamisawa T, Wood LD, Itoi T, Takaori K (2016) Pancreatic cancer. Lancet (London, England) 388(10039):73–85. https://doi.org/10.1016/S0140-6736(16)00141-0

    Article  CAS  PubMed  Google Scholar 

  36. Siegel RL, Miller KD, Fuchs HE, Jemal A (2021) Cancer statistics, 2021. CA Cancer J Clin 71(1):7–33. https://doi.org/10.3322/caac.21654

    Article  PubMed  Google Scholar 

  37. Park W, Chawla A, O’Reilly EM (2021) Pancreatic cancer: a review. JAMA 326(9):851–862. https://doi.org/10.1001/jama.2021.13027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang S, Zheng Y, Yang F, Zhu L, Zhu XQ, Wang ZF, Wu XL, Zhou CH, Yan JY, Hu BY, Kong B, Fu DL, Bruns C, Zhao Y, Qin LX, Dong QZ (2021) The molecular biology of pancreatic adenocarcinoma: translational challenges and clinical perspectives. Signal Transduct Target Ther 6(1):249. https://doi.org/10.1038/s41392-021-00659-4

    Article  PubMed  PubMed Central  Google Scholar 

  39. Huang X, Zhou S, Tóth J, Hajdu A (2022) Cuproptosis-related gene index: a predictor for pancreatic cancer prognosis, immunotherapy efficacy, and chemosensitivity. Front Immunol. https://doi.org/10.3389/fimmu.2022.978865

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chen DS, Mellman I (2013) Oncology meets immunology: the cancer-immunity cycle. Immunity 39(1):1–10. https://doi.org/10.1016/j.immuni.2013.07.012

    Article  CAS  PubMed  Google Scholar 

  41. Wei J, Huang K, Chen Z, Hu M, Bai Y, Lin S, Du H (2020) Characterization of glycolysis-associated molecules in the tumor microenvironment revealed by pan-cancer tissues and lung cancer single cell data. Cancers 12(7):1788. https://doi.org/10.3390/cancers12071788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Siegel RL, Miller KD, Jemal A (2020) Cancer statistics, 2020. CA Cancer J Clin 70(1):7–30. https://doi.org/10.3322/caac.21590

    Article  PubMed  Google Scholar 

  43. Signoretti S, Flaifel A, Chen YB, Reuter VE (2018) Renal cell carcinoma in the era of precision medicine: from molecular pathology to tissue-based biomarkers. J Clin Oncol. https://doi.org/10.1200/JCO.2018.79.2259

    Article  PubMed  PubMed Central  Google Scholar 

  44. Znaor A, Lortet-Tieulent J, Laversanne M, Jemal A, Bray F (2015) International variations and trends in renal cell carcinoma incidence and mortality. Eur Urol 67(3):519–530. https://doi.org/10.1016/j.eururo.2014.10.002

    Article  PubMed  Google Scholar 

  45. Fang Z, Zhang N, Yuan X, Xing X, Li X, Qin X, Liu Z, Neo S, Liu C, Kong F, Björkholm M, Fan Y, Xu D (2022) GABPA-activated TGFBR2 transcription inhibits aggressiveness but is epigenetically erased by oncometabolites in renal cell carcinoma. J Exp Clin Cancer Res 41(1):173. https://doi.org/10.1186/s13046-022-02382-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Angulo JC, Shapiro O (2019) The changing therapeutic landscape of metastatic renal cancer. Cancers 11(9):1227. https://doi.org/10.3390/cancers11091227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ballesteros PÁ, Chamorro J, Román-Gil MS, Pozas J, Gómez Dos Santos V, Granados ÁR, Grande E, Alonso-Gordoa T, Molina-Cerrillo J (2021) Molecular mechanisms of resistance to immunotherapy and antiangiogenic treatments in clear cell renal cell carcinoma. Cancers 13(23):5981. https://doi.org/10.3390/cancers13235981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yuan H, Qin X, Wang J, Yang Q, Fan Y, Xu D (2022) The cuproptosis-associated 13 gene signature as a robust predictor for outcome and response to immune- and targeted-therapies in clear cell renal cell carcinoma. Front Immunol. https://doi.org/10.3389/fimmu.2022.971142

