Skip to main content
Log in

The effects of N6-methyladenosine RNA methylation on the nervous system

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Epitranscriptomics, also known as “RNA epigenetics”, is a type of chemical modification that regulates RNA. RNA methylation is a significant discovery after DNA and histone methylation. The dynamic reversible process of m6A involves methyltransferases (writers), m6A binding proteins (readers), as well as demethylases (erasers). We summarized the current research status of m6A RNA methylation in the neural stem cells’ growth, synaptic and axonal function, brain development, learning and memory, neurodegenerative diseases, and glioblastoma. This review aims to provide a theoretical basis for studying the mechanism of m6A methylation and finding its potential therapeutic targets in nervous system diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

ac4C:

N4-acetylcytidine

AD:

Alzheimer's disease

ADAR1:

Actadenosine deaminases acting on RNA-1

ALKBH5:

AlkB homolog 5

ALKBH9:

AlkB homolog 9

aNSCs:

Adult neural stem cells

CGCs:

Cerebellar granule cells

DRG:

Adult dorsal root ganglion

EGL:

External granular layer

eIF3:

Eukaryotic translation initiation factor-3

f6A:

N6-formyladenosine

FMRP:

Fragment X mental retardation protein

FTO:

Fat mass and obesity-associated protein

GAK:

G-associated kinase

GBM:

Glioblastoma

GSCs:

Glioblastoma stem cells

hm5C:

5-Hydroxymethylcytidine

hm6A:

N6-hydroxymethyladenosine

HNRNPA2B1:

Heterogeneous nuclear ribonucleoproteins A2/B1

HNRNPC:

Heterogeneous ribonucleoprotein-C

IAPs:

Intracisternal A-particles

IGF2BPs:

Insulin-like growth factor 2 mRNA-binding proteins

iPSCs:

Induced pluripotent stem cells

L1:

Long interspersed element-1

lncRNA:

Long non-coding RNA

m1A:

N1-methyladenosine

m5C:

5-Methylcytosine

m6A:

N6-methyladenosine

m6Am :

N6, 2'-O-dimethyladenosine

MALAT1:

Metastasis-associated lung adenocarcinoma transcript 1

METTL14:

Methyltransferase-like 14

METTL16:

Methyltransferase-like protein 16

METTL3:

Methyltransferase-like 3

miRNA:

MicroRNA

mRNA:

Messenger RNA

NADP:

Nicotinamide adenine dinucleotide phosphate

NMD:

Nonsense-mediated mRNA decay

NMDA:

N-Methyl-D-aspartate

NSCs:

Neural stem cells

OPC:

Oligodendrocyte progenitor cells

PD:

Parkinson's disease

PolyA:

Polyadenosinic acid

PRRC2A:

Proline-rich coiled-coil 2A

RBM15:

RNA-binding motif protein 15

rRNA:

Ribosomal RNA

SAH:

S-Adenosyl homocysteine

SAM:

S-Adenosylmethionine

SENP1:

Sentrin/SUMO-specific protease 1

SLC7A11:

Solute carrier 7A11

SME:

Synaptic m6A epitranscriptome

sncRNA:

Small non-coding RNA

SNPC:

Substantia nigra pars compacta

SNPs:

Single nucleotide polymorphisms

SUMO1:

Small ubiquitin-like modifier 1

SVZ:

Subventricular area

TBI:

Traumatic brain injury

tRNA:

Transfer RNA

WTAP:

Wilms tumor 1-associating protein

YTH:

YT521-B homology

ZC3H13:

Zinc finger CCCH-type containing 13

ZCCHC4:

CCHC zinc finger-containing protein

Ψ :

Pseudouridine

References

  1. Li X, Xiong X, Yi C (2016) Epitranscriptome sequencing technologies: decoding RNA modifications. Nat Methods 14:23–31. https://doi.org/10.1038/nmeth.4110

    Article  CAS  PubMed  Google Scholar 

  2. Zhao LY, Song J, Liu Y, Song CX, Yi C (2020) Mapping the epigenetic modifications of DNA and RNA. Protein Cell 11:792–808. https://doi.org/10.1007/s13238-020-00733-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Boccaletto P, Machnicka MA, Purta E et al (2018) MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Res 46:D303-d307. https://doi.org/10.1093/nar/gkx1030

    Article  CAS  PubMed  Google Scholar 

  4. Nagarajan A, Janostiak R, Wajapeyee N (2019) Dot blot analysis for measuring global N6-methyladenosine modification of RNA. Methods Mol Biol 1870:263–271. https://doi.org/10.1007/978-1-4939-8808-2_20

    Article  CAS  PubMed  Google Scholar 

  5. Zhang C, Jia G (2018) Reversible RNA modification N1-methyladenosine (m1A) in mRNA and tRNA. Genom Proteom Bioinform 16:155–161. https://doi.org/10.1016/j.gpb.2018.03.003

