Skip to main content

Advertisement

Log in

Therapeutic role of kaempferol and myricetin in streptozotocin-induced diabetes synergistically via modulation in pancreatic amylase, glycogen storage and insulin secretion

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Kaempferol and Myricetin alone have promising benefits on diabetes and related complications, yet the effectiveness of cotreating the two compounds on diabetes have not been studied. The existing investigation was to study the combined anti-diabetic effect of kaempferol and myricetin in Streptozotocin (STZ)-activated diabetes in rats. To evaluate the anti-diabetic activity, 36 Wistar rats were segregated into six groups; Normal, 50 mg/kg STZ-induced diabetes, and four (50 mg/kg kaempferol, 50 mg/kg myricetin, 25 mg/kg kaempferol + myricetin, and 5 mg/kg glibenclamide) compound-treated diabetic groups. The effects of co-treatment on parameters, glucose, insulin, lipid profile, liver enzymes, antioxidant biomarkers, and inflammatory cytokines were measured. The study revealed that combined treatment restored the assessed parameters including glucose levels, inflammatory cytokines, oxidative markers, and lipid and liver enzymes in diabetic rats. The results indicate that cotreatment of kaempferol and myricetin has a beneficial role against diabetes suggesting that cotreatment of these compounds can be used therapeutically in treating diabetes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  1. Salim B. Diabetes mellitus and its treatment. Published online 2005: 111–134

  2. American diabetes association (2009) Diagnosis and classification of diabetes mellitus. Diabetes Care 32(Supplement_1):S62–S67

    Article  PubMed Central  Google Scholar 

  3. Oviedo S, Contreras I, Bertachi A et al (2019) Minimizing postprandial hypoglycemia in type 1 diabetes patients using multiple insulin injections and capillary blood glucose self-monitoring with machine learning techniques. Comput Methods Progr Biomed 178:175–180. https://doi.org/10.1016/j.cmpb.2019.06.025

    Article  Google Scholar 

  4. Seehusen DA, Fisher CL, Rider HA et al (2019) Exploring patient perspectives of prediabetes and diabetes severity: a qualitative study. Psychol Health 34(11):1314–1327. https://doi.org/10.1080/08870446.2019.1604955

    Article  PubMed  Google Scholar 

  5. Niedowicz DM, Daleke DL (2005) The role of oxidative stress in diabetic complications. Cell Biochem Biophys 43(2):289–330. https://doi.org/10.1385/CBB:43:2:289

    Article  CAS  PubMed  Google Scholar 

  6. Sen S, Roy M, Chakraborti AS (2011) Ameliorative effects of glycyrrhizin on streptozotocin-induced diabetes in rats. J Pharm Pharmacol 63(2):287–296. https://doi.org/10.1111/j.2042-7158.2010.01217.x

    Article  CAS  PubMed  Google Scholar 

  7. Alam U, Asghar O, Azmi S, Malik RA (2014) Chapter 15 - General aspects of diabetes mellitus. In: Zochodne DW, Malik RA (eds) Handbook of clinical neurology, Diabetes and the nervous system, vol 126. Elsevier, pp 211–222

    Chapter  Google Scholar 

  8. Lenzen S (2008) The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia 51(2):216–226. https://doi.org/10.1007/s00125-007-0886-7

    Article  CAS  PubMed  Google Scholar 

  9. Furman BL (2015) Streptozotocin-induced diabetic models in mice and rats. Curr Protoc Pharmacol 70(1):5.47.1-5.47.20. https://doi.org/10.1002/0471141755.ph0547s70

    Article  PubMed  Google Scholar 

  10. Wu J, Yan LJ (2015) Streptozotocin-induced type 1 diabetes in rodents as a model for studying mitochondrial mechanisms of diabetic β cell glucotoxicity. Diabetes Metab Syndr Obes Targets Ther 8:181. https://doi.org/10.2147/DMSO.S82272