    Article  PubMed  PubMed Central  Google Scholar 

  49. Chow H, Ghosh PM, deVere White R, Evans CP, Dall’Era MA, Yap SA, Li Y, Beckett LA, Lara PN Jr, Pan CX (2016) A phase 2 clinical trial of everolimus plus bicalutamide for castration-resistant prostate cancer. Cancer 122(12):1897–1904. https://doi.org/10.1002/cncr.29927

    Article  CAS  PubMed  Google Scholar 

  50. Sidaway P (2016) Prostate cancer: enzalutamide is superior to bicalutamide for mCRPC. Nat Rev Urol 13(3):124. https://doi.org/10.1038/nrurol.2016.24

    Article  PubMed  Google Scholar 

  51. Jin L, Mei W, Liu X, Sun X, Xin S, Zhou Z, Zhang J, Zhang B, Chen P, Cai M, Ye L (2022) Identification of cuproptosis-related subtypes, the development of a prognosis model, and characterization of tumor microenvironment infiltration in prostate cancer. Front Immunol. https://doi.org/10.3389/fimmu.2022.974034

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249. https://doi.org/10.3322/caac.21660

    Article  PubMed  Google Scholar 

  53. Siegel RL, Miller KD, Goding Sauer A, Fedewa SA, Butterly LF, Anderson JC, Cercek A, Smith RA, Jemal A (2020) Colorectal cancer statistics, 2020. CA Cancer J Clin 70(3):145–164. https://doi.org/10.3322/caac.21601

    Article  PubMed  Google Scholar 

  54. Zhu Z, Zhao Q, Song W, Weng J, Li S, Guo T, Zhu C, Xu Y (2022) A novel cuproptosis-related molecular pattern and its tumor microenvironment characterization in colorectal cancer. Front Immunol. https://doi.org/10.3389/fimmu.2022.940774

    Article  PubMed  PubMed Central  Google Scholar 

  55. Krantz BA, Dave N, Komatsubara KM, Marr BP, Carvajal RD (2017) Uveal melanoma: epidemiology, etiology, and treatment of primary disease. Clin Ophthalmol 11:279–289. https://doi.org/10.2147/OPTH.S89591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kaliki S, Shields CL (2017) Uveal melanoma: relatively rare but deadly cancer. Eye (Lond) 31(2):241–257. https://doi.org/10.1038/eye.2016.275

    Article  CAS  PubMed  Google Scholar 

  57. Ashton TM, McKenna WG, Kunz-Schughart LA, Higgins GS (2018) Oxidative phosphorylation as an emerging target in cancer therapy. Clin Cancer Res 24(11):2482–2490. https://doi.org/10.1158/1078-0432.CCR-17-3070

    Article  CAS  PubMed  Google Scholar 

  58. Ortega MA, Fraile-Martínez O, García-Honduvilla N, Coca S, Álvarez-Mon M, Buján J, Teus MA (2020) Update on uveal melanoma: translational research from biology to clinical practice (review). Int J Oncol 57(6):1262–1279. https://doi.org/10.3892/ijo.2020.5140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lamas NJ, Martel A, Nahon-Estève S, Goffinet S, Macocco A, Bertolotto C, Lassalle S, Hofman P (2021) Prognostic biomarkers in uveal melanoma: the status quo. Recent Adv Futur Direct Cancers 14(1):96. https://doi.org/10.3390/cancers14010096

    Article  CAS  Google Scholar 

  60. Stålhammar G, Gill VT (2022) The long-term prognosis of patients with untreated primary uveal melanoma: a systematic review and meta-analysis. Crit Rev Oncol/Hematol. https://doi.org/10.1016/j.critrevonc.2022.103652