    Article  CAS  Google Scholar 

  6. Arango D, Sturgill D, Alhusaini N et al (2018) Acetylation of cytidine in mRNA promotes translation efficiency. Cell 175:1872-1886.e1824. https://doi.org/10.1016/j.cell.2018.10.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu RJ, Long T, Li J, Li H, Wang ED (2017) Structural basis for substrate binding and catalytic mechanism of a human RNA:m5C methyltransferase NSun6. Nucleic Acids Res 45:6684–6697. https://doi.org/10.1093/nar/gkx473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Huber SM, van Delft P, Tanpure A, Miska EA, Balasubramanian S (2017) 2’-O-Methyl-5-hydroxymethylcytidine: a second oxidative derivative of 5-Methylcytidine in RNA. J Am Chem Soc 139:1766–1769. https://doi.org/10.1021/jacs.6b12180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dominissini D, Moshitch-Moshkovitz S, Schwartz S et al (2012) Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485:201–206. https://doi.org/10.1038/nature11112

    Article  CAS  PubMed  Google Scholar 

  10. Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR (2012) Comprehensive analysis of mRNA methylation reveals enrichment in 3’ UTRs and near stop codons. Cell 149:1635–1646. https://doi.org/10.1016/j.cell.2012.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Carlile TM, Martinez NM, Schaening C et al (2019) mRNA structure determines modification by pseudouridine synthase 1. Nat Chem Biol 15:966–974. https://doi.org/10.1038/s41589-019-0353-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen XY, Zhang J, Zhu JS (2019) The role of m6A RNA methylation in human cancer. Mol Cancer 18:103. https://doi.org/10.1186/s12943-019-1033-z

    Article  PubMed  PubMed Central  Google Scholar 

  13. Roundtree IA, Evans ME, Pan T, He C (2017) Dynamic RNA modifications in gene expression regulation. Cell 169:1187–1200. https://doi.org/10.1016/j.cell.2017.05.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brocard M, Ruggieri A, Locker N (2017) m6A RNA methylation, a new hallmark in virus-host interactions. J Gen Virol 98:2207–2214. https://doi.org/10.1099/jgv.0.000910

    Article  CAS  PubMed  Google Scholar 

  15. Roundtree IA, He C (2016) RNA epigenetics—chemical messages for posttranscriptional gene regulation. Curr Opin Chem Biol 30:46–51. https://doi.org/10.1016/j.cbpa.2015.10.024

    Article  CAS  PubMed  Google Scholar 

  16. Shi H, Wei J, He C (2019) Where, when, and how: context-dependent functions of RNA methylation writers, readers, and erasers. Mol Cell 74:640–650. https://doi.org/10.1016/j.molcel.2019.04.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jiang X, Liu B, Nie Z et al (2021) The role of m6A modification in the biological functions and diseases. Signal Transduct Target Ther 6:74. https://doi.org/10.1038/s41392-020-00450-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Müller S, Glaß M, Singh AK et al (2019) IGF2BP1 promotes SRF-dependent transcription in cancer in a m6A- and miRNA-dependent manner. Nucleic Acids Res 47:375–390. https://doi.org/10.1093/nar/gky1012

    Article  CAS  PubMed  Google Scholar 

  19. Tang C, Klukovich R, Peng H et al (2018) ALKBH5-dependent m6A demethylation controls splicing and stability of long 3’-UTR mRNAs in male germ cells. Proc Natl Acad Sci USA 115:E325-e333. https://doi.org/10.1073/pnas.1717794115

    Article  CAS  PubMed  Google Scholar 

  20. Fleming AM, Nguyen NLB, Burrows CJ (2019) Colocalization of m6A and G-quadruplex-forming sequences in viral RNA (HIV, Zika, Hepatitis B, and SV40) suggests topological control of adenosine N6-methylation. ACS Cent Sci 5:218–228. https://doi.org/10.1021/acscentsci.8b00963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wu J, Frazier K, Zhang J, Gan Z, Wang T, Zhong X (2020) Emerging role of m6A RNA methylation in nutritional physiology and metabolism. Obes Rev 21:e12942. https://doi.org/10.1111/obr.12942

  22. Dubey PK, Patil M, Singh S et al (2022) Increased m6A-RNA methylation and FTO suppression is associated with myocardial inflammation and dysfunction during endotoxemia in mice. Mol Cell Biochem 477:129–141. https://doi.org/10.1007/s11010-021-04267-2

    Article  CAS  PubMed  Google Scholar 

  23. Huang R, Zhang Y, Bai Y et al (2020) N6-methyladenosine modification of fatty acid amide hydrolase messenger RNA in circular RNA STAG1-regulated astrocyte dysfunction and depressive-like behaviors. Biol Psychiatry 88:392–404. https://doi.org/10.1016/j.biopsych.2020.02.018

