Skip to main content
Log in

Constructed the ceRNA network and predicted a FEZF1-AS1/miR-92b-3p/ZIC5 axis in colon cancer

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The purpose of this study was to identify the role of FEZF1-AS1 in colon cancer and predicted the underlying mechanism. We extracted sequencing data of colon cancer patients from The Cancer Genome Atlas database, identified the differential expression of long noncoding RNA, microRNA, and messenger RNA, constructed a competitive endogenous RNA network, and then analyzed prognosis. Then, we used the enrichment analysis databases for functional analysis. Finally, we studied the FEZF1-AS1/miR-92b-3p/ZIC5 axis. We detected the expression of FEZF1-AS1, miR-92b-3p, and ZIC5 via quantitative reverse transcription-PCR, transfected colon cancer cell RKO with lentivirus and conducted FEZF1-AS1 knockdown, and performed cancer-related functional assays. It indicated that many RNA in the competitive endogenous RNA network, such as ZIC5, were predicted to be related to overall survival of colon cancer patients, and enrichment analysis showed cancer-related signaling pathways, such as PI3K/AKT signaling pathway. The expression of FEZF1-AS1 and ZIC5 was significantly higher and that of miR-92b-3p was lower in the colon cancer than in the normal colon tissues. FEZF1-AS1 promoted the migration, proliferation, as well as invasion of RKO. According to the prediction, FEZF1-AS1 and ZIC5 might competitively bind to miR-92b-3p, leading to the weakening of the inhibitory impact of miR-92b-3p on ZIC5 and increasing expression of ZIC5, thus further activating the PI3K/AKT signaling pathway, which led to the occurrence and development of colon cancer. The study suggested that FEZF1-AS1 might be an effective diagnosis biomarker for colon cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets for this study can be found in the TCGA. Please see https://portal.gdc.cancer.gov/ for more details.

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A (2021) Cancer statistics, 2021. CA Cancer J Clin 71:7–33

    Article  PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Goding Sauer A et al (2020) Colorectal cancer statistics, 2020. CA Cancer J Clin 70:145–164

    Article  PubMed  Google Scholar 

  3. Pan J, Cen L, Xu L et al (2020) Prevalence and risk factors for colorectal polyps in a Chinese population: a retrospective study. Sci Rep 10:6974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wu H, Qin W, Lu S et al (2020) Long noncoding RNA ZFAS1 promoting small nucleolar RNA-mediated 2’-O-methylation via NOP58 recruitment in colorectal cancer. Mol Cancer 19:95

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wang H, Wang L, Xie Z et al (2020) Nitric oxide (NO) and NO synthases (NOS)-based targeted therapy for colon cancer. Cancers (Basel). 12:1881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Georgieva M, Gospodinova Z, Keremidarska-Markova M et al (2021) PEGylated nanographene oxide in combination with near-infrared laser irradiation as a smart nanocarrier in colon cancer targeted therapy. Pharmaceutics. 13:424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Du W, Yang X, He S et al (2021) Novel hyaluronic acid oligosaccharide-loaded and CD44v6-targeting oxaliplatin nanoparticles for the treatment of colorectal cancer. Drug Deliv 28:920–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lopes N, McIntyre C, Martin S et al (2021) Distinct metabolic programs established in the thymus control effector functions of γδ T cell subsets in tumor microenvironments. Nat Immunol 22:179–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wu X, Yang H, Chen X et al (2021) Nano-herb medicine and PDT induced synergistic immunotherapy for colon cancer treatment. Biomaterials 269:120654

    Article  CAS  PubMed  Google Scholar 

  10. Ding D, Zhong H, Liang R et al (2021) Multifunctional nanodrug mediates synergistic photodynamic therapy and MDSCs-targeting immunotherapy of colon cancer. Adv Sci (Weinh) 8:e2100712

