Skip to main content
Log in

Pathological alterations in the expression status of rotator cuff tendon matrix components in hyperlipidemia

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Hyperlipidemia is an important risk factor in the development and progression of tendon pathology, however its role in aggravating rotator cuff tendon injury (RCTI) is largely unknown. We aimed to assess the expression status of key extracellular matrix (ECM) components in the tendon tissues and tenocytes under hyperlipidemia. Shoulder rotator cuff (RC) tendon tissues harvested from the swine model of hyperlipidemia displayed alterations in histomorphometry and the expression status of major ECM component proteins including COL-I, COL-III, COL-IV, COL-V, COL-VI, MMP2, and MMP9. Similarly, the LDL- and oxLDL-challenged tenocytes displayed altered expression of the same proteins at both transcriptional and translational levels. In addition, the lipid uptake and cellular reactive oxygen radicals predominated in the lipid-challenged tenocytes compared to the control. Overall, the LDL-treated cells displayed predominant pathological alterations compared to the ox-LDL-treated cells. Further understanding regarding the underlying molecular mechanisms driving the tendon matrisome alteration and subsequent aggravated RCTI pathology in hyperlipidemia could open novel translational avenues in the management of RCTI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data with the raw counts matrices and annotation are available upon request from the authors through proper channels.

References

  1. Karr S (2017) Epidemiology and management of hyperlipidemia. Am J Manag Care 23:S139–S148

    PubMed  Google Scholar 

  2. Khosravi M, Hosseini-Fard R, Najafi M (2018) Circulating low density lipoprotein (LDL). Horm Mol Biol Clin Investig. https://doi.org/10.1515/hmbci-2018-0024

    Article  PubMed  Google Scholar 

  3. Mundi S, Massaro M, Scoditti E, Carluccio MA, Van Hinsbergh VW, Iruela-Arispe ML, De Caterina R (2018) Endothelial permeability, LDL deposition, and cardiovascular risk factors—a review. Cardiovasc Res 114:35–52

    Article  CAS  PubMed  Google Scholar 

  4. Bozkurt B, Aguilar D, Deswal A, Dunbar SB, Francis GS, Horwich T, Jessup M, Kosiborod M, Pritchett AM, Ramasubbu K (2016) Contributory risk and management of comorbidities of hypertension, obesity, diabetes mellitus, hyperlipidemia, and metabolic syndrome in chronic heart failure: a scientific statement from the American Heart Association. Circulation 134:e535–e578

    Article  PubMed  Google Scholar 

  5. Keane WF, Mulcahy WS, Kasiske BL, Kim Y and O'Donnell MP (1991) Hyperlipidemia and progressive renal disease. Kidney International Supplement.

  6. Morton RE, Evans TA (1992) Modification of the bicinchoninic acid protein assay to eliminate lipid interference in determining lipoprotein protein content. Anal Biochem 204:332–334

    Article  CAS  PubMed  Google Scholar 

  7. Karpe F (1997) Mechanisms of postprandial hyperlipidaemia—remnants and coronary artery disease. Diabet Med 14:S60–S66

    Article  PubMed  Google Scholar 

  8. Ahmad F, Leake DS (2019) Lysosomal oxidation of LDL alters lysosomal pH, induces senescence, and increases secretion of pro-inflammatory cytokines in human macrophages [S]. J Lipid Res 60:98–110

    Article  CAS  PubMed  Google Scholar 

  9. Kovanen PT, Bot I (2017) Mast cells in atherosclerotic cardiovascular disease–Activators and actions. Eur J Pharmacol 816:37–46

    Article  CAS  PubMed  Google Scholar 

  10. Thankam FG, Roesch ZK, Dilisio MF, Radwan MM, Kovilam A, Gross RM, Agrawal DK (2018) Association of inflammatory responses and ECM disorganization with HMGB1 upregulation and NLRP3 inflammasome activation in the injured rotator cuff tendon. Sci Rep 8:1–14

    Article  Google Scholar 

  11. Cancienne JM, Brockmeier SF, Rodeo SA, Werner BC (2017) Perioperative serum lipid status and statin use affect the revision surgery rate after arthroscopic rotator cuff repair. Am J Sports Med 45:2948–2954