    Article  CAS  PubMed  Google Scholar 

  24. Meng S, Zhou H, Feng Z, Xu Z, Tang Y, Wu M (2019) Epigenetics in neurodevelopment: emerging role of circular RNA. Front Cell Neurosci 13:327. https://doi.org/10.3389/fncel.2019.00327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hwang JY, Aromolaran KA, Zukin RS (2017) The emerging field of epigenetics in neurodegeneration and neuroprotection. Nat Rev Neurosci 18:347–361. https://doi.org/10.1038/nrn.2017.46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nainar S, Marshall PR, Tyler CR, Spitale RC, Bredy TW (2016) Evolving insights into RNA modifications and their functional diversity in the brain. Nat Neurosci 19:1292–1298. https://doi.org/10.1038/nn.4378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Richard EM, Polla DL, Assir MZ et al (2019) Bi-allelic variants in METTL5 cause autosomal-recessive intellectual disability and microcephaly. Am J Hum Genet 105:869–878. https://doi.org/10.1016/j.ajhg.2019.09.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Amort T, Rieder D, Wille A et al (2017) Distinct 5-methylcytosine profiles in poly(A) RNA from mouse embryonic stem cells and brain. Genome Biol 18:1. https://doi.org/10.1186/s13059-016-1139-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vu LP, Pickering BF, Cheng Y et al (2017) The N6-methyladenosine (m6A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nat Med 23:1369–1376. https://doi.org/10.1038/nm.4416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shi JB, Wang DY, Xia Q, Gao X (2020) The effects of m6A modification in central nervous system function and disease. Yi Chuan 42:1156–1167. https://doi.org/10.16288/j.yczz.20-233

  31. Dermentzaki G, Lotti F (2020) New insights on the role of N6-methyladenosine RNA methylation in the physiology and pathology of the nervous system. Front Mol Biosci 7:555372. https://doi.org/10.3389/fmolb.2020.555372

  32. Desrosiers R, Friderici K, Rottman F (1974) Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci USA 71:3971–3975. https://doi.org/10.1073/pnas.71.10.3971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jia G, Fu Y, Zhao X et al (2011) N6-Methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol 7:885–887. https://doi.org/10.1038/nchembio.687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Meyer KD, Jaffrey SR (2017) Rethinking m6A readers, writers, and erasers. Annu Rev Cell Dev Biol 33:319–342. https://doi.org/10.1146/annurev-cellbio-100616-060758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Du K, Zhang L, Lee T, Sun T (2019) m6A RNA methylation controls neural development and is involved in human diseases. Mol Neurobiol 56:1596–1606. https://doi.org/10.1007/s12035-018-1138-1

    Article  CAS  PubMed  Google Scholar 

  36. Liu J, Yue Y, Han D et al (2014) A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol 10:93–95. https://doi.org/10.1038/nchembio.1432

    Article  CAS  PubMed  Google Scholar 

  37. Lin S, Choe J, Du P, Triboulet R, Gregory RI (2016) The m6A methyltransferase METTL3 promotes translation in human cancer cells. Mol Cell 62:335–345. https://doi.org/10.1016/j.molcel.2016.03.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang P, Doxtader KA, Nam Y (2016) Structural basis for cooperative function of METTL3 and METTL14 methyltransferases. Mol Cell 63:306–317. https://doi.org/10.1016/j.molcel.2016.05.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang X, Feng J, Xue Y et al (2016) Structural basis of N6-adenosine methylation by the METTL3 - METTL14 complex. Nature 534:575–578. https://doi.org/10.1038/nature18298

    Article  CAS  PubMed  Google Scholar 

  40. Chelmicki T, Roger E, Teissandier A et al (2021) m6A RNA methylation regulates the fate of endogenous retroviruses. Nature 591:312–316. https://doi.org/10.1038/s41586-020-03135-1

    Article  CAS  PubMed  Google Scholar 

  41. Du Y, Hou G, Zhang H et al (2018) SUMOylation of the m6A-RNA methyltransferase METTL3 modulates its function. Nucleic Acids Res 46:5195–5208. https://doi.org/10.1093/nar/gky156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu S, Zhuo L, Wang J et al (2020) METTL3 plays multiple functions in biological processes. Am J Cancer Res 10:1631–1646

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Haussmann IU, Bodi Z, Sanchez-Moran E et al (2016) m6A potentiates Sxl alternative pre-mRNA splicing for robust Drosophila sex determination. Nature 540:301–304. https://doi.org/10.1038/nature20577

    Article  CAS  PubMed  Google Scholar 

  44. Patil DP, Chen CK, Pickering BF et al (2016) m6A RNA methylation promotes XIST-mediated transcriptional repression. Nature 537:369–373. https://doi.org/10.1038/nature19342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Horiuchi K, Kawamura T, Iwanari H et al (2013) Identification of Wilms’ tumor 1-associating protein complex and its role in alternative splicing and the cell cycle. J Biol Chem 288:33292–33302. https://doi.org/10.1074/jbc.M113.500397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pinto R, Vågbø CB, Jakobsson ME et al (2020) The human methyltransferase ZCCHC4 catalyses N6-methyladenosine modification of 28S ribosomal RNA. Nucl Acids Res 48:830–846. https://doi.org/10.1093/nar/gkz1147

    Article  CAS  PubMed  Google Scholar 

  47. Ruszkowska A, Ruszkowski M, Dauter Z, Brown JA (2018) Structural insights into the RNA methyltransferase domain of METTL16. Sci Rep 8:5311. https://doi.org/10.1038/s41598-018-23608-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Qing Y, Dong L, Gao L et al (2021) R-2-hydroxyglutarate attenuates aerobic glycolysis in leukemia by targeting the FTO/m6A/PFKP/LDHB axis. Mol Cell. https://doi.org/10.1016/j.molcel.2020.12.026

