Skip to main content

Advertisement

Log in

Sacubitril/valsartan reverses cardiac structure and function in experimental model of hypertension-induced hypertrophic cardiomyopathy

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

This study evaluated the effect of sacubtril/valsartan on cardiac remodeling, molecular and cellular adaptations in experimental (rat) model of hypertension-induced hypertrophic cardiomyopathy. Thirty Wistar Kyoto rats, 10 healthy (control) and 20 rats with confirmed hypertension-induced hypertrophic cardiomyopathy (HpCM), were used for this study. The HpCM group was further subdivided into untreated and sacubitril/valsartan-treated groups. Myocardial structure and function were assessed using echocardiography, Langendorff’s isolated heart experiment, blood sampling and qualitative polymerase chain reaction. Echocardiographic examinations revealed protective effects of sacubitril/valsartan by improving left ventricular internal diameter in systole and diastole and fractional shortening. Additionally, sacubitril/valsartan treatment decreased systolic and diastolic blood pressures in comparison with untreated hypertensive rats. Moreover, sacubitril/valsartan treatment reduced oxidative stress and apoptosis (reduced expression of Bax and Cas9 genes) compared to untreated rats. There was a regular histomorphology of cardiomyocytes, interstitium, and blood vessels in treated rats compared to untreated HpCM rats which expressed hypertrophic cardiomyocytes, with polymorphic nuclei, prominent nucleoli and moderately dilated interstitium. In experimental model of hypertension-induced hypertrophic cardiomyopathy, sacubitril/valsartan treatment led to improved cardiac structure, haemodynamic performance, and reduced oxidative stress and apoptosis. Sacubitril/valsartan thus presents as a potential therapeutic strategy resulted in hypertension-induced hypertrophic cardiomyopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article. Additional information could be obtained from the corresponding author.

References

  1. Bijani M, Parvizi S, Dehghan A, Sedigh-Rahimabadi M, Rostami-chijan M, Kazemi M et al (2020) Investigating the prevalence of hypertension and its associated risk factors in a population-based study: Fasa PERSIAN COHORT data. BMC Cardiovasc Disord. https://doi.org/10.1186/s12872-020-01797-3

    Article  PubMed  PubMed Central  Google Scholar 

  2. Mills KT, Stefanescu A, He J (2020) The global epidemiology of hypertension. Nat Rev Nephrol 16:223–237. https://doi.org/10.1038/s41581-019-0244-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kuroda K, Kato TS, Amano A (2015) Hypertensive cardiomyopathy: a clinical approach and literature review. World J Hypertens 5(2):41–52. https://doi.org/10.5494/wjh.v5.i2.41

    Article  Google Scholar 

  4. Drazner MH (2011) The progression of hypertensive heart disease. Circulation 123:327–334. https://doi.org/10.1161/CIRCULATIONAHA.108.845792

    Article  PubMed  Google Scholar 

  5. Burchfield JS, Xie M, Hill JA (2013) Pathological ventricular remodeling: mechanisms: part 1 of 2. Circulation 128:388–400. https://doi.org/10.1161/CIRCULATIONAHA.113.001878

    Article  PubMed  PubMed Central  Google Scholar 

  6. Strait JB, Lakatta EG (2012) Aging-associated cardiovascular changes and their relationship to heart failure. Heart Fail Clin 8:143–164. https://doi.org/10.1016/j.hfc.2011.08.011

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cuspidi C, Ciulla M, Zanchetti A (2006) Hypertensive myocardial fibrosis. Nephrol Dial Transplant 21:20–23. https://doi.org/10.1093/ndt/gfi237

    Article  PubMed  Google Scholar 

  8. Packer M, McMurray JJV, Desai AS, Gong J, Lefkowitz MP, Rizkala AR et al (2015) Angiotensin receptor neprilysin inhibition compared with enalapril on the risk of clinical progression in surviving patients with heart failure. Circulation 131:54–61. https://doi.org/10.1161/CIRCULATIONAHA.114.013748

