Skip to main content

Advertisement

Log in

Fibroblasts and mouse breast cancer cells can form cellular aggregates in improved soft agar culture medium

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

We aimed to build cellular aggregates of TS/A and normal fibroblasts (LX-2) or CAFs (ME-iLX-2), verifying the value of this model in the screening of anticancer drugs and demonstrating the effect of CD44 on aggregate formation. We improved soft agar culture medium to coculture CAFs (NFs) and TS/A and compared the amount and area of cellular aggregates. Eugenol was added to this model to test its value. The transcription of human CD44 was analyzed through RT-qPCR. Cellular aggregates were formed, and both the amount and area of aggregates in the TS/A-ME-iLX-2 coculture group were higher than those in other groups. The eugenol inhibited the formation of TS/A-fibroblasts aggregates. Human CD44 was highly transcripted in TS/A-ME-iLX-2 aggregates. Cocultured cellular aggregates of fibroblasts and TS/A were successfully formed in the improved soft agar culture medium, and the promotion effect of CAFs on cancer cells was further confirmed. The eugenol test showed its value in the screening of anticancer drugs. The RT-qPCR results demonstrated the important effect of CD44 on aggregate formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  1. Hurtado P, Martínez-Pena I, Piñeiro R (2020) Dangerous Liaisons: Circulating Tumor Cells (CTCs) and Cancer-Associated Fibroblasts (CAFs). Cancers. https://doi.org/10.3390/cancers12102861

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kojima Y, Acar A, Eaton EN, Mellody KT, Scheel C, Ben-Porath I, Onder TT, Wang ZC, Richardson AL, Weinberg RA, Orimo A (2010) Autocrine TGF-beta and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.1013805107

    Article  PubMed  PubMed Central  Google Scholar 

  3. Awaji M, Saxena S, Wu L, Prajapati DR, Purohit A, Varney ML, Kumar S, Rachagani S, Ly QP, Jain M, Batra SK, Singh RK (2020) CXCR2 signaling promotes secretory cancer-associated fibroblasts in pancreatic ductal adenocarcinoma. Faseb j 34(7):9405–9418. https://doi.org/10.1096/fj.201902990R

    Article  CAS  PubMed  Google Scholar 

  4. Yamaguchi H, Sakai R (2015) Direct interaction between carcinoma cells and cancer associated fibroblasts for the regulation of cancer invasion. Cancers 7(4):2054–2062. https://doi.org/10.3390/cancers7040876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dai G, Yao X, Zhang Y, Gu J, Geng Y, Xue F, Zhang J (2018) Colorectal cancer cell-derived exosomes containing miR-10b regulate fibroblast cells via the PI3K/Akt pathway. Bull Cancer 105(4):336–349. https://doi.org/10.1016/j.bulcan.2017.12.009

    Article  PubMed  Google Scholar 

  6. Sansone P, Savini C, Kurelac I, Chang Q, Amato LB, Strillacci A, Stepanova A, Iommarini L, Mastroleo C, Daly L, Galkin A, Thakur BK, Soplop N, Uryu K, Hoshino A, Norton L, Bonafé M, Cricca M, Gasparre G, Lyden D, Bromberg J (2017) Packaging and transfer of mitochondrial DNA via exosomes regulate escape from dormancy in hormonal therapy-resistant breast cancer. Proc Natl Acad Sci U S A 114(43):E9066-e9075. https://doi.org/10.1073/pnas.1704862114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhu L, Sun HT, Wang S, Huang SL, Zheng Y, Wang CQ, Hu BY, Qin W, Zou TT, Fu Y, Shen XT, Zhu WW, Geng Y, Lu L, Jia HL, Qin LX, Dong QZ (2020) Isolation and characterization of exosomes for cancer research. J Hematol Oncol 13(1):152. https://doi.org/10.1186/s13045-020-00987-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yamaguchi H, Yoshida N, Takanashi M, Ito Y, Fukami K, Yanagihara K, Yashiro M, Sakai R (2014) Stromal fibroblasts mediate extracellular matrix remodeling and invasion of scirrhous gastric carcinoma cells. PLoS ONE. https://doi.org/10.1371/journal.pone.0085485