    Article  PubMed  PubMed Central  Google Scholar 

  49. Han Z, Wang X, Xu Z et al (2021) ALKBH5 regulates cardiomyocyte proliferation and heart regeneration by demethylating the mRNA of YTHDF1. Theranostics 11:3000–3016. https://doi.org/10.7150/thno.47354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ontiveros RJ, Shen H, Stoute J et al (2020) Coordination of mRNA and tRNA methylations by TRMT10A. Proc Natl Acad Sci USA 117:7782–7791. https://doi.org/10.1073/pnas.1913448117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang L, Wan Y, Zhang Z et al (2020) FTO demethylates m6A modifications in HOXB13 mRNA and promotes endometrial cancer metastasis by activating the WNT signalling pathway. RNA Biol 18:1265–1278. https://doi.org/10.1080/15476286.2020.1841458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang L, Song C, Wang N et al (2020) NADP modulates RNA m6A methylation and adipogenesis via enhancing FTO activity. Nat Chem Biol 16:1394–1402. https://doi.org/10.1038/s41589-020-0601-2

    Article  CAS  PubMed  Google Scholar 

  53. Hwang SY, Jung H, Mun S et al (2021) L1 retrotransposons exploit RNA m6A modification as an evolutionary driving force. Nat Commun 12:880. https://doi.org/10.1038/s41467-021-21197-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Toh JDW, Crossley SWM, Bruemmer KJ et al (2020) Distinct RNAN-demethylation pathways catalyzed by nonheme iron ALKBH5 and FTO enzymes enable regulation of formaldehyde release rates. Proc Natl Acad Sci 117:25284–25292. https://doi.org/10.1073/pnas.2007349117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Liu J, Jia G (2014) Methylation modifications in eukaryotic messenger RNA. J Genet Genom 41:21–33. https://doi.org/10.1016/j.jgg.2013.10.002

    Article  CAS  Google Scholar 

  56. Huff S, Tiwari SK, Gonzalez GM, Wang Y, Rana TM (2021) m6A-RNA demethylase FTO inhibitors impair self-renewal in glioblastoma stem cells. ACS Chem Biol 16:324–333. https://doi.org/10.1021/acschembio.0c00841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tian S, Lai J, Yu T, Li Q, Chen Q (2020) Regulation of gene expression associated with the N6-methyladenosine (m6A) enzyme system and its significance in cancer. Front Oncol 10:623634. https://doi.org/10.3389/fonc.2020.623634

  58. Wang X, Zhao Boxuan S, Roundtree Ian A et al (2015) N6-methyladenosine modulates messenger RNA translation efficiency. Cell 161:1388–1399. https://doi.org/10.1016/j.cell.2015.05.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Shi H, Wang X, Lu Z et al (2017) YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA. Cell Res 27:315–328. https://doi.org/10.1038/cr.2017.15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zaccara S, Jaffrey SR (2020) A unified model for the function of YTHDF proteins in regulating m6A-modified mRNA. Cell 181:1582–1595. https://doi.org/10.1016/j.cell.2020.05.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Roundtree IA, Luo GZ, Zhang Z et al (2017) YTHDC1 mediates nuclear export of N6-methyladenosine methylated mRNAs. Elife 6:e31311. https://doi.org/10.7554/eLife.31311

  62. Zhou B, Liu C, Xu L et al (2020) N6-methyladenosine reader protein YT521-B homology domain-containing 2 suppresses liver steatosis by regulation of mRNA stability of lipogenic genes. Hepatology 73:91–103. https://doi.org/10.1002/hep.31220

    Article  CAS  PubMed  Google Scholar 

  63. Ma L, Chen T, Zhang X et al (2021) The m6A reader YTHDC2 inhibits lung adenocarcinoma tumorigenesis by suppressing SLC7A11-dependent antioxidant function. Redox Biol 38:101801. https://doi.org/10.1016/j.redox.2020.101801

  64. Meyer KD, Patil DP, Zhou J et al (2015) 5’ UTR m6A promotes cap-independent translation. Cell 163:999–1010. https://doi.org/10.1016/j.cell.2015.10.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kratzat H, Mackens-Kiani T, Ameismeier M et al (2021) A structural inventory of native ribosomal ABCE1–43S pre-initiation complexes. Embo j 40:e105179. https://doi.org/10.15252/embj.2020105179

  66. Alarcon CR, Goodarzi H, Lee H, Liu X, Tavazoie S, Tavazoie SF (2015) HNRNPA2B1 is a mediator of m6A-dependent nuclear RNA processing events. Cell 162:1299–1308. https://doi.org/10.1016/j.cell.2015.08.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wu B, Su S, Patil DP et al (2018) Molecular basis for the specific and multivariant recognitions of RNA substrates by human hnRNP A2/B1. Nat Commun 9:420. https://doi.org/10.1038/s41467-017-02770-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Huang H, Weng H, Sun W et al (2018) Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol 20:285–295. https://doi.org/10.1038/s41556-018-0045-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wu R, Li A, Sun B et al (2019) A novel m6A reader PRRC2A controls oligodendroglial specification and myelination. Cell Res 29:23–41. https://doi.org/10.1038/s41422-018-0113-8