    Article  PubMed  Google Scholar 

  12. Werner B, Cancienne J, Brockmeier S, Rodeo S (2017) Perioperative serum lipid status and statin use affect revision surgery rate after arthroscopic rotator cuff repair. Arthroscopy 33:e26

    Article  Google Scholar 

  13. Lin TT-L, Lin C-H, Chang C-L, Chi C-H, Chang S-T, Sheu WH-H (2015) The effect of diabetes, hyperlipidemia, and statins on the development of rotator cuff disease: a nationwide, 11-year, longitudinal, population-based follow-up study. Am J Sports Med 43:2126–2132

    Article  PubMed  Google Scholar 

  14. Hast MW, Abboud JA, Soslowsky LJ (2014) Exploring the role of hypercholesterolemia in tendon health and repair. Muscles, Ligaments Tendons J 4:275

    Article  PubMed  Google Scholar 

  15. Amit P, Kuiper JH, James S, Snow M (2021) Does statin-treated hyperlipidemia affect rotator cuff healing or muscle fatty infiltration after rotator cuff repair? J Shoulder Elbow Surg 30:2465–2474

    Article  PubMed  Google Scholar 

  16. Yang Y, Qu J (2018) The effects of hyperlipidemia on rotator cuff diseases: a systematic review. J Orthop Surg Res 13:1–11

    Article  Google Scholar 

  17. Steinberg D (2009) The LDL modification hypothesis of atherogenesis: an update. J Lipid Res 50:S376–S381

    Article  PubMed  PubMed Central  Google Scholar 

  18. Dong S, Li J, Zhao H, Zheng Y, Chen Y, Shen J, Yang H, Zhu J (2022) Risk factor analysis for predicting the onset of rotator cuff calcific tendinitis based on artificial intelligence. Computational Intell Neurosci. https://doi.org/10.1155/2022/8978878

    Article  Google Scholar 

  19. Beason DP, Hsu JE, Marshall SM, McDaniel AL, Temel RE, Abboud JA, Soslowsky LJ (2013) Hypercholesterolemia increases supraspinatus tendon stiffness and elastic modulus across multiple species. J Shoulder Elbow Surg 22:681–686

    Article  PubMed  Google Scholar 

  20. Chung SW, Park H, Kwon J, Choe GY, Kim SH, Oh JH (2016) Effect of hypercholesterolemia on fatty infiltration and quality of tendon-to-bone healing in a rabbit model of a chronic rotator cuff tear: electrophysiological, biomechanical, and histological analyses. Am J Sports Med 44:1153–1164

    Article  PubMed  Google Scholar 

  21. Thankam FG, Wilson VE, Radwan MM, Siddique A, Agrawal DK (2022) Involvement of ischemia-driven 5-lipoxygenase-resolvin-E1-chemokine like receptor-1 axis in the resolution of post-coronary artery bypass graft inflammation in coronary arteries. Mol Biol Rep 49:3123–3134

    Article  CAS  PubMed  Google Scholar 

  22. Thankam FG, Dilisio MF, Dietz NE, Agrawal DK (2016) TREM-1, HMGB1 and RAGE in the shoulder tendon: dual mechanisms for inflammation based on the coincidence of glenohumeral arthritis. PLoS One 11:e0165492

    Article  PubMed  PubMed Central  Google Scholar 

  23. Stoll C, John T, Conrad C, Lohan A, Hondke S, Ertel W, Kaps C, Endres M, Sittinger M, Ringe J (2011) Healing parameters in a rabbit partial tendon defect following tenocyte/biomaterial implantation. Biomaterials 32:4806–4815

    Article  CAS  PubMed  Google Scholar 

  24. Thankam F, Khwaja B, Nguyen M, Ahsan O and Agrawal D (2022) Acute exposure of minimally ox-LDL elicits survival responses by downregulating the mediators of NLRP3 inflammasome in cultured RAW 264.7 macrophages.