    Article  PubMed  Google Scholar 

  11. Zhang X, Zhang H, Shen B, Sun XF (2019) Chromogranin-A expression as a novel biomarker for early diagnosis of colon cancer patients. Int J Mol Sci. 20:2919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ludwig JA, Weinstein JN (2005) Biomarkers in cancer staging, prognosis and treatment selection. Nat Rev Cancer 5:845–856

    Article  CAS  PubMed  Google Scholar 

  13. Weng M, Wu D, Yang C et al (2017) Noncoding RNAs in the development, diagnosis, and prognosis of colorectal cancer. Transl Res 181:108–120

    Article  CAS  PubMed  Google Scholar 

  14. Ezkurdia I, Juan D, Rodriguez JM et al (2014) Multiple evidence strands suggest that there may be as few as 19,000 human protein-coding genes. Hum Mol Genet 23:5866–5878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Huarte M (2015) The emerging role of lncRNAs in cancer. Nat Med 21:1253–1261

    Article  CAS  PubMed  Google Scholar 

  16. Iyer MK, Niknafs YS, Malik R et al (2015) The landscape of long noncoding RNAs in the human transcriptome. Nat Genet 47:199–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ponting CP, Oliver PL, Reik W (2009) Evolution and functions of long noncoding RNAs. Cell 136:629–641

    Article  CAS  PubMed  Google Scholar 

  18. Ning L, Li Z, Wei D et al (2017) LncRNA, NEAT1 is a prognosis biomarker and regulates cancer progression via epithelial-mesenchymal transition in clear cell renal cell carcinoma. Cancer Biomark 19:75–83

    Article  CAS  PubMed  Google Scholar 

  19. Xiao JN, Yan TH, Yu RM et al (2017) Long non-coding RNA UCA1 regulates the expression of Snail2 by miR-203 to promote hepatocellular carcinoma progression. J Cancer Res Clin Oncol 143:981

    Article  CAS  PubMed  Google Scholar 

  20. Zhang S, Wang Y, Chen M et al (2017) CXCL12 methylation-mediated epigenetic regulation of gene expression in papillary thyroid carcinoma. Sci Rep 7:44033

    Article  PubMed  PubMed Central  Google Scholar 

  21. Li Y, Wu Z, Yuan J et al (2017) Long non-coding RNA MALAT1 promotes gastric cancer tumorigenicity and metastasis by regulating vasculogenic mimicry and angiogenesis. Cancer Lett 395:31–44

    Article  CAS  PubMed  Google Scholar 

  22. Bian Z, Zhang J, Li M et al (2018) LncRNA-FEZF1-AS1 promotes tumor proliferation and metastasis in colorectal cancer by regulating PKM2 signaling. Clin Cancer Res 24:4808–4819

    Article  CAS  PubMed  Google Scholar 

  23. Paul P, Chakraborty A, Sarkar D et al (2018) Interplay between miRNAs and human diseases. J Cell Physiol 233:2007–2018

    Article  CAS  PubMed  Google Scholar 

  24. Konovalova J, Gerasymchuk D, Parkkinen I et al (2019) Interplay between MicroRNAs and oxidative stress in neurodegenerative diseases. Int J Mol Sci. 20:6055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen C-Z (2005) MicroRNAs as oncogenes and tumor suppressors. N Engl J Med 353:1768–1771

    Article  CAS  PubMed  Google Scholar 

  26. Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6:857–866

    Article  CAS  PubMed  Google Scholar 

  27. Long M, Zhan M, Xu S et al (2017) miR-92b-3p acts as a tumor suppressor by targeting Gabra3 in pancreatic cancer. Mol Cancer 16:167

    Article  PubMed  PubMed Central  Google Scholar 

  28. Tan X, Banerjee P, Liu X et al (2018) The epithelial-to-mesenchymal transition activator ZEB1 initiates a prometastatic competing endogenous RNA network. J Clin Invest 128:1267–1282