    Article  CAS  PubMed  Google Scholar 

  70. Hsu PJ, Shi H, Zhu AC et al (2019) The RNA-binding protein FMRP facilitates the nuclear export of N6-methyladenosine-containing mRNAs. J Biol Chem 294:19889–19895. https://doi.org/10.1074/jbc.AC119.010078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pendleton KE, Chen B, Liu K et al (2017) The U6 snRNA m6A methyltransferase METTL16 regulates SAM synthetase intron retention. Cell 169:824-835.e814. https://doi.org/10.1016/j.cell.2017.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bakhshinyan D, Savage N, Salim SK, Venugopal C, Singh SK (2020) The strange case of Jekyll and Hyde: parallels between neural stem cells and glioblastoma-initiating cells. Front Oncol 10:603738. https://doi.org/10.3389/fonc.2020.603738

  73. Urbán N, Blomfield IM, Guillemot F (2019) Quiescence of adult mammalian neural stem cells: a highly regulated rest. Neuron 104:834–848. https://doi.org/10.1016/j.neuron.2019.09.026

    Article  CAS  PubMed  Google Scholar 

  74. Andreotti JP, Silva WN, Costa AC et al (2019) Neural stem cell niche heterogeneity. Semin Cell Dev Biol 95:42–53. https://doi.org/10.1016/j.semcdb.2019.01.005

    Article  PubMed  PubMed Central  Google Scholar 

  75. Xing L, Cai Y, Yang T et al (2020) Epitranscriptomic m6A regulation following spinal cord injury. J Neurosci Res 99:843–857. https://doi.org/10.1002/jnr.24763

    Article  CAS  PubMed  Google Scholar 

  76. Chen J, Zhang YC, Huang C et al (2019) m6A regulates neurogenesis and neuronal development by modulating histone methyltransferase Ezh2. Genom Proteom Bioinform 17:154–168. https://doi.org/10.1016/j.gpb.2018.12.007

    Article  CAS  Google Scholar 

  77. Wang Y, Li Y, Yue M et al (2018) N6-methyladenosine RNA modification regulates embryonic neural stem cell self-renewal through histone modifications. Nat Neurosci 21:195–206. https://doi.org/10.1038/s41593-017-0057-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Cao Y, Zhuang Y, Chen J et al (2020) Dynamic effects of FTO in regulating the proliferation and differentiation of adult neural stem cells of mice. Hum Mol Genet 29:727–735. https://doi.org/10.1093/hmg/ddz274

    Article  CAS  PubMed  Google Scholar 

  79. Heck AM, Russo J, Wilusz J, Nishimura EO, Wilusz CJ (2020) YTHDF2 destabilizes m6A-modified neural-specific RNAs to restrain differentiation in induced pluripotent stem cells. RNA 26:739–755. https://doi.org/10.1261/rna.073502.119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Stoeckli ET (2018) Understanding axon guidance: are we nearly there yet? Development 145:dev151415. https://doi.org/10.1242/dev.151415

  81. von Kügelgen N, Chekulaeva M (2020) Conservation of a core neurite transcriptome across neuronal types and species. Wiley Interdiscip Rev RNA 11:e1590. https://doi.org/10.1002/wrna.1590

  82. Kim SW, Kim KT (2020) Expression of genes involved in axon guidance: how much have we learned? Int J Mol Sci 21:3566. https://doi.org/10.3390/ijms21103566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Rizalar FS, Roosen DA, Haucke V (2021) A presynaptic perspective on transport and assembly mechanisms for synapse formation. Neuron 109:27–41. https://doi.org/10.1016/j.neuron.2020.09.038

    Article  CAS  PubMed  Google Scholar 

  84. Van Battum EY, Brignani S, Pasterkamp RJ (2015) Axon guidance proteins in neurological disorders. Lancet Neurol 14:532–546. https://doi.org/10.1016/s1474-4422(14)70257-1

    Article  PubMed  Google Scholar 

  85. Merkurjev D, Hong WT, Iida K et al (2018) Synaptic N6-methyladenosine (m6A) epitranscriptome reveals functional partitioning of localized transcripts. Nat Neurosci 21:1004–1014. https://doi.org/10.1038/s41593-018-0173-6

    Article  CAS  PubMed  Google Scholar 

  86. Koranda JL, Dore L, Shi H et al (2018) METTL14 is essential for epitranscriptomic regulation of striatal function and learning. Neuron 99:283–292. https://doi.org/10.1016/j.neuron.2018.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Weng YL, Wang X, An R et al (2018) Epitranscriptomic m6A regulation of axon regeneration in the adult mammalian nervous system. Neuron 97:313–325. https://doi.org/10.1016/j.neuron.2017.12.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Worpenberg L, Paolantoni C, Longhi S et al (2021) YTHDF is a N6-methyladenosine reader that modulates FMR1 target mRNA selection and restricts axonal growth in Drosophila. Embo j 40:e104975. https://doi.org/10.15252/embj.2020104975