    Article  Google Scholar 

  11. Subbiah R, Sivagnanam K, Subramanian S (2004) Antioxidant effect of Aloe vera gel extract in streptozotocin diabetes in rats. Pharmacol Rep PR 57:90–96

    Google Scholar 

  12. Kerru N, Singh-Pillay A, Awolade P, Singh P (2018) Current anti-diabetic agents and their molecular targets: a review. Eur J Med Chem 152:436–488. https://doi.org/10.1016/j.ejmech.2018.04.061

    Article  CAS  PubMed  Google Scholar 

  13. Yimer EM, Tuem KB, Karim A, Ur-Rehman N, Anwar F, Nigella sativa L (2019) (Black cumin): a promising natural remedy for wide range of illnesses. Evid Based Complement Alternat Med 2019:e1528635. https://doi.org/10.1155/2019/1528635

    Article  Google Scholar 

  14. Askari G, Rouhani MH, Ghaedi E, Ghavami A, Nouri M, Mohammadi H (2019) Effect of Nigella sativa (black seed) supplementation on glycemic control: a systematic review and meta-analysis of clinical trials. Phytother Res 33(5):1341–1352. https://doi.org/10.1002/ptr.6337

    Article  CAS  PubMed  Google Scholar 

  15. Salarbashi D, Bazeli J, Fahmideh-Rad E (2019) Fenugreek seed gum: Biological properties, chemical modifications, and structural analysis– a review. Int J Biol Macromol 138:386–393. https://doi.org/10.1016/j.ijbiomac.2019.07.006

    Article  CAS  PubMed  Google Scholar 

  16. Li Y, Ding Y (2012) Minireview: therapeutic potential of myricetin in diabetes mellitus. Food Sci Hum Wellness 1(1):19–25. https://doi.org/10.1016/j.fshw.2012.08.002

    Article  Google Scholar 

  17. Gupta G, Siddiqui MA, Khan MM et al (2020) Current pharmacological trends on myricetin. Drug Res 70(10):448–454. https://doi.org/10.1055/a-1224-3625

    Article  CAS  Google Scholar 

  18. Wang ZH, Ah Kang K, Zhang R et al (2010) Myricetin suppresses oxidative stress-induced cell damage via both direct and indirect antioxidant action. Environ Toxicol Pharmacol 29(1):12–18. https://doi.org/10.1016/j.etap.2009.08.007

    Article  CAS  PubMed  Google Scholar 

  19. Alkhalidy H, Moore W, Wang Y et al (2018) The flavonoid kaempferol ameliorates streptozotocin-induced diabetes by suppressing hepatic glucose production. Molecules 23(9):2338. https://doi.org/10.3390/molecules23092338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Al-Numair KS, Veeramani C, Alsaif MA, Chandramohan G (2015) Influence of kaempferol, a flavonoid compound, on membrane-bound ATPases in streptozotocin-induced diabetic rats. Pharm Biol 53(9):1372–1378. https://doi.org/10.3109/13880209.2014.982301

    Article  CAS  PubMed  Google Scholar 

  21. Hidalgo M, Sánchez-Moreno C, de Pascual-Teresa S (2010) Flavonoid–flavonoid interaction and its effect on their antioxidant activity. Food Chem 121(3):691–696. https://doi.org/10.1016/j.foodchem.2009.12.097

    Article  CAS  Google Scholar 

  22. Kumar A, Raju I, Jayachandran T et al (2008) Anti-diabetic activity of Syzygium cumini and it’s isolated compound against streptozotocin-induced diabetic rats. J Med Plants Res 2:246–249

    Google Scholar 

  23. Chang KJ (2002) Effect of Taurine and β-Alanine on Morphological Changes of Pancreas in Streptozotocin-Induced Rats. In: Della Corte L, Huxtable RJ, Sgaragli G, Tipton KF (eds) Taurine 4: Taurine and Excitable Tissues. Advances in Experimental Medicine and Biology, Springer, US, pp 571–577