    Article  PubMed  Google Scholar 

  61. Nezu N, Goto H, Umazume K, Ueda S, Shibata M (2017) Clinical analysis of uveal melanoma. Nippon Ganka Gakkai Zasshi 121(5):413–418

    PubMed  Google Scholar 

  62. Carvajal RD, Schwartz GK, Tezel T, Marr B, Francis JH, Nathan PD (2017) Metastatic disease from uveal melanoma: treatment options and future prospects. Br J Ophthalmol 101(1):38–44. https://doi.org/10.1136/bjophthalmol-2016-309034

    Article  PubMed  Google Scholar 

  63. Dogrusöz M, Jager MJ, Damato B (2017) Uveal melanoma treatment and prognostication. Asia Pac J Ophthalmol 6(2):186–196. https://doi.org/10.22608/APO.201734

    Article  Google Scholar 

  64. Shields CL, Kaliki S, Furuta M, Mashayekhi A, Shields JA (2012) Clinical spectrum and prognosis of uveal melanoma based on age at presentation in 8033 cases. Retina (Philadelphia, Pa.) 32(7):1363–1372. https://doi.org/10.1097/IAE.0b013e31824d09a8

    Article  PubMed  Google Scholar 

  65. Hamadeh F, Medina CA, Singh AD, Reynolds JP, Biscotti CV (2016) Uveal melanoma: an analysis of cellular features and comparison to monosomy 3 status. Diagn Cytopathol 44(5):377–383. https://doi.org/10.1002/dc.23450

    Article  PubMed  Google Scholar 

  66. Chattopadhyay C, Oba J, Roszik J, Marszalek JR, Chen K, Qi Y, Eterovic K, Robertson AG, Burks JK, McCannel TA, Grimm EA, Woodman SE (2019) Elevated endogenous SDHA drives pathological metabolism in highly metastatic uveal melanoma. Investig Ophthalmol Vis Sci 60(13):4187–4195. https://doi.org/10.1167/iovs.19-28082

    Article  CAS  Google Scholar 

  67. Kahlson MA, Dixon SJ (2022) Copper-induced cell death. Science 375(6586):1231–1232. https://doi.org/10.1126/science.abo3959

    Article  CAS  PubMed  Google Scholar 

  68. Chen Y, Chen X, Wang X (2022) Identification of a prognostic model using cuproptosis-related genes in uveal melanoma. Front Cell Dev Biol. https://doi.org/10.3389/fcell.2022.973073

    Article  PubMed  PubMed Central  Google Scholar 

  69. Dörsam B, Fahrer J (2016) The disulfide compound α-lipoic acid and its derivatives: a novel class of anticancer agents targeting mitochondria. Cancer Lett 371(1):12–19. https://doi.org/10.1016/j.canlet.2015.11.019

    Article  CAS  PubMed  Google Scholar 

  70. Jagtap N, Bhakhar P, Miftahussurur M, Yashavanth HS, Shrimal P, Sharma M, Gupta R, Rao PN, Reddy DN (2021) Minimal hepatic encephalopathy in patients with alcohol related and non-alcoholic steatohepatitis related cirrhosis by psychometric hepatic cephalopathy score and critical flicker frequency. Acta Medica Indonesiana 53(1):24–30

    PubMed  Google Scholar 

  71. Shi Y, Zou Y, Shen Z, Xiong Y, Zhang W, Liu C, Chen S (2020) Trace elements, PPARs, and metabolic syndrome. Int J Mol Sci 21(7):2612. https://doi.org/10.3390/ijms21072612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Soto-Avellaneda A, Morrison BE (2020) Signaling and other functions of lipids in autophagy: a review. Lipids Health Dis 19(1):214. https://doi.org/10.1186/s12944-020-01389-2