    Article  CAS  PubMed  Google Scholar 

  9. Simko F, Baka T, Stanko P, Repova K, Krajcirovicova K, Aziriova S et al (2022) Sacubitril/valsartan and ivabradine attenuate left ventricular remodelling and dysfunction in spontaneously hypertensive rats: different interactions with the renin-angiotensin-aldosterone system. Biomedicines 10(8):1844. https://doi.org/10.3390/biomedicines10081844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kusaka H, Sueta D, Koibuchi N, Hasegawa Y, Nakagawa T, Lin B et al (2015) LCZ696, angiotensin II receptor-neprilysin inhibitor, ameliorates high-salt-induced hypertension and cardiovascular injury more than valsartan alone. Am J Hypertens 28(12):1409–1417. https://doi.org/10.1093/ajh/hpv015

    Article  CAS  PubMed  Google Scholar 

  11. Hamano G, Yamamoto K, Takami Y, Takeshita H, Shimosato T, Moritani T et al (2019) Effects of low-dose sacubitril/valsartan on different stages of cardiac hypertrophy in salt-loaded hypertensive rats. J Cardiovasc Pharmacol 73(5):282–289. https://doi.org/10.1097/FJC.0000000000000662

    Article  CAS  PubMed  Google Scholar 

  12. Tashiro K, Kuwano T, Ideishi A, Morita H, Idemoto Y, Goto M et al (2020) Sacubitril/valsartan inhibits cardiomyocyte hypertrophy in angiotensin II-induced hypertensive mice independent of a blood pressure-lowering effect. Cardiol Res 11(6):376–385. https://doi.org/10.14740/cr1137

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yandrapalli S, Khan MH, Rochlani Y, Aronow WS (2018) Sacubitril/valsartan in cardiovascular disease: evidence to date and place in therapy. Ther Adv Cardiovasc Dis 12:217–231. https://doi.org/10.1177/1753944718784536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Joffe II, Travers KE, Perreault-Micale CL, Hampton T, Katz SE, Morgan JP et al (1999) Abnormal cardiac function in the streptozotocin-induced, non-insulin- dependent diabetic rat: Noninvasive assessment with doppler echocardiography and contribution of the nitric oxide pathway. J Am Coll Cardiol 34:2111–2119. https://doi.org/10.1016/s0735-1097(99)00436-2

    Article  CAS  PubMed  Google Scholar 

  15. Feng M, Whitesall S, Zhang Y, Beibel M, D’Alecy L, DiPetrillo K (2008) Validation of volume-pressure recording tail-cuff blood pressure measurements. Am J Hypertens 21:1288–1291. https://doi.org/10.1038/ajh.2008.301

    Article  PubMed  Google Scholar 

  16. Jakoviljevic V, Milic P, Bradic J, Jeremic J, Zivkovic V, Srejovic I et al (2019) Standardized aronia melanocarpa extract as novel supplement against metabolic syndrome: a rat model. Int J Mol Sci. https://doi.org/10.3390/ijms20010006

    Article  Google Scholar 

  17. Leng SH, Lu FE, Xu LJ (2004) Therapeutic effects of berberine in impaired glucose tolerance rats and its influence on insulin secretion. Acta Pharmacol Sin 25:496–502

    CAS  PubMed  Google Scholar 

  18. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622. https://doi.org/10.1373/clinchem.2008.112797

    Article  CAS  PubMed  Google Scholar 

  19. Andersen CL, Jensen JL, Ørntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250. https://doi.org/10.1158/0008-5472.CAN-04-0496

    Article  CAS  PubMed  Google Scholar 

  20. Stojic IM, Jakovljevic VL, Zivkovic VI, Srejovic IM, Nikolic TR, Jeremic JN et al (2018) The perfusion of cisplatin and cisplatin structural analogues through the isolated rat heart: the effects on coronary flow and cardiodynamic parameters. Gen Physiol Biophys 37:515–525. https://doi.org/10.4149/gpb_2018004

