Skip to main content

Advertisement

Log in

Immunohistochemical expressions of EMT markers in pan-RAS–pERK1/2-positive tumors improve diagnosis and prognosis assessment of non-muscle invasive bladder cancer and muscle invasive bladder cancer patients

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Mutation or overexpression renders pan-RAS (rat sarcoma) proteins insensitive to inactivation. Activated pan-RAS communicates signal from the cell surface receptor to activate RAS-MAPK/ERK (RAS-mitogen-activated protein kinases/extracellular signal regulated kinases) signaling and orchestrates epithelial-to-mesenchymal transition-activating transcription factors (EMT-ATFs) reprogramming to induce EMT. Owing to limited studies available in bladder cancer, the present study is taken up to examine the expressions of the EMT-associated markers in pan-RAS-pERK1/2 (pan-RAS-phosphoERK1/2)-positive well-characterized cohort of forty-two non-muscle invasive bladder cancer (NMIBC) and forty-five muscle invasive bladder cancer (MIBC) patients. Immunohistochemical staining was performed on paraffin embedded tissue sections to determine the immunolevels and cellular localization of marker proteins. Semi-quantitative expressions of pan-RAS, pERK1/2, and EMT markers (E-cadherin, Vimentin, N-cadherin, Snail, Slug Twist, and Zeb1) were statistically examined with clinicohistopathological profile of the patients using SPSS, version 20.0 software. The study documents the diagnostic relevance of immunohistochemical expressions of pan-RAS-pERK1/2/EMT-associated markers in order to stratify NMIBC and MIBC patients. Follow-up studies supported the role of altered EMT phenotype in pan-RAS-pERK1/2-activated positive tumors with disease aggressiveness. To the best of our knowledge, our study is the first concluding the impact of altered EMT phenotype via pan-RAS-pERK1/2 axis on the short survival outcome [short overall survival (OS) (p = 0.04), short progression-free survival (PFS) (p = 0.02) and short cancer-specific survival (CSS) (p = 0.03)] of muscle invasive bladder cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.5
Fig.6

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  1. Kassouf W, Traboulsi SL, Kulkarni GS, Breau RH, Zlotta A, Fairey A, So A, Lacombe L, Rendon R, Aprikian AG, Siemens DR, Izawa JI, Black P (2015) CUA guidelines on the management of non-muscle invasive bladder cancer. Can Urol Assoc 9(9–10):E690–E704. https://doi.org/10.5489/cuaj.3320

    Article  Google Scholar 

  2. Kaufman DS, Shipley WU, Feldman AS (2009) Bladder cancer. Lancet 374(9685):239–249. https://doi.org/10.1016/S0140-6736(09)60491-8

    Article  CAS  PubMed  Google Scholar 

  3. Li HT, Duymich CE, Weisenberger DJ, Liang G (2016) Genetic and epigenetic alterations in bladder cancer. Int Neurourol J 20(2):S84-94. https://doi.org/10.5213/inj.1632752.376

    Article  PubMed  PubMed Central  Google Scholar 

  4. Soria F, Krabbe L-M, Todenhöfer T, Dobruch J, Mitra AP, Inman BA, Gust KM, Lotan Y, Shariat SF (2019) Molecular markers in bladder cancer. World J Urol 37(1):31–40. https://doi.org/10.1007/s00345-018-2503-4

    Article  PubMed  Google Scholar 

  5. Varras MN, Koffa M, Koumantakis E, Ergazaki M, Protopapa E, Michalas S, Spandidos DA (1996) Ras gene mutations in human endometrial carcinoma. Oncology 53(6):505–510. https://doi.org/10.1159/000227627

    Article  CAS  PubMed  Google Scholar 

  6. Ding Z, Granger CWJ, Engle RF (1993) A long memory property of stock market returns and a new model. J Empir Financ 1(1):83–10. https://doi.org/10.1016/0927-5398(93)90006-D

    Article  Google Scholar 

  7. Cox AD, Der CJ (2010) RAS history: the saga continues. Small GTPases 1(1):2–27. https://doi.org/10.4161/sgtp.1.1.12178

    Article  PubMed  PubMed Central  Google Scholar 

  8. AtreyaCE CRB, Kopetz S (2015) Expanded RAS: refining the patient population. J Clin Oncol 33(7):682–685. https://doi.org/10.1200/JCO.2014.58.9325