  89. Zhuang M, Li X, Zhu J et al (2019) The m6A reader YTHDF1 regulates axon guidance through translational control of Robo3.1 expression. Nucleic Acids Res 47:4765–4777. https://doi.org/10.1093/nar/gkz157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yu J, Chen M, Huang H et al (2018) Dynamic m6A modification regulates local translation of mRNA in axons. Nucleic Acids Res 46:1412–1423. https://doi.org/10.1093/nar/gkx1182

    Article  CAS  PubMed  Google Scholar 

  91. Borsani E, Della Vedova AM, Rezzani R, Rodella LF, Cristini C (2019) Correlation between human nervous system development and acquisition of fetal skills: an overview. Brain Dev 41:225–233. https://doi.org/10.1016/j.braindev.2018.10.009

    Article  PubMed  Google Scholar 

  92. Vissers C, Sinha A, Ming GL, Song H (2020) The epitranscriptome in stem cell biology and neural development. Neurobiol Dis 146:105139. https://doi.org/10.1016/j.nbd.2020.105139

  93. Shafik AM, Zhang F, Guo Z et al (2021) N6-methyladenosine dynamics in neurodevelopment and aging, and its potential role in Alzheimer’s disease. Genome Biol 22:17. https://doi.org/10.1186/s13059-020-02249-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yoon KJ, Ringeling FR, Vissers C et al (2017) Temporal control of mammalian cortical neurogenesis by m6A methylation. Cell 171:877–889. https://doi.org/10.1016/j.cell.2017.09.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wang CX, Cui GS, Liu X et al (2018) METTL3-mediated m6A modification is required for cerebellar development. PLoS Biol 16:e2004880. https://doi.org/10.1371/journal.pbio.2004880

  96. Li M, Zhao X, Wang W et al (2018) YTHDF2-mediated m6A mRNA clearance modulates neural development in mice. Genome Biol 19:69. https://doi.org/10.1186/s13059-018-1436-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Li L, Zang L, Zhang F et al (2017) Fat mass and obesity-associated (FTO) protein regulates adult neurogenesis. Hum Mol Genet 26:2398–2411. https://doi.org/10.1093/hmg/ddx128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Du T, Li G, Yang J, Ma K (2020) RNA demethylase ALKBH5 is widely expressed in neurons and decreased during brain development. Brain Res Bull 163:150–159. https://doi.org/10.1016/j.brainresbull.2020.07.018

    Article  CAS  PubMed  Google Scholar 

  99. Van Damme S, De Fruyt N, Watteyne J et al (2021) Neuromodulatory pathways in learning and memory: lessons from invertebrates. J Neuroendocrinol 33:e12911. https://doi.org/10.1111/jne.12911

  100. Ross TW, Easton A (2021) The hippocampal horizon: constructing and segmenting experience for episodic memory. Neurosci Biobehav Rev 132:181–196. https://doi.org/10.1016/j.neubiorev.2021.11.038

    Article  PubMed  Google Scholar 

  101. Rizzi-Wise CA, Wang DV (2021) Putting together pieces of the lateral septum: multifaceted functions and its neural pathways. eNeuro 8:315–321. https://doi.org/10.1523/eneuro.0315-21.2021

  102. Todd TP, Fournier DI, Bucci DJ (2019) Retrosplenial cortex and its role in cue-specific learning and memory. Neurosci Biobehav Rev 107:713–728. https://doi.org/10.1016/j.neubiorev.2019.04.016

    Article  PubMed  PubMed Central  Google Scholar 

  103. Baram TZ, Donato F, Holmes GL (2019) Construction and disruption of spatial memory networks during development. Learn Mem 26:206–218. https://doi.org/10.1101/lm.049239.118

    Article  PubMed  PubMed Central  Google Scholar 

  104. Krüttner S, Caroni P (2018) m6A-epitranscriptome modulates memory strength. Cell Res 29:4–5. https://doi.org/10.1038/s41422-018-0121-8

    Article  PubMed Central  Google Scholar 

  105. Madugalle SU, Meyer K, Wang DO, Bredy TW (2020) RNA N6-methyladenosine and the regulation of RNA localization and function in the brain. Trends Neurosci 43:1011–1023. https://doi.org/10.1016/j.tins.2020.09.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Engel M, Eggert C, Kaplick PM et al (2018) The role of m6A/m-RNA methylation in stress response regulation. Neuron 99:389–403. https://doi.org/10.1016/j.neuron.2018.07.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhang Z, Wang M, Xie D et al (2018) METTL3-mediated N6-methyladenosine mRNA modification enhances long-term memory consolidation. Cell Res 28:1050–1061. https://doi.org/10.1038/s41422-018-0092-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhang R, Zhang Y, Guo F et al (2022) Knockdown of METTL16 disrupts learning and memory by reducing the stability of MAT2A mRNA. Cell Death Discov 8:432. https://doi.org/10.1038/s41420-022-01220-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Shi H, Zhang X, Weng YL et al (2018) m6A facilitates hippocampus-dependent learning and memory through YTHDF1. Nature 563:249–253. https://doi.org/10.1038/s41586-018-0666-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kan L, Ott S, Joseph B et al (2021) A neural m6A/YTHDF pathway is required for learning and memory in Drosophila. Nat Commun 12:1458. https://doi.org/10.1038/s41467-021-21537-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Yu J, Zhang Y, Ma H et al (2020) Epitranscriptomic profiling of N6-methyladenosine-related RNA methylation in rat cerebral cortex following traumatic brain injury. Mol Brain 13:11. https://doi.org/10.1186/s13041-020-0554-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ising C, Venegas C, Zhang S et al (2019) NLRP3 inflammasome activation drives tau pathology. Nature 575:669–673. https://doi.org/10.1038/s41586-019-1769-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Scheltens P, Blennow K, Breteler MM et al (2016) Alzheimer’s disease. Lancet 388:505–517. https://doi.org/10.1016/s0140-6736(15)01124-1