    Article  PubMed  PubMed Central  Google Scholar 

  73. Yang XM, Han HX, Sui F, Dai YM, Chen M, Geng JG (2010) Slit-robo signaling mediates lymphangiogenesis and promotes tumor lymphatic metastasis. Biochem Biophys Res Commun 396(2):571–577. https://doi.org/10.1016/j.bbrc.2010.04.152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kraehenbuehl L, Holland A, Armstrong E, O’Shea S, Mangarin L, Chekalil S, Johnston A, Bomalaski JS, Erinjeri JP, Barker CA, Francis JH, Wolchok JD, Merghoub T, Shoushtari AN (2022) Pilot trial of arginine deprivation plus nivolumab and ipilimumab in patients with metastatic uveal melanoma. Cancers 14(11):2638. https://doi.org/10.3390/cancers14112638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Durante MA, Rodriguez DA, Kurtenbach S, Kuznetsov JN, Sanchez MI, Decatur CL, Snyder H, Feun LG, Livingstone AS, Harbour JW (2020) Single-cell analysis reveals new evolutionary complexity in uveal melanoma. Nat Commun 11(1):496. https://doi.org/10.1038/s41467-019-14256-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Narasimhaiah D, Legrand C, Damotte D, Remark R, Munda M, De Potter P, Coulie PG, Vikkula M, Godfraind C (2019) DNA alteration-based classification of uveal melanoma gives better prognostic stratification than immune infiltration, which has a neutral effect in high-risk group. Cancer Med 8(6):3036–3046. https://doi.org/10.1002/cam4.2122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Van Raamsdonk CD, Bezrookove V, Green G, Bauer J, Gaugler L, O’Brien JM, Simpson EM, Barsh GS, Bastian BC (2009) Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature 457(7229):599–602. https://doi.org/10.1038/nature07586

    Article  CAS  PubMed  Google Scholar 

  78. Van Raamsdonk CD, Griewank KG, Crosby MB, Garrido MC, Vemula S, Wiesner T, Obenauf AC, Wackernagel W, Green G, Bouvier N, Sozen MM, Baimukanova G, Roy R, Heguy A, Dolgalev I, Khanin R, Busam K, Speicher MR, O’Brien J, Bastian BC (2010) Mutations in GNA11 in uveal melanoma. N Engl J Med 363(23):2191–2199. https://doi.org/10.1056/NEJMoa1000584

    Article  PubMed  PubMed Central  Google Scholar 

  79. Smit KN, Jager MJ, de Klein A, Kiliҫ E (2020) Uveal melanoma: towards a molecular understanding. Prog Retin Eye Res. https://doi.org/10.1016/j.preteyeres.2019.100800

    Article  PubMed  Google Scholar 

  80. Field MG, Durante MA, Anbunathan H, Cai LZ, Decatur CL, Bowcock AM, Kurtenbach S, Harbour JW (2018) Punctuated evolution of canonical genomic aberrations in uveal melanoma. Nat Commun 9(1):116. https://doi.org/10.1038/s41467-017-02428-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Feng X, Degese MS, Iglesias-Bartolome R, Vaque JP, Molinolo AA, Rodrigues M, Zaidi MR, Ksander BR, Merlino G, Sodhi A, Chen Q, Gutkind JS (2014) Hippo-independent activation of YAP by the GNAQ uveal melanoma oncogene through a trio-regulated rho GTPase signaling circuitry. Cancer Cell 25(6):831–845. https://doi.org/10.1016/j.ccr.2014.04.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yu FX, Luo J, Mo JS, Liu G, Kim YC, Meng Z, Zhao L, Peyman G, Ouyang H, Jiang W, Zhao J, Chen X, Zhang L, Wang CY, Bastian BC, Zhang K, Guan KL (2014) Mutant Gq/11 promote uveal melanoma tumorigenesis by activating YAP. Cancer Cell 25(6):822–830. https://doi.org/10.1016/j.ccr.2014.04.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Brouwer NJ, Konstantinou EK, Gragoudas ES, Marinkovic M, Luyten G, Kim IK, Jager MJ, Vavvas DG (2021) Targeting the YAP/TAZ pathway in uveal and conjunctival melanoma with verteporfin. Investig Ophthalmol Vis Sci 62(4):3. https://doi.org/10.1167/iovs.62.4.3