    Chapter  Google Scholar 

  24. Al-Numair KS, Chandramohan G, Veeramani C, Alsaif MA (2015) Ameliorative effect of kaempferol, a flavonoid, on oxidative stress in streptozotocin-induced diabetic rats. Redox Rep 20(5):198–209. https://doi.org/10.1179/1351000214Y.0000000117

    Article  CAS  PubMed  Google Scholar 

  25. Ying X, Chen X, Wang T, Zheng W, Chen L, Xu Y (2020) Possible osteoprotective effects of myricetin in STZ induced diabetic osteoporosis in rats. Eur J Pharmacol 866:172805. https://doi.org/10.1016/j.ejphar.2019.172805

    Article  CAS  PubMed  Google Scholar 

  26. Kamble S, Rambhimaiah S (2015) Antidiabetic activity of aqueous extract of Cinnamomum cassia in alloxan- induced diabetic rats. Biomed Pharmacol J 6(1):83–88

    Article  Google Scholar 

  27. Kim JD, Kang SM, Park MY, Jung TY, Choi HY, Ku SK (2007) Ameliorative anti-diabetic activity of dangnyosoko, a Chinese herbal medicine. Diabetic Rats Biosci Biotechnol Biochem 71(6):1527–1534. https://doi.org/10.1271/bbb.70058

    Article  CAS  PubMed  Google Scholar 

  28. Gupta RK, Kesari AN, Murthy PS, Chandra R, Tandon V, Watal G (2005) Hypoglycemic and antidiabetic effect of ethanolic extract of leaves of Annona squamosa L. in experimental animals. J Ethnopharmacol 99(1):75–81. https://doi.org/10.1016/j.jep.2005.01.048

    Article  PubMed  Google Scholar 

  29. Soni LK, Dobhal MP, Arya D, Bhagour K, Parasher P, Gupta RS (2018) In vitro and in vivo antidiabetic activity of isolated fraction of Prosopis cineraria against streptozotocin-induced experimental diabetes: a mechanistic study. Biomed Pharmacother 108:1015–1021. https://doi.org/10.1016/j.biopha.2018.09.099

    Article  CAS  PubMed  Google Scholar 

  30. Parvin R, Pande SV, Venkitasubramanian TA (1965) On the colorimetric biuret method of protein determination. Anal Biochem 12(2):219–229. https://doi.org/10.1016/0003-2697(65)90085-0

    Article  CAS  PubMed  Google Scholar 

  31. Senthilkumar M, Amaresan N, Sankaranarayanan A (2021) Estimation of Superoxide Dismutase (SOD). In: Senthilkumar M, Amaresan N, Sankaranarayanan A (eds) Plant-Microbe Interactions: Laboratory Techniques. Springer Protocols Handbooks, Springer, US, pp 117–118

    Chapter  Google Scholar 

  32. Sun Y, Oberley LW, Li Y (1988) A simple method for clinical assay of superoxide dismutase. Clin Chem 34(3):497–500. https://doi.org/10.1093/clinchem/34.3.497

    Article  CAS  PubMed  Google Scholar 

  33. Yassa HD, Tohamy AF (2014) Extract of Moringa oleifera leaves ameliorates streptozotocin-induced Diabetes mellitus in adult rats. Acta Histochem 116(5):844–854. https://doi.org/10.1016/j.acthis.2014.02.002

    Article  PubMed  Google Scholar 

  34. Pari L, Murugan P (2007) Tetrahydrocurcumin prevents brain lipid peroxidation in streptozotocin-induced diabetic rats. J Med Food 10(2):323–329. https://doi.org/10.1089/jmf.2006.058

    Article  CAS  PubMed  Google Scholar 

  35. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358. https://doi.org/10.1016/0003-2697(79)90738-3

    Article  CAS  PubMed  Google Scholar 

  36. Oyenihi OR, Brooks NL, Oguntibeju OO (2015) Effects of kolaviron on hepatic oxidative stress in streptozotocin induced diabetes. BMC Complement Altern Med 15(1):236. https://doi.org/10.1186/s12906-015-0760-y