    Article  PubMed  PubMed Central  Google Scholar 

  9. Miyazaki K, Oyanagi J, Hoshino D, Togo S, Kumagai H, Miyagi Y (2019) Cancer cell migration on elongate protrusions of fibroblasts in collagen matrix. Sci Rep 9(1):292. https://doi.org/10.1038/s41598-018-36646-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mei J, Böhland C, Geiger A, Baur I, Berner K, Heuer S, Liu X, Mataite L, Melo-Narváez MC, Özkaya E, Rupp A, Siebenwirth C, Thoma F, Kling MF, Friedl AA (2021) Development of a model for fibroblast-led collective migration from breast cancer cell spheroids to study radiation effects on invasiveness. Radiat Oncol 16(1):159. https://doi.org/10.1186/s13014-021-01883-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sharma U, Medina-Saenz K, Miller PC, Troness B, Spartz A, Sandoval-Leon A, Parke DN, Seagroves TN, Lippman ME, El-Ashry D (2021) Heterotypic clustering of circulating tumor cells and circulating cancer-associated fibroblasts facilitates breast cancer metastasis. Breast Cancer Res Treat. https://doi.org/10.1007/s10549-021-06299-0

    Article  PubMed  PubMed Central  Google Scholar 

  12. Nii T, Makino K, Tabata Y (2020) A cancer invasion model of cancer-associated fibroblasts aggregates combined with TGF-β1 release system. Regenerative therapy. https://doi.org/10.1016/j.reth.2020.02.003

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sun W, Luo Z, Lee J, Kim HJ, Lee K, Tebon P, Feng Y, Dokmeci MR, Sengupta S, Khademhosseini A (2019) Organ-on-a-Chip for Cancer and Immune Organs Modeling. Adv Healthcare Mater. https://doi.org/10.1002/adhm.201801363

    Article  Google Scholar 

  14. Stukenborg JB, Wistuba J, Luetjens CM, Elhija MA, Huleihel M, Lunenfeld E, Gromoll J, Nieschlag E, Schlatt S (2008) Coculture of spermatogonia with somatic cells in a novel three-dimensional soft-agar-culture-system. J Androl 29(3):312–329. https://doi.org/10.2164/jandrol.107.002857

    Article  CAS  PubMed  Google Scholar 

  15. Horibata S, Vo TV, Subramanian V, Thompson PR, Coonrod SA (2015) Utilization of the soft agar colony formation assay to identify inhibitors of tumorigenicity in breast cancer cells. J Vis Exp 99:e52727. https://doi.org/10.3791/52727

    Article  CAS  Google Scholar 

  16. Mohammadzadeh E, Mirzapour T, Nowroozi MR, Nazarian H, Piryaei A, Alipour F, Modarres Mousavi SM, Ghaffari Novin M (2019) Differentiation of spermatogonial stem cells by soft agar three-dimensional culture system. Artif Cells Nanomed Biotechnol. 47(1):1772–1781

    Article  CAS  PubMed  Google Scholar 

  17. San Francisco IF, DeWolf WC, Peehl DM, Olumi AF (2004) Expression of transforming growth factor-beta 1 and growth in soft agar differentiate prostate carcinoma-associated fibroblasts from normal prostate fibroblasts. Int J Cancer 112(2):213–218. https://doi.org/10.1002/ijc.20388

    Article  CAS  PubMed  Google Scholar 

  18. Fujisawa S, Murakami Y (2016) Eugenol and its role in chronic diseases. Adv Exp Med Biol. https://doi.org/10.1007/978-3-319-41342-6_3

    Article  PubMed  Google Scholar 

  19. Al-Sharif I, Remmal A, Aboussekhra A (2013) Eugenol triggers apoptosis in breast cancer cells through E2F1/survivin down-regulation. BMC Cancer. https://doi.org/10.1186/1471-2407-13-600

    Article  PubMed  PubMed Central  Google Scholar 

  20. Al-Kharashi LA, Bakheet T, AlHarbi WA, Al-Moghrabi N, Aboussekhra A (2021) Eugenol modulates genomic methylation and inactivates breast cancer-associated fibroblasts through E2F1-dependent downregulation of DNMT1/DNMT3A. Mol Carcinog. https://doi.org/10.1002/mc.23344