    Article  CAS  Google Scholar 

  84. Li Y, Yang J, Zhang Q, Xu S, Sun W, Ge S, Xu X, Jager MJ, Jia R, Zhang J, Fan X (2022) Copper ionophore elesclomol selectively targets GNAQ/11-mutant uveal melanoma. Oncogene 41(27):3539–3553. https://doi.org/10.1038/s41388-022-02364-0

    Article  CAS  PubMed  Google Scholar 

  85. Shanbhag VC, Gudekar N, Jasmer K, Papageorgiou C, Singh K, Petris MJ (2021) Copper metabolism as a unique vulnerability in cancer. Biochim Biophys Acta Mol Cell Res. https://doi.org/10.1016/j.bbamcr.2020.118893

    Article  PubMed  Google Scholar 

  86. Porporato PE, Filigheddu N, Pedro J, Kroemer G, Galluzzi L (2018) Mitochondrial metabolism and cancer. Cell Res 28(3):265–280. https://doi.org/10.1038/cr.2017.155

    Article  CAS  PubMed  Google Scholar 

  87. Koppenol WH, Bounds PL, Dang CV (2011) Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer 11(5):325–337. https://doi.org/10.1038/nrc3038

    Article  CAS  PubMed  Google Scholar 

  88. Denoyer D, Masaldan S, La Fontaine S, Cater MA (2015) Targeting copper in cancer therapy: ‘Copper That Cancer.’ Metallomics 7(11):1459–1476. https://doi.org/10.1039/c5mt00149h

    Article  CAS  PubMed  Google Scholar 

  89. Lelièvre P, Sancey L, Coll JL, Deniaud A, Busser B (2020) The multifaceted roles of copper in cancer: a trace metal element with dysregulated metabolism, but also a target or a bullet for therapy. Cancers 12(12):3594. https://doi.org/10.3390/cancers12123594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Oliveri V (2022) Selective targeting of cancer cells by copper ionophores: an overview. Front Mol Biosci. https://doi.org/10.3389/fmolb.2022.841814

    Article  PubMed  PubMed Central  Google Scholar 

  91. Trachootham D, Alexandre J, Huang P (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8(7):579–591. https://doi.org/10.1038/nrd2803

    Article  CAS  PubMed  Google Scholar 

  92. Nogueira V, Hay N (2013) Molecular pathways: reactive oxygen species homeostasis in cancer cells and implications for cancer therapy. Clin Cancer Res 19(16):4309–4314. https://doi.org/10.1158/1078-0432.CCR-12-1424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Raza MH, Siraj S, Arshad A, Waheed U, Aldakheel F, Alduraywish S, Arshad M (2017) ROS-modulated therapeutic approaches in cancer treatment. J Cancer Res Clin Oncol 143(9):1789–1809. https://doi.org/10.1007/s00432-017-2464-9

    Article  CAS  PubMed  Google Scholar 

  94. Bao XZ, Dai F, Li XR, Zhou B (2018) Targeting redox vulnerability of cancer cells by prooxidative intervention of a glutathione-activated Cu(II) pro-ionophore: hitting three birds with one stone. Free Radic Biol Med 124:342–352. https://doi.org/10.1016/j.freeradbiomed.2018.06.021

    Article  CAS  PubMed  Google Scholar 

  95. Bao XZ, Wang Q, Ren XR, Dai F, Zhou B (2020) A hydrogen peroxide-activated Cu(II) pro-ionophore strategy for modifying naphthazarin as a promising anticancer agent with high selectivity for generating ROS in HepG2 cells over in L02 cells. Free Radic Biol Med 152:597–608. https://doi.org/10.1016/j.freeradbiomed.2019.12.001