  25. Thankam FG, Ayoub JG, Ahmed MMR, Siddique A, Sanchez TC, Peralta RA, Pennington TJ, Agrawal DK (2021) Association of hypoxia and mitochondrial damage associated molecular patterns in the pathogenesis of vein graft failure: a pilot study. Transl Res 229:38–52

    Article  CAS  PubMed  Google Scholar 

  26. Thankam FG, Chandra IS, Kovilam AN, Diaz CG, Volberding BT, Dilisio MF, Radwan MM, Gross RM, Agrawal DK (2018) Amplification of mitochondrial activity in the healing response following rotator cuff tendon injury. Sci Rep 8:1–14

    Article  Google Scholar 

  27. Tekavec E, Jöud A, Rittner R, Mikoczy Z, Nordander C, Petersson IF, Englund M (2012) Population-based consultation patterns in patients with shoulder pain diagnoses. BMC Musculoskelet Disord 13:1–8

    Article  Google Scholar 

  28. Abboud JA, Kim JS (2010) The effect of hypercholesterolemia on rotator cuff disease. Clin Orthop Relat Res® 468:1493–1497

    Article  PubMed  Google Scholar 

  29. Lee C-M, Chien C-T, Chang P-Y, Hsieh M-Y, Jui H-Y, Liau C-S, Hsu S-M, Lee Y-T (2005) High-density lipoprotein antagonizes oxidized low-density lipoprotein by suppressing oxygen free-radical formation and preserving nitric oxide bioactivity. Atherosclerosis 183:251–258

    Article  CAS  PubMed  Google Scholar 

  30. Siess W (2006) Platelet interaction with bioactive lipids formed by mild oxidation of low-density lipoprotein. Pathophysiol Haemost Thromb 35:292–304

    Article  CAS  PubMed  Google Scholar 

  31. Orekhov AN (2018) LDL and foam cell formation as the basis of atherogenesis. Curr Opin Lipidol 29:279–284

    Article  CAS  PubMed  Google Scholar 

  32. Fang WH, Agrawal DK, Thankam FG (2022) “Smart exosomes”: a smart approach for tendon regeneration. Tissue Eng Part B Rev 28:613–625

    Article  PubMed  Google Scholar 

  33. Rhee S-M, Youn S-M, Ko YW, Kwon TY, Park Y-K, Rhee YG (2021) Retracted rotator cuff repairs heal with disorganized fibrogenesis without affecting biomechanical properties: a comparative animal model study. Arthrosc J Arthrosc Relat Surg. https://doi.org/10.1016/j.arthro.2021.06.025

    Article  Google Scholar 

  34. Gatto AP, Hu DA, Feeley BT, Lansdown D (2022) Dyslipidemia is associated with risk for rotator cuff repair failure: a systematic review and meta-analysis. JSES Rev Rep Tech. https://doi.org/10.1016/j.xrrt.2022.02.003

    Article  Google Scholar 

  35. Savitskaya YA, Izaguirre A, Sierra L, Perez F, Cruz F, Villalobos E, Almazan A, Ibarra C (2011) Effect of angiogenesis-related cytokines on rotator cuff disease: the search for sensitive biomarkers of early tendon degeneration. Clin Med Insights Arthritis Musculoskelet Disord. https://doi.org/10.4137/CMAMD.S7071

    Article  PubMed  PubMed Central  Google Scholar 

  36. Soslowsky LJ, Fryhofer GW (2016) Tendon homeostasis in hypercholesterolemia. Metab Influences Risk Tendon Disord. https://doi.org/10.1007/978-3-319-33943-6_14

    Article  Google Scholar 

  37. Izumi S, Oichi T, Shetye SS, Zhang K, Wilson K, Iwamoto M, Kuo CK, Akabudike N, Adachi N, Soslowsky LJ (2022) Inhibition of glucose use improves structural recovery of injured Achilles tendon in mice. J Orthop Res® 40:1409–1419

    Article  CAS  PubMed  Google Scholar 

  38. Chaudhury S, Xia Z, Thakkar D, Hakimi O, Carr AJ (2016) Gene expression profiles of changes underlying different-sized human rotator cuff tendon tears. J Shoulder Elbow Surg 25:1561–1570

    Article  PubMed  Google Scholar 

  39. Thankam FG, Evan DK, Agrawal DK, Dilisio MF (2019) Collagen type III content of the long head of the biceps tendon as an indicator of glenohumeral arthritis. Mol Cell Biochem 454:25–31

    Article  CAS  PubMed  Google Scholar 

  40. Zhang G, Young B, Ezura Y, Favata M, Soslowsky L, Chakravarti S, Birk DE (2005) Development of tendon structure and function: regulation of collagen fibrillogenesis. J Musculoskelet Neuronal Interact 5:5–21