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chang L, Yuan Y, Li C et al (2016) Upregulation of SNHG6 regulates ZEB1 expression by competitively binding miR-101-3p and interacting with UPF1 in hepatocellular carcinoma. Cancer Lett 383:183–194

    Article  CAS  PubMed  Google Scholar 

  30. Zhan W, Liao X, Chen Z et al (2020) LINC00858 promotes colorectal cancer by sponging miR-4766-5p to regulate PAK2. Cell Biol Toxicol 36:333–347

    Article  CAS  PubMed  Google Scholar 

  31. Zhuang M, Zhao S, Jiang Z et al (2019) MALAT1 sponges miR-106b-5p to promote the invasion and metastasis of colorectal cancer via SLAIN2 enhanced microtubules mobility. EBioMedicine 41:286–298

    Article  PubMed  PubMed Central  Google Scholar 

  32. Liang H, Yu T, Han Y et al (2018) LncRNA PTAR promotes EMT and invasion-metastasis in serous ovarian cancer by competitively binding miR-101-3p to regulate ZEB1 expression. Mol Cancer 17:119

    Article  PubMed  PubMed Central  Google Scholar 

  33. Li C, Wan L, Liu Z et al (2018) Long non-coding RNA XIST promotes TGF-β-induced epithelial-mesenchymal transition by regulating miR-367/141-ZEB2 axis in non-small-cell lung cancer. Cancer Lett 418:185–195

    Article  CAS  PubMed  Google Scholar 

  34. Weinstein JN, Collisson EA, Mills GB et al (2013) The cancer genome atlas pan-cancer analysis project. Nat Genet 45:1113–1120

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tippmann S (2015) Programming tools: adventures with R. Nature 517:109–110

    Article  CAS  PubMed  Google Scholar 

  36. Ritchie ME, Phipson B, Wu D et al (2015) Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:e47

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lin Y, Liu T, Cui T et al (2020) RNAInter in 2020: RNA interactome repository with increased coverage and annotation. Nucleic Acids Res 48:D189–D197

    Article  CAS  PubMed  Google Scholar 

  38. Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yu G, Wang L-G, Han Y, He Q-Y (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16:284–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102:15545–15550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhou R-S, Zhang E-X, Sun Q-F et al (2019) Integrated analysis of lncRNA-miRNA-mRNA ceRNA network in squamous cell carcinoma of tongue. BMC Cancer 19:779

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wang CC, Han CD, Zhao Q, Chen X (2021) Circular RNAs and complex diseases: from experimental results to computational models. Brief Bioinform. https://doi.org/10.1093/bib/bbab286

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bhan A, Soleimani M, Mandal SS (2017) Long noncoding RNA and cancer: a new paradigm. Cancer Res 77:3965–3981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Murugan AK, Munirajan AK, Alzahrani AS (2018) Long noncoding RNAs: emerging players in thyroid cancer pathogenesis. Endocr Relat Cancer 25:R59–R82

    Article  CAS  PubMed  Google Scholar 

  45. Yao J, Yang Z, Yang J et al (2021) Long non-coding RNA FEZF1-AS1 promotes the proliferation and metastasis of hepatocellular carcinoma via targeting miR-107/Wnt/β-catenin axis. Aging (Albany NY). 13:13726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dasgupta P, Kulkarni P, Majid S et al (2020) LncRNA CDKN2B-AS1/miR-141/cyclin D network regulates tumor progression and metastasis of renal cell carcinoma. Cell Death Dis 11:660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fang J, Ding Z (2020) SNAI1 is a prognostic biomarker and correlated with immune infiltrates in gastrointestinal cancers. Aging (Albany NY) 12:17167–17208

    Article  CAS  PubMed  Google Scholar 

  48. Satow R, Inagaki S, Kato C et al (2017) Identification of zinc finger protein of the cerebellum 5 as a survival factor of prostate and colorectal cancer cells. Cancer Sci 108:2405–2412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dang W, Zhu Z (2020) MicroRNA-1249 targets four-jointed box kinase 1 and reduces cell proliferation, migration and invasion of colon adenocarcinoma. J Gene Med 22:e3183