    Article  CAS  PubMed  Google Scholar 

  21. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  22. Di Palo KE, Barone NJ (2020) Hypertension and heart failure: prevention, targets, and treatment. Heart Fail Clin 16:99–106. https://doi.org/10.1016/j.hfc.2019.09.001

    Article  PubMed  Google Scholar 

  23. Bindra A, Hall SA (2017) New drugs for the treatment of heart failure. US Cardiol Rev 11:62–66

    Article  Google Scholar 

  24. Martens P, Beliën H, Dupont M, Vandervoort P, Mullens W (2018) The reverse remodeling response to sacubitril/valsartan therapy in heart failure with reduced ejection fraction. Cardiovasc Ther. https://doi.org/10.1111/1755-5922.12435

    Article  PubMed  Google Scholar 

  25. Landolfo M, Piani F, Esposti DD, Cosentino E, Bacchelli S, Dormi A et al (2020) Effects of sacubitril valsartan on clinical and echocardiographic parameters of outpatients with heart failure and reduced ejection fraction. IJC Hear Vasc. https://doi.org/10.1016/j.ijcha.2020.100656

    Article  Google Scholar 

  26. Iborra-Egea O, Gálvez-Montón C, Roura S, Perea-Gil I, Prat-Vidal C, Soler-Botija C et al (2017) Mechanisms of action of sacubitril/valsartan on cardiac remodeling: a systems biology approach. NPJ Syst Biol Appl. https://doi.org/10.1038/s41540-017-0013-4

    Article  PubMed  PubMed Central  Google Scholar 

  27. Rizos CV, Elisaf MS (2014) Antihypertensive drugs and glucose metabolism. World J Cardiol 6(7):517–530. https://doi.org/10.4330/wjc.v6.i7.517

    Article  PubMed  PubMed Central  Google Scholar 

  28. García-Puig J, Ruilope LM, Luque M, Fernández J, Ortega R, Dal-Ré R, AVANT Study Group Investigators (2006) Glucose metabolism in patients with essential hypertension. Am J Med 119(4):318–326. https://doi.org/10.1016/j.amjmed.2005.09.010

    Article  CAS  PubMed  Google Scholar 

  29. Li J, Kemp BA, Howell NL, Massey J, Mińczuk K, Huang Q et al (2019) Metabolic changes in spontaneously hypertensive rat hearts precede cardiac dysfunction and left ventricular hypertrophy. J Am Heart Assoc 8(4):e010926. https://doi.org/10.1161/JAHA.118.010926

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bednarski TK, Duda MK, Dobrzyn P (2022) Alterations of lipid metabolism in the heart in spontaneously hypertensive rats precedes left ventricular hypertrophy and cardiac dysfunction. Cells 11(19):3032. https://doi.org/10.3390/cells11193032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rodrigo R, González J, Paoletto F (2011) The role of oxidative stress in the pathophysiology of hypertension. Hypertens Res 34:431–440. https://doi.org/10.1038/hr.2010.264

    Article  CAS  PubMed  Google Scholar 

  32. Cracowski JL, Baguet JP, Ormezzano O, Bessard J, Stanke-Labesque F, Bessard G et al (2003) Lipid peroxidation is not increased in patients with untreated mild-to-moderate hypertension. Hypertension 41(2):286–288. https://doi.org/10.1161/01.hyp.0000050963.1640

    Article  CAS  PubMed  Google Scholar 

  33. Nojima Y, Ito K, Ono H, Nakazato T, Bono H, Yokoyama T et al (2015) Superoxide dismutases, SOD1 and SOD2, play a distinct role in the fat body during pupation in silkworm Bombyx mori. PLoS ONE. https://doi.org/10.1371/journal.pone.0116007

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ściskalska M, Ołdakowska M, Marek G, Milnerowicz H (2020) Changes in the activity and concentration of superoxide dismutase isoenzymes (Cu/zn sod, mnsod) in the blood of healthy subjects and patients with acute pancreatitis. Antioxidants 9:1–16. https://doi.org/10.3390/antiox9100948