    Article  CAS  PubMed  Google Scholar 

  114. Huang H, Camats-Perna J, Medeiros R, Anggono V, Widagdo J (2020) Altered expression of the m6A methyltransferase METTL3 in Alzheimer's disease. eNeuro 7: 0125–20. https://doi.org/10.1523/eneuro.0125-20.2020

  115. Han M, Liu Z, Xu Y et al (2020) Abnormality of m6A mRNA methylation is involved in Alzheimer’s disease. Front Neurosci 14:98. https://doi.org/10.3389/fnins.2020.00098

    Article  PubMed  PubMed Central  Google Scholar 

  116. Wei X, Cai M, Jin L (2020) The function of the metals in regulating epigenetics during Parkinson's disease. Front Genet 11:616083. https://doi.org/10.3389/fgene.2020.616083

  117. Chen X, Yu C, Guo M et al (2019) Down-regulation of m6A mRNA methylation is involved in dopaminergic neuronal death. ACS Chem Neurosci 10:2355–2363. https://doi.org/10.1021/acschemneuro.8b00657

    Article  CAS  PubMed  Google Scholar 

  118. Qiu X, He H, Huang Y, Wang J, Xiao Y (2020) Genome-wide identification of m6A-associated single-nucleotide polymorphisms in Parkinson's disease. Neurosci Lett 737:135315. https://doi.org/10.1016/j.neulet.2020.135315

  119. Yu Z, Huang L, Xia Y et al (2022) Analysis of m6A modification regulators in the substantia nigra and striatum of MPTP-induced Parkinson's disease mice. Neurosci Lett 791:136907. https://doi.org/10.1016/j.neulet.2022.136907

  120. Le Rhun E, Preusser M, Roth P et al (2019) Molecular targeted therapy of glioblastoma. Cancer Treat Rev 80:101896. https://doi.org/10.1016/j.ctrv.2019.101896

  121. Olivier C, Oliver L, Lalier L, Vallette FM (2020) Drug resistance in glioblastoma: the two faces of oxidative stress. Front Mol Biosci 7:620677. https://doi.org/10.3389/fmolb.2020.620677

  122. Cui Q, Shi H, Ye P et al (2017) m6A RNA methylation regulates the self-renewal and tumorigenesis of glioblastoma stem cells. Cell Rep 18:2622–2634. https://doi.org/10.1016/j.celrep.2017.02.059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Tassinari V, Cesarini V, Tomaselli S et al (2021) ADAR1 is a new target of METTL3 and plays a pro-oncogenic role in glioblastoma by an editing-independent mechanism. Genome Biol 22:51. https://doi.org/10.1186/s13059-021-02271-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Li F, Yi Y, Miao Y et al (2019) N6-methyladenosine modulates nonsense-mediated mrna decay in human glioblastoma. Cancer Res 79:5785–5798. https://doi.org/10.1158/0008-5472.Can-18-2868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Visvanathan A, Patil V, Arora A et al (2018) Essential role of METTL3-mediated m6A modification in glioma stem-like cells maintenance and radioresistance. Oncogene 37:522–533. https://doi.org/10.1038/onc.2017.351

    Article  CAS  PubMed  Google Scholar 

  126. Yarmishyn AA, Yang YP, Lu KH et al (2020) Musashi-1 promotes cancer stem cell properties of glioblastoma cells via upregulation of YTHDF1. Cancer Cell Int 20:597. https://doi.org/10.1186/s12935-020-01696-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Fang R, Chen X, Zhang S et al (2021) EGFR/SRC/ERK-stabilized YTHDF2 promotes cholesterol dysregulation and invasive growth of glioblastoma. Nat Commun 12:177. https://doi.org/10.1038/s41467-020-20379-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Wang LC, Chen SH, Shen XL et al (2020) M6A RNA methylation regulator hnrnpc contributes to tumorigenesis and predicts prognosis in glioblastoma multiforme. Front Oncol 10:536875. https://doi.org/10.3389/fonc.2020.536875

  129. Deng X, Su R, Stanford S, Chen J (2018) Critical enzymatic functions of FTO in obesity and cancer. Front Endocrinol (Lausanne) 9:396. https://doi.org/10.3389/fendo.2018.00396