    Article  CAS  PubMed  Google Scholar 

  50. Lin K, Huang J, Luo H et al (2020) Development of a prognostic index and screening of potential biomarkers based on immunogenomic landscape analysis of colorectal cancer. Aging (Albany NY) 12:5832–5857

    Article  CAS  PubMed  Google Scholar 

  51. The Gene Ontology Consortium (2015) Gene ontology consortium: going forward. Nucleic Acids Res 43:D1049–D1056

    Article  Google Scholar 

  52. Chen L, Zhang YH, Wang S et al (2017) Prediction and analysis of essential genes using the enrichments of gene ontology and KEGG pathways. PLoS ONE 12:e0184129

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kanehisa M, Furumichi M, Tanabe M et al (2017) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 45:D353–D361

    Article  CAS  PubMed  Google Scholar 

  54. Abdelwahed KS, Siddique AB, Mohyeldin MM et al (2020) Pseurotin A as a novel suppressor of hormone dependent breast cancer progression and recurrence by inhibiting PCSK9 secretion and interaction with LDL receptor. Pharmacol Res 158:104847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Canuel M, Sun X, Asselin M-C et al (2013) Proprotein convertase subtilisin/kexin type 9 (PCSK9) can mediate degradation of the low density lipoprotein receptor-related protein 1 (LRP-1). PLoS ONE 8:e64145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Godthelp BC, Wiegant WW, van Duijn-Goedhart A et al (2002) Mammalian Rad51C contributes to DNA cross-link resistance, sister chromatid cohesion and genomic stability. Nucleic Acids Res 30:2172–2182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Connell PP, Siddiqui N, Hoffman S et al (2004) A hot spot for RAD51C interactions revealed by a peptide that sensitizes cells to cisplatin. Cancer Res 64:3002–3005

    Article  CAS  PubMed  Google Scholar 

  58. Wiese C, Collins DW, Albala JS et al (2002) Interactions involving the Rad51 paralogs Rad51C and XRCC3 in human cells. Nucleic Acids Res 30:1001–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Liu N, Schild D, Thelen MP, Thompson LH (2002) Involvement of Rad51C in two distinct protein complexes of Rad51 paralogs in human cells. Nucleic Acids Res 30:1009–1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Böhme I, Beck-Sickinger AG (2009) Illuminating the life of GPCRs. Cell Commun Signal 7:16

    Article  PubMed  PubMed Central  Google Scholar 

  61. Vogelstein B, Papadopoulos N, Velculescu VE et al (2013) Cancer genome landscapes. Science 339:1546–1558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Baldwin AS (1996) The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol 14:649–683

    Article  CAS  PubMed  Google Scholar 

  63. Li F, Zhang J, Arfuso F et al (2015) NF-κB in cancer therapy. Arch Toxicol 89:711–731

    Article  CAS  PubMed  Google Scholar 

  64. Kojima M, Morisaki T, Sasaki N et al (2004) Increased nuclear factor-kB activation in human colorectal carcinoma and its correlation with tumor progression. Anticancer Res 24:675–681

    CAS  PubMed  Google Scholar 

  65. Liu B, Xu T, Xu X et al (2018) Biglycan promotes the chemotherapy resistance of colon cancer by activating NF-κB signal transduction. Mol Cell Biochem 449:285–294

    Article  CAS  PubMed  Google Scholar 

  66. Cross MJ, Dixelius J, Matsumoto T, Claesson-Welsh L (2003) VEGF-receptor signal transduction. Trends Biochem Sci 28:488–494