    Article  CAS  Google Scholar 

  35. Tseng WL, Chou SJ, Chiang HC, Wang ML, Chien CS, Chen KH et al (2017) Imbalanced production of reactive oxygen species and mitochondrial antioxidant SOD2 in fabry disease-specific human induced pluripotent stem cell-differentiated vascular endothelial cells. Cell Transplant 26:513–527. https://doi.org/10.3727/096368916X694265

    Article  PubMed  PubMed Central  Google Scholar 

  36. Yang CC, Chen YT, Chen CH, Li YC, Shao PL, Huang TH et al (2019) The therapeutic impact of entresto on protecting against cardiorenal syndrome-associated renal damage in rats on high protein diet. Biomed Pharmacother. https://doi.org/10.1016/j.biopha.2019.108954

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lu HI, Tong MS, Chen KH, Lee FY, Chiang JY, Chung SY et al (2018) Entresto therapy effectively protects heart and lung against transverse aortic constriction induced cardiopulmonary syndrome injury in rat. Am J Transl Res 10:2290–2305

    CAS  PubMed  PubMed Central  Google Scholar 

  38. McLeod CJ, Bos JM, Theis JL, Edwards WD, Gersh BJ, Ommen SR et al (2009) Histologic characterization of hypertrophic cardiomyopathy with and without myofilament mutations. Am Heart J 158:799–805. https://doi.org/10.1016/j.ahj.2009.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Burke RM, Lighthouse JK, Mickelsen DM, Small EM (2019) Sacubitril/valsartan decreases cardiac fibrosis in left ventricle pressure overload by restoring pkg signaling in cardiac fibroblasts. Circ Heart Fail 12(4):e005565. https://doi.org/10.1161/CIRCHEARTFAILURE.118.005565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Katarina Virijević and Mihajlo Kokanović for sample handling and mRNA isolation.

Funding

This work was supported by the EU Horizon 2020 research and innovation programme below grant agreement Number 777204 (SILICOFCM). This work was supported by the European Union’s Horizon 2020 research and innovation programme SGABU (Grant agreement 952603). The Commission is not responsible for any use that may be made of the information it contains.The authors appreciatively acknowledge funding from the Ministry of Education, Science and Technological Development of the Republic of Serbia (Agreement Number 451-03-68/2022-14/200378 and 451‐03‐68/2022‐14/200107). The design of the study, data collection, analyses, interpretation of data, and drafting of the manuscript do not reflect the views and opinions of the funders.

Author information

Authors and Affiliations

Authors

Contributions

DGJ, JJ, JB, JG, NM, MNZ, NF: Study concept and design, JJ, IM, JG, DS, NF: Study Supervision, JJ, JB, IM, IV, VZ, NJ, TNT, SB, DS, NM, NG: Acquisition of data, JJ, NCO, IT, DGJ, SB, VJ, MNZ, DS, JG, VZ: Data analysis and interpretation of data, JJ, MNZ, NCO, DGJ, JB: Drafting of the manuscript, DGJ, JJ, NCO, GAM, LV, MNZ, NF: Critical revision of the manuscript, All authors approved the final version. DGJ and NF act as the guarantor and take responsibility for the content of the manuscript, including the data and analysis.

Corresponding author

Correspondence to Vladimir Jakovljevic.

Ethics declarations

Conflict of interests

The authors declare no conflict of interests.

Ethical approval

The protocol for this study was approved by the ethical committee for experimental animals’ well-being of the Faculty of Medical Sciences, University of Kragujevac, Serbia. All animals used in this study were sourced from the Institute for Medical Research, University of Belgrade, and written informed consent was obtained prior to use of the animals.

Consent for publication

Not applicable

Consent for human and animal participants

No human data were used in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeremic, J., Govoruskina, N., Bradic, J. et al. Sacubitril/valsartan reverses cardiac structure and function in experimental model of hypertension-induced hypertrophic cardiomyopathy. Mol Cell Biochem 478, 2645–2656 (2023). https://doi.org/10.1007/s11010-023-04690-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-023-04690-7

Keywords

Navigation