    Article  CAS  PubMed  Google Scholar 

  96. Oliveri V, Vecchio G (2016) Prochelator strategies for site-selective activation of metal chelators. J Inorg Biochem 162:31–43. https://doi.org/10.1016/j.jinorgbio.2016.05.012

    Article  CAS  PubMed  Google Scholar 

  97. Kung C-T, Gao H, Lee C-Y, Wang Y-N, Dong W, Ko C-H, Wang G, Fu L-M (2020) Microfluidic synthesis control technology and its application in drug delivery, bioimaging, biosensing, environmental analysis and cell analysis. Chem Eng J 399:125748

    Article  CAS  Google Scholar 

  98. Zafar H, Raza F, Ma S, Wei Y, Zhang J, Shen Q (2021) Recent progress on nanomedicine-induced ferroptosis for cancer therapy. Biomater Sci 9(15):5092–5115. https://doi.org/10.1039/d1bm00721a

    Article  CAS  PubMed  Google Scholar 

  99. Liu S, Li W, Dong S, Zhang F, Dong Y, Tian B, He F, Gai S, Yang P (2020) An all-in-one theranostic nanoplatform based on upconversion dendritic mesoporous silica nanocomposites for synergistic chemodynamic/photodynamic/gas therapy. Nanoscale 12(47):24146–24161. https://doi.org/10.1039/d0nr06790c

    Article  CAS  PubMed  Google Scholar 

  100. Chang Y, Jiang J, Chen W, Yang W, Chen L, Chen P, Shen J, Qian S, Zhou T, Wu L, Hong L, Huang Y, Li F (2020) Biomimetic metal-organic nanoparticles prepared with a 3D-printed microfluidic device as a novel formulation for disulfiram-based therapy against breast cancer. Appl Mater Today. https://doi.org/10.1016/j.apmt.2019.100492

    Article  PubMed  Google Scholar 

  101. Kang X, Cai Y, Wang Q, Wang C, Chen W, Yang W, Suryawanshi A, Zhou G, Chen P, Li F (2021) Near-infrared light triggered activation of pro-drug combination cancer therapy and induction of immunogenic cell death. Int J Pharm. https://doi.org/10.1016/j.ijpharm.2021.120972

    Article  PubMed  PubMed Central  Google Scholar 

  102. Wu W, Yu L, Jiang Q, Huo M, Lin H, Wang L, Chen Y, Shi J (2019) Enhanced tumor-specific disulfiram chemotherapy by in situ Cu2+ chelation-initiated nontoxicity-to-toxicity transition. J Am Chem Soc 141(29):11531–11539. https://doi.org/10.1021/jacs.9b03503

    Article  CAS  PubMed  Google Scholar 

  103. Nagai M, Vo NH, Shin Ogawa L, Chimmanamada D, Inoue T, Chu J, Beaudette-Zlatanova BC, Lu R, Blackman RK, Barsoum J, Koya K, Wada Y (2012) The oncology drug elesclomol selectively transports copper to the mitochondria to induce oxidative stress in cancer cells. Free Radic Biol Med 52(10):2142–2150. https://doi.org/10.1016/j.freeradbiomed.2012.03.017

    Article  CAS  PubMed  Google Scholar 

  104. Wangpaichitr M, Wu C, You M, Maher JC, Dinh V, Feun LG, Savaraj N (2009) N′,N′-dimethyl-N′,N′-bis(phenylcarbonothioyl) propanedihydrazide (elesclomol) selectively kills cisplatin resistant lung cancer cells through reactive oxygen species (ROS). Cancers 1(1):23–38. https://doi.org/10.3390/cancers1010023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Corazao-Rozas P, Guerreschi P, Jendoubi M, André F, Jonneaux A, Scalbert C, Garçon G, Malet-Martino M, Balayssac S, Rocchi S, Savina A, Formstecher P, Mortier L, Kluza J, Marchetti P (2013) Mitochondrial oxidative stress is the Achille’s heel of melanoma cells resistant to Braf-mutant inhibitor. Oncotarget. https://doi.org/10.18632/oncotarget.1420