    CAS  PubMed  Google Scholar 

  41. Thankam FG, Dilisio MF, Gross RM, Agrawal DK (2018) Collagen I: a kingpin for rotator cuff tendon pathology. Am J Translational Res 10:3291

    CAS  Google Scholar 

  42. Kjær M, Langberg H, Heinemeier K, Bayer M, Hansen M, Holm L, Doessing S, Kongsgaard M, Krogsgaard M, Magnusson S (2009) From mechanical loading to collagen synthesis, structural changes and function in human tendon. Scand J Med Sci Sports 19:500–510

    Article  PubMed  Google Scholar 

  43. Eriksen HA, Pajala A, Leppilahti J, Risteli J (2002) Increased content of type III collagen at the rupture site of human Achilles tendon. J Orthop Res 20:1352–1357

    Article  CAS  PubMed  Google Scholar 

  44. Gonçalves-Neto J, Witzel S, Teodoro W, Carvalho-Junior A, Fernandes TD, Yoshinari H (2002) Changes in collagen matrix composition in human posterior tibial tendon dysfunction. Joint Bone Spine 69:189–194

    Article  PubMed  Google Scholar 

  45. Izu Y, Ansorge HL, Zhang G, Soslowsky LJ, Bonaldo P, Chu M-L, Birk DE (2011) Dysfunctional tendon collagen fibrillogenesis in collagen VI null mice. Matrix Biol 30:53–61

    Article  CAS  PubMed  Google Scholar 

  46. Smith SM, Thomas CE, Birk DE (2012) Pericellular proteins of the developing mouse tendon: a proteomic analysis. Connect Tissue Res 53:2–13

    Article  CAS  PubMed  Google Scholar 

  47. Ritty TM, Roth R, Heuser JE (2003) Tendon cell array isolation reveals a previously unknown fibrillin-2-containing macromolecular assembly. Structure 11:1179–1188

    Article  CAS  PubMed  Google Scholar 

  48. Sardone F, Santi S, Tagliavini F, Traina F, Merlini L, Squarzoni S, Cescon M, Wagener R, Maraldi NM, Bonaldo P (2016) Collagen VI–NG2 axis in human tendon fibroblasts under conditions mimicking injury response. Matrix Biol 55:90–105

    Article  CAS  PubMed  Google Scholar 

  49. Theocharidis G, Drymoussi Z, Kao AP, Barber AH, Lee DA, Braun KM, Connelly JT (2016) Type VI collagen regulates dermal matrix assembly and fibroblast motility. J Investig Dermatol 136:74–83

    Article  CAS  PubMed  Google Scholar 

  50. Subramanian A, Schilling TF (2015) Tendon development and musculoskeletal assembly: emerging roles for the extracellular matrix. Development 142:4191–4204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Aimes RT, Quigley JP (1995) Matrix metalloproteinase-2 is an interstitial collagenase: inhibitor-free enzyme catalyzes the cleavage of collagen fibrils and soluble native type i collagen generating the specific ¾-and ¼-length fragments (∗). J Biol Chem 270:5872–5876

    Article  CAS  PubMed  Google Scholar 

  52. Koskinen SO, Heinemeier KM, Olesen JL, Langberg H, Kjaer M (2004) Physical exercise can influence local levels of matrix metalloproteinases and their inhibitors in tendon-related connective tissue. J Appl Physiol 96:861–864

    Article  CAS  PubMed  Google Scholar 

  53. Andarawis-Puri N, Sereysky JB, Sun HB, Jepsen KJ, Flatow EL (2012) Molecular response of the patellar tendon to fatigue loading explained in the context of the initial induced damage and number of fatigue loading cycles. J Orthop Res 30:1327–1334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Attia M, Huet E, Gossard C, Menashi S, Tassoni M-C, Martelly I (2013) Early events of overused supraspinatus tendons involve matrix metalloproteinases and EMMPRIN/CD147 in the absence of inflammation. Am J Sports Med 41:908–917