    Article  CAS  PubMed  Google Scholar 

  67. Fruman DA, Chiu H, Hopkins BD et al (2017) The PI3K pathway in human disease. Cell 170:605–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yang Q, Jiang W, Hou P (2019) Emerging role of PI3K/AKT in tumor-related epigenetic regulation. Semin Cancer Biol 59:112–124

    Article  CAS  PubMed  Google Scholar 

  69. Bishnupuri KS, Alvarado DM, Khouri AN et al (2019) IDO1 and kynurenine pathway metabolites activate PI3K-Akt signaling in the neoplastic colon epithelium to promote cancer cell proliferation and inhibit apoptosis. Cancer Res 79:1138–1150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Johnson L, Mercer K, Greenbaum D et al (2001) Somatic activation of the K-ras oncogene causes early onset lung cancer in mice. Nature 410:1111–1116

    Article  CAS  PubMed  Google Scholar 

  71. Zimmermann G, Papke B, Ismail S et al (2013) Small molecule inhibition of the KRAS-PDEδ interaction impairs oncogenic KRAS signalling. Nature 497:638–642

    Article  CAS  PubMed  Google Scholar 

  72. Li JH, Liu S, Zhou H et al (2014) starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic acids Res 42:D92–D97

    Article  CAS  PubMed  Google Scholar 

  73. Liu YW, Xia R, Lu K et al (2017) LincRNAFEZF1-AS1 represses p21 expression to promote gastric cancer proliferation through LSD1-Mediated H3K4me2 demethylation. Mol Cancer 16:39

    Article  PubMed  PubMed Central  Google Scholar 

  74. Chen N, Guo D, Xu Q et al (2016) Long non-coding RNA FEZF1-AS1 facilitates cell proliferation and migration in colorectal carcinoma. Oncotarget 7:11271–11283

    Article  PubMed  PubMed Central  Google Scholar 

  75. Zhou Y, Xu S, Xia H et al (2019) Long noncoding RNA FEZF1-AS1 in human cancers. Clin Chim Acta 497:20–26

    Article  CAS  PubMed  Google Scholar 

  76. Zhang T, Yu S, Zhao S (2021) LncRNA FEZF1-AS1 promotes colorectal cancer progression through regulating the miR-363-3p/PRRX1 pathway. Adv Clin Exp Med 30:839–848

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We express our sincere gratitude to the TCGA database, RNAInter database, Starbase for data acquisition, and Cuiying Biomedical Research Center for their support of our laboratory equipment and laboratory technology.

Funding

The study was supported by the National Natural Science Foundation of China [grant number 81770525]; Cuiying Scientific and Technological Innovation Program of Lanzhou University Second Hospital [grant number CY2021-QN-A05]; Cuiying Scientific and Technological Key Cultivation Program of Lanzhou University Second Hospital [grant number CY2018-ZD01]; Lanzhou Science and technology project [grant number 2022-ZD-104]; Science and technology project of Gansu Province [grant number 21JR1RA148]; Natural Science Foundation of Gansu Province [22JR5RA969]; and Industrial support and guidance project for institutions of higher learning in Gansu province (2019C-21).

Author information

Authors and Affiliations

Authors

Contributions

The original study design was undertaken by DZ, XY, and PW. Data were analyzed by XY and XM. Experiments were performed by XY, XS, ZW, and ZW. The results were analyzed by FW and XY.

Corresponding author

Correspondence to Dekui Zhang.

Ethics declarations

Competing interest

The authors declare that there are no competing interests.

Ethical approval

Ethical approval to the human study was provided by Lanzhou University Second Hospital medical ethics committee (APPROVAL NUMBER 2021A-468).

Informed consent

We obtained the informed consents from the colon cancer patients.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 540 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Wu, P., Wang, Z. et al. Constructed the ceRNA network and predicted a FEZF1-AS1/miR-92b-3p/ZIC5 axis in colon cancer. Mol Cell Biochem 478, 1083–1097 (2023). https://doi.org/10.1007/s11010-022-04578-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04578-y

Keywords

Navigation