    Article  Google Scholar 

  9. Tripathi K, Goel A, Singhai A, Garg M (2021) Promoter hypomethylation as potential confounder of Ras gene overexpression and their clinical significance in subsets of urothelial carcinoma of bladder. Mol Biol Rep 48(3):2183–2199. https://doi.org/10.1007/s11033-021-06227-x

    Article  CAS  PubMed  Google Scholar 

  10. Tripathi K, Garg M (2018) Mechanistic regulation of epithelial-to-mesenchymal transition through RAS signaling pathway and therapeutic implications in human cancer. J Cell Commun Signal 12(3):513–527. https://doi.org/10.1007/s12079-017-0441-3

    Article  PubMed  PubMed Central  Google Scholar 

  11. Shin S, Buel GR, Nagiec MJ, Han MJ, Roux PP, Blenis J, Yoon SO (2019) ERK2 regulates epithelial-to-mesenchymal plasticity through DOCK10-dependent Rac1/FoxO1 activation. Proc Natl Acad Sci USA 116(8):2967–2976. https://doi.org/10.1073/pnas.1811923116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Garg M (2015) (2015) Targeting microRNAs in epithelial mesenchymal transition induced cancer stem cells: therapeutic approaches in cancer. Expert opinion in therapeutic 19(2):285–297. https://doi.org/10.1517/14728222.2014.975794

    Article  CAS  Google Scholar 

  13. Zhang K, Myllymäki SM, Gao P, Devarajan R, Kytölä V, Nykter M, Wei GH, Manninen A (2017) Oncogenic K-Ras upregulates ITGA6 expression via FOSL1 to induce anoikis resistance and synergizes with αV-class integrins to promote EMT. Oncogene 36(41):5681–5694. https://doi.org/10.1038/onc.2017.177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Georgakopoulos-Soares I, Chartoumpekis DV, Kyriazopoulou V, Zaravinos A (2020) EMT factors and metabolic pathways in cancer. Front Oncol 10:499. https://doi.org/10.3389/fonc.2020.00499

    Article  PubMed  PubMed Central  Google Scholar 

  15. Shin S, Dimitri CA, Yoon SO, Dowdle W, Blenis J (2010) ERK2 but not ERK1 induces epithelial-to-mesenchymal transformation via DEF motif-dependent signaling events. Mol Cell 38(1):114–127. https://doi.org/10.1016/j.molcel.2010.02.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Eblen ST, Slack-Davis JK, Tarcsafalvi A, Parsons JT, Weber MJ, Catling AD (2004) Mitogen-activated protein kinase feedback phosphorylation regulates MEK1 complex formation and activation during cellular adhesion. Mol Cell Biol 24(6):2308–2317. https://doi.org/10.1128/MCB.24.6.2308-2317.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang ZT, Pak J, Huang HY, Shapiro E, Sun TT, Pellicer A, Wu XR (2001) Role of Ha-ras activation in superficial papillary pathway of urothelial tumor formation. Oncogene 20(16):1973–1980. https://doi.org/10.1038/sj.onc.1204315

    Article  CAS  PubMed  Google Scholar 

  18. He F, Melamed J, Tang MS, Huang C, Wu XR (2015) Oncogenic HRAS activates epithelial-to-mesenchymal transition and confers stemness to p53-deficient urothelial cells to drive muscle invasion of basal subtype carcinomas. Cancer Res 75(10):2017–2028. https://doi.org/10.1158/0008-5472.CAN-14-3067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Peng M, Deng J, Zhou S, Xiao D, Long J, Zhang N, He C, Mo M, Yang X (2019) Dual inhibition of pirarubicin-induced AKT and ERK activations by phenformin sensitively suppresses bladder cancer growth. Front Pharmacol 10:1159. https://doi.org/10.3389/fphar.2019.01159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tan TZ, RouanneM TKT, Huang RY, Thiery JP (2019) Molecular subtypes of urothelial bladder cancer: results from a meta-cohort analysis of 2411 tumors. Eur Urol 75(3):423–432. https://doi.org/10.1016/j.eururo.2018.08.027