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bera TK, De D, Chatterjee K, Ali KM, Ghosh D (2010) Effect of diashis, a polyherbal formulation, in streptozotocin-induced diabetic male albino rats. Int J Ayurveda Res 1(1):18. https://doi.org/10.4103/0974-7788.59939

    Article  PubMed  PubMed Central  Google Scholar 

  38. Aebi H. [13] 1984 Catalase in vitro. In: Methods in enzymology, vol 105. Oxygen radicals in biological systems. Academic Press, pp 121–126. https://doi.org/10.1016/S0076-6879(84)05016-3

  39. McLellan AC, Thornalley PJ, Benn J, Sonksen PH (1994) Glyoxalase system in clinical diabetes mellitus and correlation with diabetic complications. Clin Sci 87(1):21–29. https://doi.org/10.1042/cs0870021

    Article  CAS  Google Scholar 

  40. Zhou B, Zou H, Xu G (2016) Clinical utility of serum cystatin c in predicting diabetic nephropathy among patients with diabetes mellitus: a meta-analysis. Kidney Blood Press Res 41(6):919–928. https://doi.org/10.1159/000452593

    Article  CAS  PubMed  Google Scholar 

  41. Szkudelski T (2001) The mechanism of alloxan and streptozotocin action in b cells of the rat pancreas. Physiol Res 50:10

    Google Scholar 

  42. Kandasamy N, Ashokkumar N (2014) Protective effect of bioflavonoid myricetin enhances carbohydrate metabolic enzymes and insulin signaling molecules in streptozotocin–cadmium induced diabetic nephrotoxic rats. Toxicol Appl Pharmacol 279(2):173–185. https://doi.org/10.1016/j.taap.2014.05.014

    Article  CAS  PubMed  Google Scholar 

  43. Jeong HY, Sung GH, Kim JH et al (2014) Syk and Src are major pharmacological targets of a Cerbera manghas methanol extract with kaempferol-based anti-inflammatory activity. J Ethnopharmacol 151(2):960–969. https://doi.org/10.1016/j.jep.2013.12.009

    Article  CAS  PubMed  Google Scholar 

  44. Song X, Tan L, Wang M et al (2021) Myricetin: a review of the most recent research. Biomed Pharmacother 134:111017. https://doi.org/10.1016/j.biopha.2020.111017

    Article  CAS  PubMed  Google Scholar 

  45. Liu IM, Liou SS, Lan TW, Hsu FL, Cheng JT (2005) Myricetin as the active principle of abelmoschus moschatus to lower plasma glucose in streptozotocin-induced diabetic rats. Planta Med 71(7):617–621. https://doi.org/10.1055/s-2005-871266

    Article  CAS  PubMed  Google Scholar 

  46. Alshehri AS (2021) Kaempferol attenuates diabetic nephropathy in streptozotocin-induced diabetic rats by a hypoglycaemic effect and concomitant activation of the Nrf-2/Ho-1/antioxidants axis. Arch Physiol Biochem. https://doi.org/10.1080/13813455.2021.1890129

    Article  PubMed  Google Scholar 

  47. Gothandam K, Ganesan VS, Ayyasamy T, Ramalingam S (2019) Antioxidant potential of theaflavin ameliorates the activities of key enzymes of glucose metabolism in high fat diet and streptozotocin – induced diabetic rats. Redox Rep 24(1):41–50. https://doi.org/10.1080/13510002.2019.1624085

    Article  PubMed  PubMed Central  Google Scholar 

  48. Fathiazad F, Hamedeyazdan S, Khosropanah MK, Khaki A (2013) Hypoglycemic activity of fumaria parviflora in streptozotocin-induced diabetic rats. Adv Pharm Bull 3(1):207. https://doi.org/10.5681/apb.2013.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Adaramoye O, Amanlou M, Habibi-Rezaei M, Pasalar P, Ali MM (2012) Methanolic extract of African mistletoe (Viscum album) improves carbohydrate metabolism and hyperlipidemia in streptozotocin-induced diabetic rats. Asian Pac J Trop Med 5(6):427–433. https://doi.org/10.1016/S1995-7645(12)60073-X