    Article  PubMed  PubMed Central  Google Scholar 

  106. Buccarelli M, D’Alessandris QG, Matarrese P, Mollinari C, Signore M, Cappannini A, Martini M, D’Aliberti P, De Luca G, Pedini F, Boe A, Biffoni M, Pallini R, Ricci-Vitiani L (2021) Elesclomol-induced increase of mitochondrial reactive oxygen species impairs glioblastoma stem-like cell survival and tumor growth. J Exp Clin Cancer Res 40(1):228. https://doi.org/10.1186/s13046-021-02031-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kluza J, Corazao-Rozas P, Touil Y, Jendoubi M, Maire C, Guerreschi P, Jonneaux A, Ballot C, Balayssac S, Valable S, Corroyer-Dulmont A, Bernaudin M, Malet-Martino M, de Lassalle EM, Maboudou P, Formstecher P, Polakowska R, Mortier L, Marchetti P (2012) Inactivation of the HIF-1α/PDK3 signaling axis drives melanoma toward mitochondrial oxidative metabolism and potentiates the therapeutic activity of pro-oxidants. Cancer Res 72(19):5035–5047. https://doi.org/10.1158/0008-5472.CAN-12-0979

    Article  CAS  PubMed  Google Scholar 

  108. Wangpaichitr M, Sullivan EJ, Theodoropoulos G, Wu C, You M, Feun LG, Lampidis TJ, Kuo MT, Savaraj N (2012) The relationship of thioredoxin-1 and cisplatin resistance: its impact on ROS and oxidative metabolism in lung cancer cells. Mol Cancer Ther 11(3):604–615. https://doi.org/10.1158/1535-7163.MCT-11-0599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Cierlitza M, Chauvistré H, Bogeski I, Zhang X, Hauschild A, Herlyn M, Schadendorf D, Vogt T, Roesch A (2015) Mitochondrial oxidative stress as a novel therapeutic target to overcome intrinsic drug resistance in melanoma cell subpopulations. Exp Dermatol 24(2):155–157. https://doi.org/10.1111/exd.12613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Harrington BS, Ozaki MK, Caminear MW, Hernandez LF, Jordan E, Kalinowski NJ, Goldlust IS, Guha R, Ferrer M, Thomas C, Shetty J, Tran B, Wong N, House CD, Annunziata CM (2020) Drugs targeting tumor-initiating cells prolong survival in a post-surgery, post-chemotherapy ovarian cancer relapse model. Cancers 12(6):1645. https://doi.org/10.3390/cancers12061645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Xie H, Simon MC (2017) Oxygen availability and metabolic reprogramming in cancer. J Biol Chem 292(41):16825–16832. https://doi.org/10.1074/jbc.R117.799973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ren YJ, Wang XH, Ji C, Guan YD, Lu XJ, Liu XR, Zhang HH, Guo LC, Xu QH, Zhu WD, Ming ZJ, Yang JM, Cheng Y, Zhang Y (2017) Silencing of NAC1 expression induces cancer cells oxidative stress in hypoxia and potentiates the therapeutic activity of elesclomol. Front Pharmacol 8:804. https://doi.org/10.3389/fphar.2017.00804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Tataranni T, Piccoli C (2019) Dichloroacetate (DCA) and cancer: an overview towards clinical applications. Oxid Med Cell Longev 2019:8201079. https://doi.org/10.1155/2019/8201079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors declare that they have no funding support.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the material preparation, data collection and analysis. The first draft of the manuscript was written by LX, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Feng Wang or Ying Su.

Ethics declarations

Competing interests

The authors declare no conflicts or potential conflicts of interest with respect to the study, authorship and publication of this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Liu, K., Wang, F. et al. Cuproptosis and its application in different cancers: an overview. Mol Cell Biochem 478, 2683–2693 (2023). https://doi.org/10.1007/s11010-023-04693-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-023-04693-4

Keywords

Navigation