    Article  CAS  PubMed  Google Scholar 

  21. Wan XB, Wang AQ, Cao J, Dong ZC, Li N, Yang S, Sun MM, Li Z, Luo SX (2019) Relationships among KRAS mutation status, expression of RAS pathway signaling molecules, and clinicopathological features and prognosis of patients with colorectal cancer. World J Gastroenterol 25(7):808–823. https://doi.org/10.3748/wjg.v25.i7.808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Navandar M, Garding A, Sahu SK, Pataskar A, Schick S, Tiwari VK (2017) ERK signalling modulates epigenome to drive epithelial to mesenchymal transition. Oncotarget 8(17):29269–29281. https://doi.org/10.18632/oncotarget.16493

    Article  PubMed  PubMed Central  Google Scholar 

  23. Qi L, Sun B, Liu Z, Cheng R, Li Y, Zhao X (2014) Wnt3a expression is associated with epithelial-mesenchymal transition and promotes colon cancer progression. J Exp Clin Cancer Res 33(1):107. https://doi.org/10.1186/s13046-014-0107-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xie YX, Liao R, Pan L, Du CY (2017) ERK pathway activation contributes to the tumor-promoting effects of hepatic stellate cells in hepatocellular carcinoma. Immunol Lett 188:116–123. https://doi.org/10.1016/j.imlet.2017.06.009

    Article  CAS  PubMed  Google Scholar 

  25. Olea-Flores M, Zuñiga-Eulogio MD, Mendoza-Catalán MA, Rodríguez-Ruiz HA, Castañeda-Saucedo E, Ortuño-Pineda C, Padilla-Benavides T, Navarro-Tito N (2019) Extracellular-signal regulated kinase: a central molecule driving epithelial-mesenchymal transition in cancer. Int J Mol Sci 20(12):2885. https://doi.org/10.3390/ijms20122885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sun X, Deng Q, Liang Z, Liu Z, Geng H, Zhao L, Zhou Q, Liu J, Ma J, Wang D, Yu D, Zhong C (2017) Cigarette smoke extract induces epithelial-mesenchymal transition of human bladder cancer T24 cells through activation of ERK1/2 pathway. Biomed Pharmaco Ther 86:457–465. https://doi.org/10.1016/j.biopha.2016.12.022

    Article  CAS  Google Scholar 

  27. Yu D, Geng H, Liu Z, Zhao L, Liang Z, Zhang Z, Xie D, Wang Y, Zhang T, Min J, Zhong C (2017) Cigarette smoke induced urocystic epithelial mesenchymal transition via MAPK pathways. Oncotarget 8(5):8791–8800. https://doi.org/10.18632/oncotarget.14456

    Article  PubMed  PubMed Central  Google Scholar 

  28. Blaj C, Schmidt EM, Lamprecht S, HermekingH JA, Kirchner T, Horst D (2017) Oncogenic effects of high MAPK activity in colorectal cancer mark progenitor cells and persist irrespective of RAS mutations. Cancer Res 77(7):1763–1774. https://doi.org/10.1158/0008-5472.CAN-16-2821

    Article  CAS  PubMed  Google Scholar 

  29. Dong F, Liu T, Jin H, Wang W (2018) Chimaphilin inhibits human osteosarcoma cell invasion and metastasis through suppressing the TGF-β1-induced epithelial-to-mesenchymal transition markers via PI-3K/Akt, ERK1/2, and Smad signaling pathways. Can J Physiol Pharmacol 96(1):1–7. https://doi.org/10.1139/cjpp-2016-0522

    Article  CAS  PubMed  Google Scholar 

  30. Wu CE, Lin YC, Hong JH, Chuang CK, Pang ST, Liaw CC (2013) Prognostic value of complete response in patients with muscle-invasive bladder cancer undergoing concurrent chemoradiotherapy. Anticancer Res 33(6):2605–2610