    Article  CAS  PubMed  Google Scholar 

  50. Bacanlı M, Anlar HG, Aydın S et al (2017) d-limonene ameliorates diabetes and its complications in streptozotocin-induced diabetic rats. Food Chem Toxicol 110:434–442. https://doi.org/10.1016/j.fct.2017.09.020

    Article  CAS  PubMed  Google Scholar 

  51. Nogueira FN, Carvalho AM, Yamaguti PM, Nicolau J (2005) Antioxidant parameters and lipid peroxidation in salivary glands of streptozotocin-induced diabetic rats. Clin Chim Acta 353(1):133–139. https://doi.org/10.1016/j.cccn.2004.11.004

    Article  CAS  PubMed  Google Scholar 

  52. Kurukulasuriya R, Link JT, Madar DJ et al (2003) Prospects for pharmacologic inhibition of hepatic glucose production. Curr Med Chem 10(2):99–121. https://doi.org/10.2174/0929867033368547

    Article  CAS  PubMed  Google Scholar 

  53. Rodríguez V, Plavnik L, Tolosa de Talamoni N (2018) Naringin attenuates liver damage in streptozotocin-induced diabetic rats. Biomed Pharmacother 105:95–102. https://doi.org/10.1016/j.biopha.2018.05.120

    Article  CAS  PubMed  Google Scholar 

  54. Abolfathi AA, Mohajeri D, Rezaie A, Nazeri M (2012) Protective effects of green tea extract against hepatic tissue injury in streptozotocin-induced diabetic rats. Evid Based Complement Alternat Med 2012:e740671. https://doi.org/10.1155/2012/740671

    Article  Google Scholar 

  55. Mohan Y, Jesuthankaraj GN, Ramasamy TN (2013) Antidiabetic and antioxidant properties of triticum aestivum in streptozotocin-induced diabetic rats. Adv Pharmacol Sci 2013:e716073. https://doi.org/10.1155/2013/716073

    Article  Google Scholar 

  56. Modi K, Santani DD, Goyal RK, Bhatt PA (2006) Effect of coenzyme Q10 on catalase activity and other antioxidant parameters in streptozotocin-induced diabetic rats. Biol Trace Elem Res 109(1):25–33. https://doi.org/10.1385/BTER:109:1:025

    Article  CAS  PubMed  Google Scholar 

  57. Ojha S, Alkaabi J, Amir N et al (2014) Withania coagulans fruit extract reduces oxidative stress and inflammation in kidneys of streptozotocin-induced diabetic rats. Oxid Med Cell Longev 2014:e201436. https://doi.org/10.1155/2014/201436

    Article  Google Scholar 

  58. Sivakumar S, Palsamy P, Subramanian SP (2010) Attenuation of oxidative stress and alteration of hepatic tissue ultrastructure by D-pinitol in streptozotocin-induced diabetic rats. Free Radic Res 44(6):668–678. https://doi.org/10.3109/10715761003733901

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under Grant No. (G: 73-130-1442). The authors, therefore, acknowledge with thanks DSR technical and financial support.

Author information

Authors and Affiliations

Authors

Contributions

FAA-A designed, interpreted and wrote manuscript. IK performed work.

Corresponding author

Correspondence to Fahad A. Al-Abbasi.

Ethics declarations

Competing interests

The author reports no conflict of interest.

Ethical approval

The research study was permitted by the Institutional Animal Ethical Committee (IAEC- TRS/PT/021/009) followed under the direction of the CPCSEA.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Abbasi, F.A., Kazmi, I. Therapeutic role of kaempferol and myricetin in streptozotocin-induced diabetes synergistically via modulation in pancreatic amylase, glycogen storage and insulin secretion. Mol Cell Biochem 478, 1927–1937 (2023). https://doi.org/10.1007/s11010-022-04629-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04629-4

Keywords

Navigation