    Article  PubMed  Google Scholar 

  55. Huisman E, Lu A, Jamil S, Mousavizadeh R, McCormack R, Roberts C, Scott A (2016) Influence of repetitive mechanical loading on MMP2 activity in tendon fibroblasts. J Orthop Res 34:1991–2000

    Article  CAS  PubMed  Google Scholar 

  56. Loiselle AE, Bragdon GA, Jacobson JA, Hasslund S, Cortes ZE, Schwarz EM, Mitten DJ, Awad HA, O’Keefe RJ (2009) Remodeling of murine intrasynovial tendon adhesions following injury: MMP and neotendon gene expression. J Orthop Res 27:833–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Karousou E, Ronga M, Vigetti D, Passi A, Maffulli N (2008) Collagens, proteoglycans, MMP-2, MMP-9 and TIMPs in human achilles tendon rupture. Clin Orthop Relat Res 466:1577–1582

    Article  PubMed  PubMed Central  Google Scholar 

  58. Eliasberg CD, Wada S, Carballo CB, Nakagawa Y, Nemirov DA, Bhandari R, Otero M, Deng XH, Rodeo SA (2019) Identification of inflammatory mediators in tendinopathy using a murine subacromial impingement model. J Orthop Res® 37:2575–2582

    Article  CAS  PubMed  Google Scholar 

  59. Lakemeier S, Braun J, Efe T, Foelsch C, Archontidou-Aprin E, Fuchs-Winkelmann S, Paletta JR, Schofer MD (2011) Expression of matrix metalloproteinases 1, 3, and 9 in differing extents of tendon retraction in the torn rotator cuff. Knee Surg Sports Traumatol Arthrosc 19:1760–1765

    Article  PubMed  Google Scholar 

  60. Grewal N, Thornton GM, Behzad H, Sharma A, Lu A, Zhang P, Reid WD, Granville DJ, Scott A (2014) Accumulation of oxidized LDL in the tendon tissues of C57BL/6 or apolipoprotein E knock-out mice that consume a high fat diet: potential impact on tendon health. PLoS ONE 9:e114214

    Article  PubMed  PubMed Central  Google Scholar 

  61. Beason DP, Abboud JA, Kuntz AF, Bassora R, Soslowsky LJ (2011) Cumulative effects of hypercholesterolemia on tendon biomechanics in a mouse model. J Orthop Res 29:380–383

    Article  PubMed  Google Scholar 

  62. Bestwick C, Maffulli N (2004) Reactive oxygen species and tendinopathy: do they matter? Br J Sports Med 38:672–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Thankam FG, Diaz C, Chandra I, Link J, Newton J, Dilisio MF, Agrawal DK (2022) Hybrid interpenetrating hydrogel network favoring the bidirectional migration of tenocytes for rotator cuff tendon regeneration. J Biomed Mater Res B Appl Biomater 110:467–477

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

FGT is thankful to WU for the startup funds and DKA is grateful to National Institutes of Health, USA for funding.

Funding

The research work of FGT is supported by the startup funds from WU and DK Agrawal is supported by research grants R01 HL144125 and R01HL147662 from the National Institutes of Health, USA.

Author information

Authors and Affiliations

Authors

Contributions

WF: experimental design; data generation; data analysis; manuscript preparation; preparation of figures; manuscript editing. SS: data generation; data analysis; manuscript editing. DT: data generation; data analysis; manuscript editing. CF: data generation; data analysis; manuscript editing. VL: data generation; data analysis; manuscript editing. CD: data generation; manuscript editing;. CD: data generation; manuscript editing. DKA: Conceptualization; experimental design, manuscript preparation; manuscript editing; resources; funding. FGT: Conceptualization; experimental design, data generation; data analysis; manuscript preparation; manuscript editing; resources; funding.

Corresponding author

Correspondence to Devendra K. Agrawal.

Ethics declarations

Competing interests

The authors declare no competing interests.

competing interest

All the authors have read the manuscript and declare no conflict of interest. No writing assistance was utilized in the production of this manuscript.

Consent for publication

All the authors have read the manuscript and consented for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, W., Sekhon, S., Teramoto, D. et al. Pathological alterations in the expression status of rotator cuff tendon matrix components in hyperlipidemia. Mol Cell Biochem 478, 1887–1898 (2023). https://doi.org/10.1007/s11010-022-04643-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04643-6

Keywords

Navigation