    CAS  PubMed  Google Scholar 

  31. Zhang YQ, Wei XL, Liang YK, Chen WL, Zhang F, Bai JW, Qiu SQ, Du CW, Huang WH, Zhang GJ (2015) Over-expressed twist associates with markers of epithelial mesenchymal transition and predicts poor prognosis in breast cancers via ERK and Akt activation. PLoS ONE 10(8):e0135851. https://doi.org/10.1371/journal.pone.0135851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xu M, Cao FL, Li N, Gao X, Su X, Jiang X (2018) Leptin induces epithelial-to-mesenchymal transition via activation of the ERK signaling pathway in lung cancer cells. Oncol Lett 16(4):4782–4788. https://doi.org/10.3892/ol.2018.9230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Song XF, Chang H, Liang Q, Guo ZF, Wu JW (2017) ZEB1 promotes prostate cancer proliferation and invasion through ERK1/2 signaling pathway. Eur Rev Med Pharmacol Sci 21(18):4032–4038

    PubMed  Google Scholar 

  34. Wu J, Ivanov AI, Fisher PB, Fu Z (2016) Polo-like kinase 1 induces epithelial-to-mesenchymal transition and promotes epithelial cell motility by activating CRAF/ERK signaling. Elife 5:e10734. https://doi.org/10.7554/eLife.10734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Singh R, Ansari JA, Maurya N, Mandhani A, Agrawal V, Garg M (2017) Epithelial-to-mesenchymal transition and its correlation with clinicopathologic features in patients with urothelial carcinoma of the bladder. Clin Genitourin Cancer 15(2):e187–e197. https://doi.org/10.1016/j.clgc.2016.07.021

    Article  PubMed  Google Scholar 

  36. Li Y, Xie Y, Cui D, Ma Y, Sui L, Zhu C, Kong H, Kong Y (2015) Osteopontin promotes invasion, migration and epithelial-mesenchymal transition of human endometrial carcinoma cell HEC-1A through AKT and ERK1/2 signaling. Cell Physiol Biochem 37(4):1503–1512. https://doi.org/10.1159/000438518

    Article  CAS  PubMed  Google Scholar 

  37. Mrozik KM, Blaschuk OW, Cheong CM, Zannettino ACW, Vandyke K (2018) N-cadherin in cancer metastasis, its emerging role in haematological malignancies and potential as a therapeutic target in cancer. BMC Cancer 18(1):939. https://doi.org/10.1186/s12885-018-4845-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Birkhahn M, Mitra AP, Williams AJ, Lam G, Ye W, Datar RH, Balic M, Groshen S, Steven KE, Cote RJ (2010) Predicting recurrence and progression of non-invasive papillary bladder cancer at initial presentation based on quantitative gene expression profiles. Eur Urol 57(1):12–20. https://doi.org/10.1016/j.eururo.2009.09.013

    Article  CAS  PubMed  Google Scholar 

  39. Karlou M, Saetta AA, Korkolopoulou P, Levidou G, Papanastasiou P, Boltetsou E, Isaiadis D, Pavlopoulos P, ThymaraI T-T, Patsouris E (2009) Activation of extracellular regulated kinases (ERK1/2) predicts poor prognosis in urothelial bladder carcinoma and is not associated with B-Raf gene mutations. Pathology 41(4):327–334. https://doi.org/10.1080/00313020902885011

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The Authors would like to thank Research and Development, Department of Higher Education, UP State Govt. [research grant no.-47/2021/606/70-4-2021-4 (56)/2020] for providing financial support to carry out research work. KT and NM are thankful to University Grants Commission (UGC), Govt. of India, for providing research fellowship.

Funding

University Grants Commission (UGC), Govt. of India,Research and Development, Department of Higher Education, UP State Govt., 47/2021/606/70-4-2021-4 (56)/2020

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Manuscript preparation, data collection, and analysis were performed by KT, NM, and MG. The first draft of the manuscript was written by KT and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Minal Garg.

Ethics declarations

Competing interest

The authors declare no competing interests.

Ethical approval

Ethical clearance was obtained from Bioethics Cell, Institutional Ethics Committee (IEC), King George’s Medical University (Reference no.89th ECM II A/P8), Lucknow, India. Studies were performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathi, K., Maurya, N., Goel , A. et al. Immunohistochemical expressions of EMT markers in pan-RAS–pERK1/2-positive tumors improve diagnosis and prognosis assessment of non-muscle invasive bladder cancer and muscle invasive bladder cancer patients. Mol Cell Biochem 478, 1169–1190 (2023). https://doi.org/10.1007/s11010-022-04579-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04579-x

Keywords

Navigation