    Article  PubMed  Google Scholar 

  130. Kowalski-Chauvel A, Lacore MG, Arnauduc F et al (2020) The m6A RNA demethylase ALKBH5 promotes radioresistance and invasion capability of glioma stem cells. Cancers (Basel) 13:40. https://doi.org/10.3390/cancers13010040

    Article  CAS  PubMed  Google Scholar 

  131. Zhang C, Wang Y, Peng Y, Xu H, Zhou X (2020) METTL3 regulates inflammatory pain by modulating m6A-dependent pri-miR-365-3p processing. Faseb J 34:122–132. https://doi.org/10.1096/fj.201901555R

    Article  CAS  PubMed  Google Scholar 

  132. Kim H, Jang S (2021) RNA m6A methyltransferase METTL3 regulates spatial neural patterning in Xenopus. Mol Cell Biol 41:e0010421. https://doi.org/10.1128/mcb.00104-21

  133. Wen L, Sun W, Xia D, Wang Y, Li J, Yang S (2020) The m6A methyltransferase METTL3 promotes LPS-induced microglia inflammation through TRAF6/NF-κB pathway. NeuroReport 33:243–251. https://doi.org/10.1097/wnr.0000000000001550

    Article  Google Scholar 

  134. Xi Z, Xue Y, Zheng J, Liu X, Ma J, Liu Y (2016) WTAP expression predicts poor prognosis in malignant glioma patients. J Mol Neurosci 60:131–136. https://doi.org/10.1007/s12031-016-0788-6

    Article  CAS  PubMed  Google Scholar 

  135. Sun L, Ma L, Zhang H et al (2019) FTO deficiency reduces anxiety- and depression-like behaviors in mice via alterations in gut microbiota. Theranostics 9:721–733. https://doi.org/10.7150/thno.31562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Zhang L, Cheng Y, Xue Z et al (2021) Sevoflurane impairs m6A-mediated mRNA translation and leads to fine motor and cognitive deficits. Cell Biol Toxicol 38:347–369. https://doi.org/10.1007/s10565-021-09601-4

    Article  CAS  PubMed  Google Scholar 

  137. Zhang Z, Wang Q, Zhao X et al (2020) YTHDC1 mitigates ischemic stroke by promoting Akt phosphorylation through destabilizing PTEN mRNA. Cell Death Dis 11:977. https://doi.org/10.1038/s41419-020-03186-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Kim HJ, Kim NC, Wang YD et al (2013) Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 495:467–473. https://doi.org/10.1038/nature11922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Yin D, Kong C, Chen M (2020) Effect of hnRNPA2/B1 on the proliferation and apoptosis of glioma U251 cells via the regulation of AKT and STAT3 pathways. Biosci Rep 40:BSR20190318. https://doi.org/10.1042/bsr20190318

  140. Deshaies JE, Shkreta L, Moszczynski AJ et al (2018) TDP-43 regulates the alternative splicing of hnRNP A1 to yield an aggregation-prone variant in amyotrophic lateral sclerosis. Brain 141:1320–1333. https://doi.org/10.1093/brain/awy062

    Article  PubMed  PubMed Central  Google Scholar 

  141. Li ZW, Xue M, Zhu BX, Yue CL, Chen M, Qin HH (2019) microRNA-4500 inhibits human glioma cell progression by targeting IGF2BP1. Biochem Biophys Res Commun 513:800–806. https://doi.org/10.1016/j.bbrc.2019.04.058

    Article  CAS  PubMed  Google Scholar 

  142. Edens BM, Vissers C, Su J et al (2019) FMRP modulates neural differentiation through m6A-dependent mRNA nuclear export. Cell Rep 28:845–854. https://doi.org/10.1016/j.celrep.2019.06.072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Casingal CR, Kikkawa T, Inada H, Sasaki Y, Osumi N (2020) Identification of FMRP target mRNAs in the developmental brain: FMRP might coordinate Ras/MAPK, Wnt/β-catenin, and mTOR signaling during corticogenesis. Mol Brain 13:167. https://doi.org/10.1186/s13041-020-00706-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Zhan X, Asmara H, Cheng N et al (2020) FMRP(1–297)-tat restores ion channel and synaptic function in a model of Fragile X syndrome. Nat Commun 11:2755. https://doi.org/10.1038/s41467-020-16250-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (81873351), and the Distinguished Young Scholars Project of Natural Science Foundation of Anhui Province in China (1908085J27).

Author information

Authors and Affiliations

Authors

Contributions

Nan Shao and Ting Ye analyzed the literature and drafted the manuscript. Weiting Xuan, Meng Zhang, Qian Chen and Liu Juan collected and screened the literature. Peng Zhou, Hang Song and Biao Cai conceived the study and revised the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Peng Zhou, Hang Song or Biao Cai.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, N., Ye, T., Xuan, W. et al. The effects of N6-methyladenosine RNA methylation on the nervous system. Mol Cell Biochem 478, 2657–2669 (2023). https://doi.org/10.1007/s11010-023-04691-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-023-04691-6

Keywords

Navigation