    Article  PubMed  Google Scholar 

  21. Kinugasa Y, Matsui T, Takakura N (2014) CD44 expressed on cancer-associated fibroblasts is a functional molecule supporting the stemness and drug resistance of malignant cancer cells in the tumor microenvironment. Stem cells (Dayton, Ohio). 32(1):145–156. https://doi.org/10.1002/stem.1556

    Article  CAS  PubMed  Google Scholar 

  22. Nanni P, de Giovanni C, Lollini PL, Nicoletti G, Prodi G (1983) TS/A: a new metastasizing cell line from a BALB/c spontaneous mammary adenocarcinoma. Clin Exp Metastasis 1(4):373–380. https://doi.org/10.1007/BF00121199

    Article  CAS  PubMed  Google Scholar 

  23. Borowicz S, Van Scoyk M, Avasarala S, Karuppusamy Rathinam MK, Tauler J, Bikkavilli RK, Winn RA (2014) The soft agar colony formation assay. J Vis Exp. https://doi.org/10.3791/51998

    Article  PubMed  PubMed Central  Google Scholar 

  24. Nii T, Makino K, Tabata Y (2020) Three-dimensional culture system of cancer cells combined with biomaterials for drug screening. Cancers. https://doi.org/10.3390/cancers12102754

    Article  PubMed  PubMed Central  Google Scholar 

  25. De Vlieghere E, Gremonprez F, Verset L, Mariën L, Jones CJ, De Craene B, Berx G, Descamps B, Vanhove C, Remon JP, Ceelen W, Demetter P, Bracke M, De Geest BG, De Wever O (2015) Tumor-environment biomimetics delay peritoneal metastasis formation by deceiving and redirecting disseminated cancer cells. Biomaterials. https://doi.org/10.1016/j.biomaterials.2015.03.012

    Article  PubMed  Google Scholar 

  26. Ayoub S, Tsai KC, Khalighi AH, Sacks MS (2018) The three-dimensional microenvironment of the mitral valve: insights into the effects of physiological loads. Cell Mol Bioeng 11(4):291–306. https://doi.org/10.1007/s12195-018-0529-8

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wei R, Liu S, Zhang S, Min L, Zhu S (2020) Cellular and extracellular components in tumor microenvironment and their application in early diagnosis of cancers. Anal Cell Pathol (Amst). https://doi.org/10.1155/2020/6283796

    Article  PubMed  Google Scholar 

  28. Quante M, Tu SP, Tomita H, Gonda T, Wang SS, Takashi S, Baik GH, Shibata W, Diprete B, Betz KS, Friedman R, Varro A, Tycko B, Wang TC (2011) Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell 19(2):257–272. https://doi.org/10.1016/j.ccr.2011.01.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, Carey VJ, Richardson AL, Weinberg RA (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121(3):335–348. https://doi.org/10.1016/j.cell.2005.02.034

    Article  CAS  PubMed  Google Scholar 

  30. Vasilaki D, Bakopoulou A, Tsouknidas A, Johnstone E, Michalakis K (2021) Biophysical interactions between components of the tumor microenvironment promote metastasis. Biophys Rev 13(3):339–357. https://doi.org/10.1007/s12551-021-00811-y

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to The Science & Technology Training Program for Adolescents in Beijing for its financial support.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Xiangnan Zhang: Conceptualization, Methodology, Formal analysis, Investigation, Writing Original Draft. Shuo Liang: Conceptualization, Methodology, Investigation. Enze Wang: ME-iLX-2 cell line Providing and Testing. Ning Tao: Conceptualization, Methodology, Resources, Supervision.

Corresponding author

Correspondence to Ning Tao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Liang, S., Wang, E. et al. Fibroblasts and mouse breast cancer cells can form cellular aggregates in improved soft agar culture medium. Mol Cell Biochem 478, 1457–1464 (2023). https://doi.org/10.1007/s11010-022-04603-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04603-0

Keywords

Navigation